
Participatory Design: Structure in the Toolbox 

Finn Kensing 

Computer Science Department 
Roskilde University 

DK-4000 Roskilde, Denmark 
+45 4675 7711 

kensing@dat.ruc.dk 

Abstract 
In system development users and developers need to 
understand several domains: users' present work, 
technological options and the system being developed. 
These domains must be understood both at a concrete 
level and at an abstract, structured level. No single method 
achieves this. Therefore we must use various methods. 
This paper explains why a specific method may work in 
some situations and not in others. The paper concludes by 
classifying a number of well-known methods according to 
their applicability. 

Keywords 
Participatory design, co-operation, knowledge and 
methods. 

1. Introduction 
"The users and the system developers did not understand 
each other". This is frequently used to explain problems 
in practical system development The statement is often 
followed by the recommendation of a specific technique or 
tool to remedy the situation. However. in our experience 
there is no fool-proof method. System development 
projects fail in communication even though they use the 
most promising techniques. 

In one project horizontal prototypeS were used extensively 
while the requirements were dermed. The intention was to 
ensure that the users understood what they accepted. 
However. the system had to undergo substantial changes 
before it could be used [1]. 

In another case the users were unable to define system 
requirements at the meetings with the system developers. 
The system developers then made an elaborate vertical 
prototype and expected a response from the users. 
However, they did not get any response. 

How do we account for these apparent paradoxes? It is hard 
to find relevant explanations. Most papers and books deal 
specifically with techniques and tools, not with underlying 
theories enabling us to discuss the context and the 
limitations of the IeChniques and the tools. 

In PDC'92: Proceedings o/IM Participalory Duig1& Confer­
ence. M.1. Muller. S. Kuhn, and I.A. Meskill (Eds.). Cambridse 
MA US. 6-7 November 1992. Computer Professionals for Social 
Responsibility. P.O. Box 717, Palo AJro CA 94302-0717 US, 
cpsr@csli.stanford.cdu. 

47 

Andreas Munk-Madsen 

Metodica 
Nyvej 19 

DK-1851 Frederiksberg C 
Denmark 

+45 3131 6432 

Comparative surveys of methods [3,18,29] are usually 
thorough on details but lacking in explanatory theory. 

In this paper we suggest an answer to the communication 
paradoxes in terms of a model of user-developer 
communication. The model is based on theories dealing 
with system development as well as with communication. 

The model may help us to understand why some 
approaches sometimes yield fruitful communication while 
in other situations the same approaches turn out to be 
obstacles. The distinctions offered by the model may act 
as a catalogue - or toolbox - where system developers may 
find ideas appropriate for specific situations. We use the 
model to categorize communication methods and 
description tools in relation to their application area 

Thus our model may form the basis of a contingency 
strategy, as proposed by Davis [11] and Boehm {4]. 

The model covers the communication related to analysis 
and design. i.e. to defining requirements and creating 
solutions. It does not cover all user-developer 
communication. It excludes the communication related to 
management and implementation. 

In section 2 we define and delimit our subject We state 
the purpose and the result of the communication in 
relation to other system development activities. In section 
3 we discuss prerequisites 0/ human communication in 
general. In section 4 we define a model of user-developer 
communication in terms of concepts which are useful 
when discussing the subject In section 5 we state our 
thesis. that in general we can only assume a rather low­
level starting point for user-developer communication. 
The consequence is that in general system developers need 
a rather large toolbox. The organization and contents of 
this toolbox are illustrated in section 6. Section 7 
concludes by discussing the use of our model. 

2. User-Deyeloper Communication in 
System Development 
We want to discuss possibilities and obstacles for 
successful communication in system development. 
Therefore we relate the communication processes to their 
results and to the context in which they take place. 

Describing the system development process, Clements and 
Parnas [8] state: -The most useful form of a process 



description will be in terms of work products." And they 
proceed by describing the documents they would produce 
during a projects life time. We agree with them, although 
our concept of results is not confined to documents alone. 
We would also like to include the knowledge developed by 
the people involved as results. 

What then" are the results of the system development 
process? The fmal results are, of course, a system and a 
completed technical and organizational implementation 
process. Intennediate results are documents and 1cnowledge 
obtained by the participants. Regardless of the 
development model - be it waterfall, spiral, incremental or 
parallel - these results form the basis of important 
decisions. These decisions deal with determining the 
system's level of sophistication, evaluating the usefulness 
of the system, freezing the requirements, and designing the 
system's internal structure. 

Thus the goal of analysis and design activities is to 
produce documents and knowledge enabling decision­
making with regard to the system and its environments. 
How can we produce these results, i.e. what kind of 
methods do we need? That depends on the prerequisites for 
the development process, especially the limitations of 
user-developer communication. We will now present a 
model of communication in order to answer this question. 

3. Communication Models 
Communication is of course a key issue in collective 
activities like system development. People with different 
backgrounds, education. training. and organizational roles 
exchange facts. opinions. and visions in order to inform. 
persuade. and maybe even threaten each other. How is 
communication possible in such a context? 

We sketch two communication models which are relevant 
to understanding and designing user-developer 
communication: a traditional model and an alternative 
model. In our opinion many current tools and techniques 
rely heavily on the rust model. 

Current methods usually suppon written communication 
based on formalized languages, proto typing being the 
major exception. These methods rely on a communication 
model which can be described by a tube-for­
communication metaphor. Communication is perceived as 
something created at one place. e.g. the developers' office. 
then through "a tube" it is carried to the receivers. e.g. the 
users. The tube could be some kind of written system 
description. This communication model takes for granted 
that successful communication is determined by the 
"sender's" ability to form a rigorous message. How is it, 
that the same message in the same form can be interpreted 
so differently by various "receivers"? 

An alternative communication model focusing on the 
prerequisites of those involved in a communicative 
situation enables us to approach this question. When 
people communicate, the speaker's words may trigger a 
change of state in the listeners. According to Maturana and 
Varela [27] "communication depends on not what is 
transmitted, but on what happens to the person who 
receives it". The key criteria for successful communication 
within this model relates to the people involved, rather 

48 

than to some kind of "tube" between them. Thus. 
successful communication depends on the ability to 
establish situations where mutual perturbations trigger 
changes in the state of those involved. which in tum lead 
to structural congruence (social coupling) among 
communicating partners. Writing and speaking do not 
guarantee reading or listening • or even more important· 
do not guarantee the establishing of the concepts and 
models intended by the "sender". Communication is 
created by people who interact 

Maturana and Varela state that a person's interaction­
domain is that same person's domain of cognition. This 
implies that the kinds of activities we are involved in 
delimit the kind of 1cnowledge we are able to develop. It 
further implies that the tools we apply in these activities 
delimit the kind of 1cnowledge we are able to develop. The 
rejection of the tube-for-communication metaphor implies 
that developers and users must set aside much time for 
discussions and for joint activities. This is done at the 
expense of working alone and communicating solely in 
writing. which current methods primarily suppon. 
Techniques such as mapping, future workshops. and 
metaphorical design (see section 6), are alternatives which 
suppon the development of social coupling. and thereby 
successful communication. 

4. A Mo~el pf User-peyeloper 
CommuQlcatlon 
We want to be able to address such questions as: "'Why did 
a specific project fail even though it contained many user­
related activities?" "Which methods should be applied in 
specific system development situations?" "How do system 
developers ensure active user participation?" 

In order to discuss these questions we have created a model 
of the communication between users and system 
developers. The model highlights important factors and 
relates them to each other. The factors are: the results of 
the system development process (including intermediate 
results). the panicipants' prerequisius, and tools and 
techniques for system description. The model is based on 
two distinctions - dealing with three domains of discourse 
and two levels of knowledge. The three domains of 
discourse are illustrated in figure 1. 

I Users' present worlel I Technological option~ 

~/ 

Figure 1. Three domains or discourse in the 
design process. 

The figure illustrates the idea that design is bridge· 
building in the sense that something new is created based 
on two existing things. Design is based on two domains 



of discourse: the users' present work and the technological 
options. Here technology incorporates not only hardware 
and software, but also work organization. This may seem 
strange but in this context we fmd it useful and acceptable 
to group these matters. Various organizational options, as 
well as several hardware and software options, should be 
considered and coordinated in order to fit together as well 
as possible. 

The result is a third domain of discourse: a new (or 
changed) computer system and changes in the content and 
the organization of the users' work. 

These domains reflect both the users' and the developers' 
typical prerequisites. At the outset the users have some 
knowledge of their present work and of organizational 
options. The system developers have some knowledge of 
the technological options with regard to hardware and 
software. At the outset this is all they need to know. 

Based on this distinction we state: 

Thesis 4.1 The main domains or discourse 
The main domains of discourse in design are: 
* users' present work 
* lechnologicaloplions 
* new syslem 
Knowledge of lhese domains mUSI be developed and 
inlegraled in order for lhe design process 10 be a success. 

The second distinction is illustrated in figure 2. It 
expresses the fact that we need two levels of knowledge. 
We need abstract knowledge to get an overview of a 
domain of discourse and we need concrete experience in 
order to understand the abstract knowledge. 

I Abstract knowledge I 

l 
I Concrete knowledge I 

Figure 2. Two levels or knowledge 

We combine the two distinctions into the model in figure 
3. The model describes three main domains of discourse 
on two levels of abstraction. Altogether we get six areas 
of knowledge in user-developer communication (Figure 3). 
The numbering 1 to 6 in figure 3 does not reflect a time 
sequence, i.e. we are not proposing a new waterfall model. 
The numbering is done for the purpose of convenient 
referencing. 

Various methods propose different sequencing when 
dealing with the six areas. Normally we would expect 
some degree of iteration. However, this discussion is 
beyond the scope of this paper. 

49 

4.1 Cogcrete experiegce with users' presegt 

muk 
Developers need this area of knowledge [19]. They must 
have some feeling for the users' work in order to be able 
to understand and to produce structured descriptions or 
representations of this work (area 2). They cannot rely on 
users talking about their work, nor can they rely on a 
requirement specification. Developers must experience 
users in action.' 

If developers have no concrete experience with what is 
going on in the user organization and if they have no idea 
of the cultural potentials for change, they cannot judge the 
relevancy of a structured description of the work. User­
representation in the design team does not overrule this 
statement. 

The results of dealing with this area of knowledge may 
come in terms of experiencing differences in working 
styles, normal and stress situations, power relations, etc. 

Results may also be the formation of a common language 
among users and developers. 

4.2 Releyagt structures On users' present work 
A relevant structure defines a common and rigorous 
language among users and developers, in which they can 
communicate. A structure is a model of the present 
situation in the user organization. The model is used to 
identify desired changes and to evaluate consequences of 
proposed designs. 

We refer to structures in the plural as we cannot expect to 
capture the richness of the users' work in a single 
structure. 

Which structures are relevant depends on the situation. 
Information flow is a structure offered by many methods. 
It is relevant when we want to automatize existing data 
processing. A control model is a relevant structure when 
we want to discuss management information systems. A 
model showing the variety and interrelationship of tasks 
carried out by individuals or a group during a typical 
working-day is relevant when we want to discuss 
requirements for a new communication system. 

4.3 Cogcrete experiegce with techgological 
optjODS 
If we want users to play an active role in system 
development we must expose them to technological 
options. This is done to stimulate their technological 
fantasy and to enable them to understand abstract 
descriptions of technical and organizational solutions. 

The relevancy of activities in this area is of course 
dependent on the users' present experience. Though they 
may be daily users of some kind of system, they might 
not have experienced the variety of existing hardware and 
software. 

If we want designers to play an active role in designing 
the use of technology in organizations (and even though 
this is seldom an explicit goal, they often do this anyway) 
they must be exposed to organizational options. This is 



Users' present worle New system Technological options 

Abstract Relevant (2) Visions (5) Overview of (4) 
lcnowlcdge structures on and design proposals technological options 

users' present worle 
Concrete Concrete (1) Concrete (6) Concrete (3) 
experience experience with users' experience with the new experience with 

uresent worle system technololtical options 

Figure 3. Six areas or kDowledge in user-developer commuDicatioD. 

done to stimulate their organizational fantasy and to 
enable them to understand the users' concrete experiences 
with, as well as their abstract descriptions of, 
organizational options. 

4.4 Oyerview of te<;bnolo&ical options 
This area of knowledge is the input of technical and 
organizational ideas into the design process. The system 
developers must be well informed about possibilities and 
limitations regarding hardware and software in order to 
justify their presence in the process. If nobody in the user 
organization has an overview of organizational options 
then this sub-area has to be developed during the design 
process to ensure that the new computer system and the 
new organization fit together. 

4.5 visjons and desi&n proposals 
These descriptions are developed throughout a project's 
lifetime. Here too, it is a question of many structures, as 
one alone cannot capture the totality of a new computer 
system and its use. The structures document the actual 
progress of the project as it approaches the final result, 
and they form the basis for renewed contracts, even if 
these may be informal. Therefore some of them must be 
understandable to the users. 

- Absttact descriptions are normally required as part of a 
system development project. These may be hard for the 
users to understand, but they are necessary to the 
developers. We sttess that in order for users to malce 
decisions and priorities, they too need abstract descriptions 
to provide them with relevant structures of the new 
computer system, as well as of the organization in which 
it is to be implemented. These descriptions might very 
well differ from those needed by the developers. 

4.6 Concrete experience witb tbe new system 
The purpose of this area is to enable the users to 
understand abstract descriptions of the new system (area 
5), and to let them experience how the new system meets 
their needs. The system developers also need concrete 
experience with the new system in order to check whether 
it fulfils the descriptions. 

In a specific project this area may already be covered 
through experience with technological options (area 3). 
This depends fll'St and foremost on how radically the new 
system transcends current practice. 

5, Theses Based on the Model 
We now relate the model to the participants' prerequisites 
and we discuss which areas of knowledge each party must 

50 

develop in order to facilitate genuine cooperation. The 
minimal starting point for a design process is actually 
rather narrow. Therefore it is the system developers' 
responsibility to apply tools and techniques which allow 
the participants to acquire an understanding of areas they 
have little or no knowledge of. 

Thesis S.l Areas covered by the users. 
We can usually be sure that users cover area 1: Concrete 
experience with user work. We can usually expect nothing 
mtJre. 

Obviously users may be ignorant of technological options 
and the future system. However. it is not so obvious that 
they normally do not possess relevant structures or 
representations of their own worle. The leeyword here is 
"relevant" . 

Traditional structures, such as organization diagrams and 
descriptions of the formal division of labour are not 
necessarily relevant. They may be insufficient when it 
comes to discussing inexpediencies in the users' present 
worle and requirements for new systems, since they do not 
necessarily reflect what can be observed in the 
organization. Relying on such descriptions has often led 
to solving the wrong problems. 

Thesis S.l Areas covered by the system 
developers. 
We can usually be sure that system developers cover area 
3 and 4: technological options. We Celn usually expect 
nothing more. 

The first part of this thesis is rather obvious, or else 
designers would have no role in the process. However, 
sometimes designers are also challenged by the 
technological options. E.g. when new development tools 
are applied, when simultaneous development of basic 
software and applications occurs, and when new standard 
software or hardware is introduced. 

With regard to the second part of the thesis, the developers 
may of course have worked for the organization before or 
they may have worked for a similar organization. In that 
case they may have concrete experience as well as absttact 
knowledge about the users' present work. This would 
malce things easier, but this is not something that can 
generally be talcen for granted. 

Also when it comes to the new system, developers may 
have prior experience, e.g. from implementing standard 
systems. However, neglecting the characteristics of the 



Areas of knowledge 
Tools and techniques 2 3 4 5 6 

Observations [23 30] 1 
Interviewimt users 1 
Self relristration f 111 1 
Develooers doinlt users' work 1 
Videorecordinll f23 301 1 
Mock-ups [14 15] 1 6 
Think aloud exoeriments [231 1 6 
Drawinlt rich nictures r71 1 2 
Conceptual modeUinlt r7I 2 
Culture analysis f51 1 2 
Obiect-oriented analysis [91 2 5 
Obiect-oriented desim nm 5 
Event lists f281 2 5 
Entitv-relationshin dialmUlls f281 2 5 
WalllmlooS 2 5 
Maooinll f251 2 5 
Future worlcshoD r2l 22 241 2 5 
MetaPhorical desim [22 26] 2 5 
Data flow diaszrams [121 2 5 
Lanllualle analvsis f23 30 311 2 5 
Card ll8lIles [131 1 6 
Prototypinll [2 6 16 201 3 6 
Visits to other installations 3 4 
Literature study 4 
Studv standard software 3 4 
Forum theater 6 

Figure 4. Tools and techniques ror knowledge development. 

specific organization will prevent the new computer 
system and the organization from fitting together. 

Thesis 5.3 Areas or knowledge to be acquired 
by the users through the development process. 
It is the system developers' responsibility to apply tools 
and techniques allowing users to develop 
• relevant structures on users' present work (area 2), 
• visions and design proposals (area 5). 
• concrete experience with the new system (area 6). 

The reasons for this thesis are the following: abstract 
descriptions of the new system (area 5) and relevant 
structures on users' preset work (area 2) are needed when 
the users evaluate design proposals. As some pan of the 
user organization must normally malee a decision about 
accepting or rejecting a proposals, the users' knowledge of 
these areas is indispensable. 

In order for users to playa creative role in design they 
need abstract descriptions of their present work (area 2) as 
well as of the new system (area 5). 

However, concrete experience is also needed in order to 
understand abstract descriptions. Thus the users need 
concrete experience with the new system (area 6) before 
they can understand abstract descriptions of the new 
system (area 5). 

51 

Thesis 5.4 Areas or knowledge to be acquired 
by the system developers through the 
development process. 
It is the developers' responsibility to apply tools and 
techniques allowing them to develop 
• visions and design proposals (area 5), 
• relevant structures on users' present work (area 2), 
• concrete experience with users' present work (area 1), 
• concrete experience with the new system (area 6). 

It goes without saying that the developers must understand 
abstract descriptions of the new system (area 5) since they 
are major intermediate results. Relevant structures on 
users' present work (area 2) must be understood in order to 
identify and evaluate desirable changes. 

The developers must have concrete experience with users' 
present work (area 1) in order"to understand and produce 
descriptions of relevant structures on the users' present 
work. System developers who have developed this area of 
knowledge have a better background for communicating 
with the users, as they are able to refer to and understand 
references to concrete events in the users' organization. 

Finally, the developers must have concrete experience 
with the new system (area 6) in order to be able to test and 
evaluate the products of their own work. 



We conclude this section by observing that our theory 
entails that all areas of knowledge must be dealt with in 
any normal system development process. The next section 
will discuss the toolbox we need for this work. 

6. Tools and Techniques for Knowledee 
Develooment 

Our model of user-developer communication can be used 
to define a toolbox for tools and techniques to facilitate 
this communication. The toolbox presented in figure 3 
consists of 6 sections, one for each of the areas of 
knowledge discussed above. It accentuates the differences 
between the purposes of the tools and techniques, even 
though some fit into more sections. 

A presentation of the tools and techniques chosen to 
illustrate the use of the toolbox is beyond the scope of 
this paper. The interested reader may find additional 
information in the references indica~d in figure 4. 

7. Conclusion 

We find the model listing areas of knowledge in figure 3 
useful for a classification of tools and techniques. A 
classification which developers may find helpful when 
planning a project. 

We also find the theses in section 5 useful in explaining 
why projects run into trouble. This may be related to 
power games in the user organization or to other factors 
which are most often out of the developers' control. 
However based on our own research (Andersen et al., 
1990). we claim that far too often problems in real life 
projects are caused by developers using inadequate tools 
and techniques. 

We can now explain apparent paradoxes such as: 
"Horizontal prototypes are insufficient" (Grenblek 1988) 
and "Prototypes do not substitute analysis" (Andersen 
1987). A horizontal prototype does not really give users 
an experience with the future system. It is more like an 
abstract system description: the menu hierarchy 
implemented on edpehardware. Thus inexperienced users 
will not obtain sufficient understanding of the system's 
functions. Vertical prototypes used successfully might 
solve the problem. On the other hand prototyping diverts 
the attention from such questions as: Do we need a new 
computer system? To answer this question knowledge area 
2 in figure 3 must be dealt with. Analysis techniques 
must also be used. 

Figure 4 not only indicates the areas of knowledge, in 
which the various tools and techniques are adequate but at 
the same time also highlights the areas in which they are 
inadequate. Conclusions concerning the more established 
tools and techniques such as dataflow diagrams are 
interesting. One of many conclusions we may draw from 
figure 4 is that all traditional system development 
methods deal only with areas 2 and S, resulting in abstract 
descriptions. Thus, by themselves they are insufficient as 
guidelines for the entire system development process. 
They must be supplemented by techniques giving concrete 
experiences of user work and computer technology. 

52 

8. References 

[1] Andersen, N.E. et al.: Professional Systems 
Development Prentice·Hall, 1990. 

[21 Andersen, N.E.: Brug af prototyper (Using 
Prototypes), Datacentralen, 1987. 

[31 Blank et al.: Software Engineering: Methods and 
Techniques. Wiley-Interscience. 1983. 

[41 Boehm, B.: A Spiral Model of Software Development 
and Enhancement Computer, May 1988. 

[5] B0dker, K. and J.S. Pedersen: Workplace Cultures -
Looking at Artifacts, Symbols, and Practice. In [19]. 

[6] B0dker, S. and K. Grenblek: Design in Action· From 
Prototyping by Demonstration to Cooperative 
Prototyping. In [19]. 

[7] Checlcland, P: Systems Thinking. Systems Practice. 
John Wiley, 1981. 

[8] Clements, P.C. and D.L. Pamas: A Rational Design 
Process: How and Why to Fake It. In Proceedings of the 
International Joint Conference on Theory and Practice of 
Software Development Springer Verlag, 1985. 

[9] Coad, P. and E. Yourdon: Object·Oriented Analysis. 
Prentice Hail. 1991. 

[10] Coad. P. and E. Yourdon: Object· Oriented Design. 
Prentice Hail, 1991. 

[11] Davis. G.B.: Strategies for Information Requirements 
Determination. IBM Systems JQurnaI, vol. 21, p. 4-30, 
1982. 

[12] DeMarco, T.: Structured Analysis and Systems 
Specification. Yourdon Press. 1978. 

[13] Ehn, P. and D. SjOgren: From System Descriptions 
to Scripts for Action. In [19]. 

[14] Ehn, P. and M. Kyng: Cardboard Computers -
Mocking-it·up or Hands-on the Future. In [19]. 

[15] Ehn. P.: Work-Oriented Design of Computer 
Artifacts. Arbetslivscentrum, 1988. 

[16] Floyd, C.: A Systematic Look at Prototyping. In R. 
Budde et aI (eds): Approaches to Prototyping. Springer 
Verlag, 1984. 

[17] Foged, J et al.: HAndbog om Klubarbejde, edb­
projekter og nye arbejdsformer. (in Danish). TIK-TAK 
projektet, Ainus University, 1981. 

[18] Freeman P. and A.I. Wasserman: Software 
Development Methodologies and Ada. DoD, 1982. 

[19] Greenbaum, J. and M. Kyng (cds): Design at Work: 
Cooperative Design of Computer Systems. Lawrence 
Erlbaum, 1991. 



[20] Gr0nba:k, K.: Rapid Prototyping with Fourth 
Generation Systems -An Empirical Study. DAIMI PB-
270, Arhus University, 1988. 

[21] Junk, R. and N. Milllert: Future Workshops - How 
to Create Desirable Futures. Institute for Social Invention, 
London, 1987. 

[22] Kensing, F. and K.H. Madsen: Generating Visions -
Future Workshops and Metaphorical Design. In [19]. 

[23] Kensing, F. and T. Winograd: The Language/Action 
Approach to Design of Computer Support for Cooperative 
Work - A Preliminary Study in Work Mapping. In 
Stamper, R.K. et al. (eds): Collaborative Work, Social 
Communications and Information Systems. Proceedings 
of the IFIP TC8 Working Conference. North-Holland, 
1991. 

[24] Kensing, F.: Generation of Visions in Systems 
Development In P. Docherty et al. (eels): Systems Design 
for Human Development and Productivity. Proceedings of 
the IFIP TC 9/WG 9.1 Working Conference. North­
Holland, 1987. 

53 

[25] Lanzara, G.F. and L. Mathiassen: Mapping 
Situations within a System Development Project. 
Information Management, 8 (1). 

[26] Madsen. K.H.: Breakthrough by Breakdown -
Metaphors and Structured Domains. DAIMI PB- 243 
Arhus University, 1988. 

[27] Maturana. H.R. and F.1. Varela: The Tree of 
Knowledge - The Biological Roots of Human 
Understanding. New Science Library, 1987. 

[28] McMenamin, S.M. and J.F. Palmer: Essential 
Systems Analysis. Yourdon Press, 1984. 

[29] OUe, T.W. et al.: Information Systems 
Methodologies. Addison-Wesley, 1988. 

[30] Suchman, L.A. and H.T. Trigg: Understanding 
Practice -Video as a Medium for Reflection and Design. In 
[19] 

[31] Winograd, T. and F. Flores: Understanding 
Computers and Cognition - A New Foundation for 
Design. Ablex, 1986. 




