
Learning When Less is More: “Bootstrapping”
Undergraduate Programmers as Coordination Designers

Sirong Lin, Deborah Tatar, Steve Harrison
Dept. of Computer Science

Virginia Tech
660 McBryde Hall, MC 0106

silin@vt.edu, tatar@vt.edu, sHarrison@vt.edu

Jeremy Roschelle, Charles Patton
Center for Technology in Learning

SRI International
333 Ravenswood Ave.

<first name.last name>@sri.com

ABSTRACT
In this paper, we describe an undergraduate computer
science class in the United States that we started with the
intention of creating a participatory design experience to
create distributed mobile collaborative technologies for
education. The case highlights the ways in which
programmer understanding of an innovative new
technology can depend on understanding the context of use.
The students were to use Tuple-spaces, a language for
coordination. However, it soon became clear that while the
coordination of machines may be thought of as a computer
science problem, the students could not understand the
technical system without richer models of how, why, or
when coordination is desirable. We were in the ironic
position of teaching human coordination at the same time
as describing the technical properties of a system to support
it. To “bootstrap” the learning process, we asked the
students to draw on their own coordination expertise by
implementing familiar coordinative games. We propose
games as an addition to the PD toolkit when implementers
need help in stepping outside their everyday mindset.

Author Keywords
Guides, instructions, author’s kit, conference publications.

ACM Classification Keywords
H5.m. Information interfaces and presentation (e.g., HCI):
Miscellaneous.

INTRODUCTION
A person might think that teaching design to a population
of largely white and Asian male computer science
undergraduate students in a university context in America
is an area without wonder to the participatory design (PD)
community. As dePaola said in PDC 2004 “PD can bring
together field-study methods and participative design
activities to facilitate the creation of a common language
between designers and users. The goal is to integrate
‘systemic analysis, appreciative intervention, and

practitioner participation’[5] to create social-technical-
political conditions that reduce the gap between design
practices and users’ work practices”[3]. Computer
scientists and their technical knowledge are in the
background from this perspective. Computer scientists are
thought to be well-tuned to understanding their own
mastery-based culture. However, the rise of ubiquitous and
pervasive computing can create situations that turn the
usual engineering “object-world” [1] on its head. One such
situation is discussed here, in which the professor’s
growing understanding of the social-cognitive barriers to
student understanding of the system led to significant
course redesign. Although we initially intended the students
to engage in participatory design using the system, instead
we were forced to create methods for addressing pre-
conditions that would permit such design.

PRIOR PD WORK ON COORDINATION
In two prior projects, we had used PD with teachers to
create a number of successful classroom activities on
mobile wirelessly connected handheld computers for math
and science learning [6, 9, 10]. These activities turned out
to involve a high degree of interpersonal and machine
coordination both in the foreground---the reasons one
might adopt and use a system---and the background---the
affordances which render the system easy and attractive
enough to utilize in a group situation. As with many
classroom response systems [7], our activities focused on
increasing student learning and involvement by a) breaking
out of a lecture format to support small group work, and/or
b) giving the teachers more information about the student
experience with the aim of influencing their instructional
practice. Remarkable results included high 8th grade
performance on items from the Advanced Placement
Calculus exam. That is, students at the beginning of the
algebra learning sequence were able to understand calculus
concepts taught only peripherally in the course of a one
month intervention.

Figure 1 illustrates an example of a foreground
coordination activity, Match-My-Graph. In this activity,

In PDC-06 Proceedings of the Participatory Design Conference,
Vol II, Trento, Italy, August 1-5, 2006, under a Creative
Commons License. CPSR, P.O. Box 717, Palo Alto, CA 94302.
http://www.cpsr.org ISBN 0-9667818-4-8

133

Figure 1: An activity that involves a high degree of
coordination between pairs of learners working face-to-face

(Reprinted from Tatar, 2003).

pairs of algebra learners learned to use math language
better by resolving the differences between their screen
displays. One student, the grapher, would create a graph of
a function. The other student, the matcher, had the job of
creating the same graph, based on verbal hints from the
grapher. After the matcher heard the grapher’s hint, he/she
would send his new guess to the grapher. The grapher
would then look at the two graphs, the original and the
guess, to formulate a new (verbal) hint.

Note that in this activity, the primary site of learning is in
the student finding the precise words for verbal expression
of the math concept. The computer merely creates an
impetus and setting for doing so.

Background coordination considerations include the
mechanisms by which students are grouped into pairs, how
the correct work is distributed to the students (and
handhelds), and how students attain the roles of matcher or
grapher [10]. In all of these cases, we observed and
teachers reported high degrees of a) responsibility allocated
to the students for controlling their own behavior and b)
fluidity in goals. For example, one teacher planned on
having the students work in mixed ability groups on a given
day. She started the class by assigning students to pairs,
but when some of the children were called out of the room,
her priorities changed, and she broke off from a discussion,
called out “Find someone to work with,” and continued her
discussion.

In response to this, we design for situated action [8] with
flexible goals and roles. For example, from a machine point
of view, students became pairs by acting like they were a
pair, that is, by communicating with one another via
machine. One student took on the role of a matcher by
acting like a matcher, that is, by sending his/her first guess
to the person who, by accepting it, became a grapher.

TUPLE SPACES
Tuple spaces originated as a mechanism for exploring
different paradigms for allocating work to asynchronous,
parallel-distributed computers [2]. The underlying support
for coordination was that: a) A tuple client would break a

problem up into different components (tuples) posted or
written to the Tuple Space server. b) Different tuple clients
could take components that matched their specifications
and execute them. c) Clients would decide whether to take
one or more tuples by a process of associative (template)
matching. That is, a student looking for a partner, might
find one by asking the tuple server to match a specific
name (like “Deborah”) or a more general one (anyone in
the group “RedDiamond”). Tuples are well suited for
changing coordination. The absence of need for the
programmer to attend to details of machine connectivity
(such as socket numbers) or complex heavy-weight data
structures (as in database programming) reduces
complexity. Additionally, they emphasize light-weight,
emergent mapping of machine to activity, of person to
machine, and of person/machine to role.

THE CLASS
Fourteen senior and first-year graduate students at Virginia
Tech participated in a project-based class to build tuple-
space based handheld applications for education. Thirteen
were male, one female. Four were white, one African-
American, eight were Asian and one Asian-American.
Students received and signed informed consent letters. A
separation was maintained between their grade in the class
and their participation in the research. Pre and post class
interviews were conducted, all work was collected for the
research and classes were video and audiotaped. Programs
were implemented in Java, using T-Spaces and Swing or
SWT for laptops or Dell Axim X50 Handheld Computers.

COMPUTER SCIENCE STUDENT OBJECT-WORLD
Our initial approach to teaching the class was to present the
underlying technology interleaved with examples of the
kinds of programs we had developed with teachers and
implemented successfully in the past. We were surprised
by the lack of questions about key elements. When we
asked the CS students to engage in an initial design
exercise planning a simple, Tuple-based interaction, some
were unable to proceed. Others proceeded but turned in
designs that, for example, created a database system inside
Tuple spaces, with information assurance, normalization
and security features.

Our initial response was to treat this as a purely
technological misunderstanding. We created a template-
matching exercise in which we used paper to walk the class
through the communication of information between tuple
clients and servers. This clarified a certain component of
the process for the CS students, but they expressed
dissatisfaction with what we thought of as the attractive
simplicity of writing and taking.

We came to see that the problem was at the level of the CS
student object-world:

….it is the object as they see and work with it that
patterns their thought and practice, not just when they
must engage the physics of the device but throughout the
entire design process, permeating all exchange and

134

discourse within the subculture of the firm. This way of
thinking is so prevalent within contemporary design that I
have given it a label—“object-world” thinking... [1], p. 4

The technical teaching problem was tied to two intertwined
topics: the invisibility of human coordination activities and
a disciplinary focus on control, efficiency, and correctness.

IMPLEMENTING GAMES TO TEACH COORDINATION
To help the CS students focus more clearly on a setting of
deliberate coordination between multiple parties, we asked
them to create coordinated, collaborative versions of games
in Tuples spaces. Seven games were created, of which six
were variants of popular and/or educational games:
collaborative crossword puzzles, hangman, “Apples-to-
Apples”™, “Krypto”™-Telephone, math bingo, and
“Pictionary”™. Additionally, a seventh game was created,
the algorithm enactor.

Each of these games reified some special challenge of
motivating and implementing coordinated activity. For
example, Apples-to-Apples™ is a game in which all
players draw from a set of cards, each of which has a
distinct noun or noun phrase on it (like “Shirley Temple,”
or “canasta”). One player, the judge, turns over a card with
an adjective or adjectival phrase. Players play the card from
their hand with the noun that they think the judge will think
corresponds best to the adjective. For example, if the
adjective is “curly,” the player might pick “Shirley
Temple” rather than “canasta.” There are no right or wrong
answers. The fun lies in picking the best answer from a
small set of alternatives and in seeing how other people
associate noun and adjective phrases. The game can be
played by any number of players, but at any given time,
there is one judge. The role of judge moves between
players on every round, offering opportunities for rule
negotiation and challenging the notion of designing for one
fixed “teacher” role. Human and machine coordination is
illustrated in Figure 2.

In the collaborative crossword puzzle design (Figure 3),
turn taking was negotiated entirely socially. Anyone could
take a clue at any time and post an answer. If one person

Figure 2: The coordinated, distributed Apples-to-Apples™

game emphasizes the lack of particular right or wrong
answers, the role of communication outside the computer, and

the need for flexible movement between roles.

posted an answer that put an “e” in a slot and another
posted an answer with a “d” for that same slot, both would
be displayed for discussion. Initially the students designed
mechanisms for allocating points, which entailed highly
complex mechanisms to prevent “cheating” by substituting
one’s own answers for someone else’s. However, in design
review, other students raised many other ways of cheating,
leading to the design team to question 1) their behavioral
expectations from the users and 2) the merit of giving
points in a game that already constitutes its own reward.

VALUES INHERENT IN COMPUTER SCIENCE
Through interviews, in-class comments, designs and
reactions to existing systems, two overlapping themes in
the CS student object-world emerged: their views of the
benefits of computing, and their views of desirable control.

The CS student object-world appeared to highlight four
possible benefits to computing in the classroom: that
computers would know the right answer, that they could
store a complete record of activity, that they could forestall
student mistakes, and that they could give and remember
points or grades. For example, some thought that algebra
students would learn better in Match-My-Graph if the
system told them when the two lines were the same rather
than having them negotiate/discover this. The CS students
anticipated and were concerned that the algebra students
might think that the two lines were the same when in fact
they were not (although this never actually happened). The
CS students were puzzled by the absence of features in
Tuple spaces to support these putative benefits. They did
not see the student process as particularly significant.

Control, in the CS view, belonged to the centralized server,
as it does in most web programs, which would allocate jobs
and roles to student-users, and record and evaluate
behavioral history. The CS students felt that it was a
deficiency in the program that it did not automatically
monitor the algebra students to report how many rounds of
Match-My-Graph were successfully completed, which
seemed to be a self-evident metric of interest to any
teacher. A better system was a system in which the teacher
would personally authorize the giving out of material at
prespecified time intervals and ensure that everyone was
working on equivalent problems at the same time. It,
further, seemed obvious to the CS students that every
participant should be identified by name, and that steps had
to be taken to make sure that the name given was correct
and canonical.

These views of the benefits of computing and of control
had curiously strong parallel with their views of what a
good class entailed (and therefore what participatory design
might look like and of the kinds of information they should
seek to find from participating teachers).

The game context appeared to loosen the CS view of
appropriate and desirable behavior and allow a level of
questioning not permitted in the discussion of “serious”
topics.

Players are connected to
one another by machine
and face.

Join us!

Right
now I’m
the
Judge.

We’re players.

OK! Do I just
press play?

135

Figure 3: The collaborative crossword puzzle game simply displayed conflict, leaving the resolution to the social world.

DISCUSSION
As it happened, the CS students were interested in games,
and the games motivated them to think more deeply about
coordination, motivating their understanding of system
features. The success of this activity is in part a result of
their object-world; because they were computer science
students, they took the computer-based implementation of
games as a self-evident desirable goal. Others might have
asked “Why do you want to complicate with technology a
game like Hangman that is perfectly adequate with paper
and pencil, or chalkboard and chalk?” They did not.

The usual PD toolkit includes participatory activities like
mockups and joint storyboarding. Other recent work has
used games as a bridge between designers and future users
[4]. We document a case in which these tools failed
because of a strongly held engineering worldview. We are
using games quite differently, to make certain elements of
the social world more visible through reification and
analogy. Because the deep design of our technical system
originated in participatory design experiences, it embodied
technical features that were challenging for this worldview,
though part of it.

Thus the experience reported here is not precisely
participatory design, nor is it systems design. However, it a
pre-requisite for both if the world of ubiquitous and
pervasive computing is to embody situated, emergent,
flexible, human-scale systems. In this case, games proved
to be a good context for opening the minds of engineers to
alternative social meanings of computing. We propose
games as an addition to the PD toolkit when implementers
need help in stepping outside their everyday mindset.

ACKNOWLEDGEMENTS
This work was supported by NSF ITR/IERI Grant #REC-
REC 0427783. Thanks to all the members of the Tuples
project, CS4984 Fall 2005, and PDC reviewers.

REFERENCES
1. Bucciarelli, L. Designing Engineers. MIT Press, 1996.
2. Carriero, N. & Gelertner, D. How To Write Parallel Programs:

A first course. MIT Press, Cambridge, MA, 1990.
3. dePaula, R., Lost in Translation: A Critical Analysis of Actors,

Artifacts, Agendas, and Arenas in Participatory Design. In
Proceedings of the eighth conference on Participatory design
(Toronto, Ontario, Canada, 2004), ACM Press, 162-172.

4. Donovan, J. & Brereton, M., Meaning in Movement: A
Gestural Design Game. In Proceedings of the eighth conference
on Participatory design (Toronto, Ontario, Canada, 2004),
ACM Press,

5. Karasti, H. (2001) Bridging Work Practice and System Design:
Integrating Systemic Analysis, Appreciative Intervention and
Practitioner Participation. Journal of Computer Supported
Cooperative Work, 10 (2). 211-246.

6. Penuel, W. & Yarnall, L. (2005) Designing Handheld Software
to Support Classroom Assessment: Analysis of Conditions for
Teacher Adoption. Journal of Technology, Learning and
Assessment, 3 (5).

7. Roschelle, J., Penuel, W.R. & Abrahamson, A.L. (in press)
Using classroom networks to improve achievement and
participation in mathematics and science. Educational
Leadership.

8. Suchman, L.A. Plans and situated actions. Cambridge
University Press, Cambridge, 1987.

9. Tatar, D., Roschelle, J., Vahey, P. & Penuel, W.R. (2004)
Handhelds Go to School. IEEE Computer, 36 (9). 30-37.

10.Vahey, P., Tatar, D. & Roschelle, J., Leveraging Handhelds to
Increase Student Learning: Engaging Middle School Students
with the Mathematics of Change. In ICLS May, 2004).

136

