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ABSTRACT 
In this paper, we describe an undergraduate computer 
science class in the United States that we started with the 
intention of creating a participatory design experience to 
create distributed mobile collaborative technologies for 
education. The case highlights the ways in which 
programmer understanding of an innovative new 
technology can depend on understanding the context of use. 
The students were to use Tuple-spaces, a language for 
coordination. However, it soon became clear that while the 
coordination of machines may be thought of as a computer 
science problem, the students could not understand the 
technical system without richer models of how, why, or 
when coordination is desirable. We were in the ironic 
position of teaching human coordination at the same time 
as describing the technical properties of a system to support 
it. To “bootstrap” the learning process, we asked the 
students to draw on their own coordination expertise by 
implementing familiar coordinative games. We propose 
games as an addition to the PD toolkit when implementers 
need help in stepping outside their everyday mindset.  
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INTRODUCTION 
A person might think that teaching design to a population 
of largely white and Asian male computer science 
undergraduate students in a university context in America 
is an area without wonder to the participatory design (PD) 
community. As dePaola said in PDC 2004 “PD can bring 
together field-study methods and participative design 
activities to facilitate the creation of a common language 
between designers and users. The goal is to integrate 
‘systemic analysis, appreciative intervention, and 

practitioner participation’[5] to create social-technical-
political conditions that reduce the gap between design 
practices and users’ work practices”[3]. Computer 
scientists and their technical knowledge are in the 
background from this perspective. Computer scientists are 
thought to be well-tuned to understanding their own 
mastery-based culture. However, the rise of ubiquitous and 
pervasive computing can create situations that turn the 
usual engineering “object-world” [1] on its head. One such 
situation is discussed here, in which the professor’s 
growing understanding of the social-cognitive barriers to 
student understanding of the system led to significant 
course redesign. Although we initially intended the students 
to engage in participatory design using the system, instead 
we were forced to create methods for addressing pre-
conditions that would permit such design.  

PRIOR PD WORK ON COORDINATION  
In two prior projects, we had used PD with teachers to 
create a number of successful classroom activities on 
mobile wirelessly connected handheld computers for math 
and science learning [6, 9, 10]. These activities turned out 
to involve a high degree of interpersonal and machine 
coordination both in the foreground---the reasons one 
might adopt and use a system---and the background---the 
affordances which render the system easy and attractive 
enough to utilize in a group situation. As with many 
classroom response systems [7], our activities focused on 
increasing student learning and involvement by a) breaking 
out of a lecture format to support small group work, and/or 
b) giving the teachers more information about the student 
experience with the aim of influencing their instructional 
practice. Remarkable results included high 8th grade 
performance on items from the Advanced Placement 
Calculus exam. That is, students at the beginning of the 
algebra learning sequence were able to understand calculus 
concepts taught only peripherally in the course of a one 
month intervention.  

Figure 1 illustrates an example of a foreground 
coordination activity, Match-My-Graph. In this activity, 
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Figure 1: An activity that involves a high degree of 
coordination between pairs of learners working face-to-face 

(Reprinted from Tatar, 2003). 

pairs of algebra learners learned to use math language 
better by resolving the differences between their screen 
displays. One student, the grapher, would create a graph of 
a function. The other student, the matcher, had the job of 
creating the same graph, based on verbal hints from the 
grapher. After the matcher heard the grapher’s hint, he/she 
would send his new guess to the grapher. The grapher 
would then look at the two graphs, the original and the 
guess, to formulate a new (verbal) hint. 

Note that in this activity, the primary site of learning is in 
the student finding the precise words for verbal expression 
of the math concept. The computer merely creates an 
impetus and setting for doing so.  

Background coordination considerations include the 
mechanisms by which students are grouped into pairs, how 
the correct work is distributed to the students (and 
handhelds), and how students attain the roles of matcher or 
grapher [10]. In all of these cases, we observed and 
teachers reported high degrees of a) responsibility allocated 
to the students for controlling their own behavior and b) 
fluidity in goals. For example, one teacher planned on 
having the students work in mixed ability groups on a given 
day.  She started the class by assigning students to pairs, 
but when some of the children were called out of the room, 
her priorities changed, and she broke off from a discussion, 
called out “Find someone to work with,” and continued her 
discussion.   

In response to this, we design for situated action [8] with 
flexible goals and roles. For example, from a machine point 
of view, students became pairs by acting like they were a 
pair, that is, by communicating with one another via 
machine.  One student took on the role of a matcher by 
acting like a matcher, that is, by sending his/her first guess 
to the person who, by accepting it, became a grapher. 

TUPLE SPACES 
Tuple spaces originated as a mechanism for exploring 
different paradigms for allocating work to asynchronous, 
parallel-distributed computers [2]. The underlying support 
for coordination was that: a) A tuple client would break a 

problem up into different components (tuples) posted or 
written to the Tuple Space server. b) Different tuple clients 
could take components that matched their specifications 
and execute them. c) Clients would decide whether to take 
one or more tuples by a process of associative (template) 
matching. That is, a student looking for a partner, might 
find one by asking the tuple server to match a specific 
name (like “Deborah”) or a more general one (anyone in 
the group “RedDiamond”). Tuples are well suited for 
changing coordination.  The absence of need for the 
programmer to attend to details of machine connectivity 
(such as socket numbers) or complex heavy-weight data 
structures (as in database programming) reduces 
complexity. Additionally, they emphasize light-weight, 
emergent mapping of machine to activity, of person to 
machine, and of person/machine to role.    

THE CLASS 
Fourteen senior and first-year graduate students at Virginia 
Tech participated in a project-based class to build tuple-
space based handheld applications for education.  Thirteen 
were male, one female.  Four were white, one African-
American, eight were Asian and one Asian-American. 
Students received and signed informed consent letters. A 
separation was maintained between their grade in the class 
and their participation in the research. Pre and post class 
interviews were conducted, all work was collected for the 
research and classes were video and audiotaped. Programs 
were implemented in Java, using T-Spaces and Swing or 
SWT for laptops or Dell Axim X50 Handheld Computers. 

COMPUTER SCIENCE STUDENT OBJECT-WORLD 
Our initial approach to teaching the class was to present the 
underlying technology interleaved with examples of the 
kinds of programs we had developed with teachers and 
implemented successfully in the past.  We were surprised 
by the lack of questions about key elements.  When we 
asked the CS students to engage in an initial design 
exercise planning a simple, Tuple-based interaction, some 
were unable to proceed.  Others proceeded but turned in 
designs that, for example, created a database system inside 
Tuple spaces, with information assurance, normalization 
and security features.   

Our initial response was to treat this as a purely 
technological misunderstanding. We created a template-
matching exercise in which we used paper to walk the class 
through the communication of information between tuple 
clients and servers.  This clarified a certain component of 
the process for the CS students, but they expressed 
dissatisfaction with what we thought of as the attractive 
simplicity of writing and taking.   

We came to see that the problem was at the level of the CS 
student object-world: 

….it is the object as they see and work with it that 
patterns their thought and practice, not just when they 
must engage the physics of the device but throughout the 
entire design process, permeating all exchange and 
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discourse within the subculture of the firm. This way of 
thinking is so prevalent within contemporary design that I 
have given it a label—“object-world” thinking... [1], p. 4 

The technical teaching problem was tied to two intertwined 
topics: the invisibility of human coordination activities and 
a disciplinary focus on control, efficiency, and correctness. 

IMPLEMENTING GAMES TO TEACH COORDINATION 
To help the CS students focus more clearly on a setting of 
deliberate coordination between multiple parties, we asked 
them to create coordinated, collaborative versions of games 
in Tuples spaces. Seven games were created, of which six 
were variants of popular and/or educational games: 
collaborative crossword puzzles, hangman, “Apples-to-
Apples”™, “Krypto”™-Telephone, math bingo, and 
“Pictionary”™. Additionally, a seventh game was created, 
the algorithm enactor.  

Each of these games reified some special challenge of 
motivating and implementing coordinated activity. For 
example, Apples-to-Apples™ is a game in which all 
players draw from a set of cards, each of which has a 
distinct noun or noun phrase on it (like “Shirley Temple,” 
or “canasta”). One player, the judge, turns over a card with 
an adjective or adjectival phrase. Players play the card from 
their hand with the noun that they think the judge will think 
corresponds best to the adjective. For example, if the 
adjective is “curly,” the player might pick “Shirley 
Temple” rather than “canasta.” There are no right or wrong 
answers. The fun lies in picking the best answer from a 
small set of alternatives and in seeing how other people 
associate noun and adjective phrases. The game can be 
played by any number of players, but at any given time, 
there is one judge. The role of judge moves between 
players on every round, offering opportunities for rule 
negotiation and challenging the notion of designing for one 
fixed “teacher” role. Human and machine coordination is 
illustrated in Figure 2.  

In the collaborative crossword puzzle design (Figure 3), 
turn taking was negotiated entirely socially. Anyone could 
take a clue at any time and post an answer. If one person 

 
Figure 2: The coordinated, distributed Apples-to-Apples™ 

game emphasizes the lack of particular right or wrong 
answers, the role of communication outside the computer, and 

the need for flexible movement between roles. 

posted an answer that put an “e” in a slot and another 
posted an answer with a “d” for that same slot, both would 
be displayed for discussion. Initially the students designed 
mechanisms for allocating points, which entailed highly 
complex mechanisms to prevent “cheating” by substituting 
one’s own answers for someone else’s.  However, in design 
review, other students raised many other ways of cheating, 
leading to the design team to question 1) their behavioral 
expectations from the users and 2) the merit of giving 
points in a game that already constitutes its own reward.  

VALUES INHERENT IN COMPUTER SCIENCE 
Through interviews, in-class comments, designs and 
reactions to existing systems, two overlapping themes in 
the CS student object-world emerged:  their views of the 
benefits of computing, and their views of desirable control. 

The CS student object-world appeared to highlight four 
possible benefits to computing in the classroom: that 
computers would know the right answer, that they could 
store a complete record of activity, that they could forestall 
student mistakes, and that they could give and remember 
points or grades. For example, some thought that algebra 
students would learn better in Match-My-Graph if the 
system told them when the two lines were the same rather 
than having them negotiate/discover this. The CS students 
anticipated and were concerned that the algebra students 
might think that the two lines were the same when in fact 
they were not (although this never actually happened). The 
CS students were puzzled by the absence of features in 
Tuple spaces to support these putative benefits. They did 
not see the student process as particularly significant. 

Control, in the CS view, belonged to the centralized server, 
as it does in most web programs, which would allocate jobs 
and roles to student-users, and record and evaluate 
behavioral history. The CS students felt that it was a 
deficiency in the program that it did not automatically 
monitor the algebra students to report how many rounds of 
Match-My-Graph were successfully completed, which 
seemed to be a self-evident metric of interest to any 
teacher. A better system was a system in which the teacher 
would personally authorize the giving out of material at 
prespecified time intervals and ensure that everyone was 
working on equivalent problems at the same time. It, 
further, seemed obvious to the CS students that every 
participant should be identified by name, and that steps had 
to be taken to make sure that the name given was correct 
and canonical.  

These views of the benefits of computing and of control 
had curiously strong parallel with their views of what a 
good class entailed (and therefore what participatory design 
might look like and of the kinds of information they should 
seek to find from participating teachers).    

The game context appeared to loosen the CS view of 
appropriate and desirable behavior and allow a level of 
questioning not permitted in the discussion of “serious” 
topics.

Players are connected to 
one another by machine 
and face. 

Join us! 

Right 
now I’m 
the 
Judge. 

We’re players.

OK! Do I just 
press play?
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Figure 3: The collaborative crossword puzzle game simply displayed conflict, leaving the resolution to the social world.

DISCUSSION 
As it happened, the CS students were interested in games, 
and the games motivated them to think more deeply about 
coordination, motivating their understanding of system 
features. The success of this activity is in part a result of 
their object-world; because they were computer science 
students, they took the computer-based implementation of 
games as a self-evident desirable goal. Others might have 
asked “Why do you want to complicate with technology a 
game like Hangman that is perfectly adequate with paper 
and pencil, or chalkboard and chalk?” They did not.  

The usual PD toolkit includes participatory activities like 
mockups and joint storyboarding. Other recent work has 
used games as a bridge between designers and future users 
[4]. We document a case in which these tools failed 
because of a strongly held engineering worldview. We are 
using games quite differently, to make certain elements of 
the social world more visible through reification and 
analogy. Because the deep design of our technical system 
originated in participatory design experiences, it embodied 
technical features that were challenging for this worldview, 
though part of it.  

Thus the experience reported here is not precisely 
participatory design, nor is it systems design. However, it a 
pre-requisite for both if the world of ubiquitous and 
pervasive computing is to embody situated, emergent, 
flexible, human-scale systems. In this case, games proved 
to be a good context for opening the minds of engineers to 
alternative social meanings of computing. We propose 
games as an addition to the PD toolkit when implementers 
need help in stepping outside their everyday mindset.  
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