
Between Cooperative Creativity and Conflicts on 
Appreciation: 

Customer-developer-links in small software companies 
Andrea Sieber 

Chemnitz University of Technology 
Department of Computer Science 

Chemnitz, D 09107, Germany 
+49371 531 1388 

andrea.sieber@informatik.tu-chemnitz.de 

ABSTRACT 
Research on participatory design focuses on scientific projects 
and model applications; few studies draw on commercial settings. 
In such settings the customer and its wishes are seen as dominant. 
The paper explores the nature of customer-developer-links in 
commercial projects. How can the cooperation between customers 
and developers be described? Based on case studies made in 
previous projects, I show that customer-developer-links oscillate 
between inspiring cooperation and fights for power and 
appreciation. Is there a chance to improve and professionalize 
these links? Answering this question needs further research. 

Keywords 
Participatory design, customer-developer-links, design practice, 
small enterprises 

1. INTRODUCTION 
Participatory Design is a concept with several assumptions. In its 
origin it is related to the Scandinavian context of software 
development. It implies a certain development frame and refers to 
a set of values in software development such as a democratic 
involvement of all relevant user groups and social integration of 
technology. Although the context and conditions of user 
involvement are specific to the Scandinavian countries and their 
strong trade union traditions, approaches to user involvement are 
not. Research groups in other countries developed with or without 
reference to the Scandinavian origin their own approaches, for 
instance JAD (Joint Application Design) in the US (Carmel, 
Whitaker, and George 1993), the ETHICS (Effective Technical 
and Human Implementation of Computerbased Systems) 
Approach in UK (Mumford 1993), STEPS (Software Technology 
for Evolutionary Participatory Systemdesign) in Germany (Floyd 
et al. 1989). 

User participation has its most references in research projects 
(Clement, Van den Besselaar 1993). It is originally connected 
with action research, but also experiments and studies of 
development practice (Mathiassen 1998). There are some reports 
that examine commercial software development and 
implementation and their suitability for participation (e. g. 

In PDC-04 Proceedings of the Participatory Design Conference, 
Vol 2, Toronto, Canada, July 27-31, 2004, under a Creative 
Commons license. CPSR, P.O. Box 717, Palo Alto, CA 94302. 
http://www.cpsr.org ISBN 0-96678 I 8-3-X 

143 

Greenbaum, Stuedahl 2000; Torpel 2000, McCormack, Forlizzi 
2000). In general it is understood that participative approaches are 
not widely used in enterprises. And that is seen as a problem 
(Kensing 2000). 

According to my research there are much more commercial 
projects that could be described as participative, user centered and 
moreover user led - if software developers would have known 
participative approaches, and would have had a broader 
understanding of participation that includes commercial 
development contexts. 

Keil and Carmel (1995) have already introduced a broader view 
to participation. They identify a whole list of customer-developer­
links. Concerning their terms: 'customers' include all people 
somehow infected by the software system; 'developers' are all 
individuals directly involved in the design and production of 
code. Links between both groups are "techniques and/or channels 
that allow customers and developers to exchange information" (p. 
33). Some of these links have already been described substantially 
at participative design approaches, others not. They altogether 
build a rich base to identify participation in different forms in 
commercial contexts. 

This broader view to participation is an argument to take a closer 
look into customer-developer-links in the every day work life. 
Since I have been dealing with the working practices of software 
developers in small enterprises in different regions and countries 
in two empirical projects I it seems worth checking the available 
cases before drawing a new research project. This paper presents 
the findings of this pre-study with main emphasis on situations in 
which developers report on forms of cooperation with customers. 

The following section describes the empirical data and how it has 
been collected and analyzed. After a classification of the 
companies in the sample I give short descriptions of reported 
situations crucial for the customer-developer-relationship. The 
findings will be discussed and a project idea is sketched out in the 
last section. 

lOne project was funded by the German Research Foundation 
(DFG) from 1999 to 2002 (grant No. Bo 929113-1). The other 
project is funded by the Volkswagen-Foundation from 2003 to 
2005 (grant No.III78383). 



2. DATA SOURCE 
Case studies of smaJl software companies had been conducted in a 
project starting in 1999. Six companies were located in the 
western part of Gennany, five in the eastern part. The project 
aimed to analyze cultural differences in the software development 
process arising from these specific regional contexts. Due to 
history and economic conditions in both parts of Gennany the 
most striking differences could be identified in the companies' 
networks, with finns from western Gennany drawing on a wider 
net of contacts. Also, the companies differed in the range and 
technical quality of their product depending on their starting point 
(Henninger, Sieber 200 I, also see below). 

The collection of the empirical data in the other project has not 
yet been finished. Until now case studies have been conducted 
completely in the USA and partly in Gennany. Nine companies 
were located in the Research Triangle (NC). Eight companies 
were situated in the Seattle Area (WA). Seven companies were 
analyzed in Southwest Saxony (Gennany). In this project 
innovative development processes in relation to inner- and outer­
organizational networking of the company are in focus. First 
results have been published in Henninger 2003. 

Although the project settings differ the case studies have a lot in 
common. They are conducted in small companies because nearly 
40 % of these IT -companies in the US (Hofmann 200 I) and 
nearly 60% in Gennany (Schwarz 2000) have just up to ten 
employees. The cases are analyzed based on theme-oriented 
interviews with the CEO and - after a field observation phase -
with developers, and other core staff. The company's and 
especially the developers' everyday working practices are 
observed. 

All interviews with CEOs included questions on the origin and 
development of the company, business areas, work organization 
and goals. All interviews with developers and key staff members 
asked for their professional biography, tasks, working day, 
working practices, self organization of work and goals. Through 
the observation notes architectural aspects of the location, 
working atmosphere, and emotions of the researcher came into 
play and were partially used as critical incidents in the interviews 
or for specific discussion to show the infonnal organization of 
work. These topics playa role in each case - besides others that 
are project specific. The material from the interviews and from 
the observations was analyzed through certain steps to 
interpretation according to Strauss and Corbin (1990). 

3. CUSTOMER AND DEVELOPER 
Although the empirical data were analyzed to identifY differences 
between the companies according to the varying frames of 
organizational, regional and national settings, there were certain 
similarities. The first subsection presents some of these general 
characteristics with emphasis on the role of the customers. In the 
second subsection the developers' stories of relationships to 
customers are summarized and interpreted. 

3.1 Characteristics of the Companies 
Main differences in the organization of the software development 
process, the quality of the software and the networking of the 
companies could be traced back to the starting point of the 
company. Some companies had been started to develop a self­
made software product, others to offer (IT -) services to customers. 

144 

These different goals in the beginning were connected to a 
different path, organization and network of the company. 

3.1.1 "Productjirst"-companies: the virtual 
customer becomes real 
These companies that were found to produce and sell a self-made 
software product had developed a more (Gennany) or less (USA) 
elaborated prototype. Intense prototype development had been 
done in Gennany at the university. In the US a fragmental 
prototype had been developed besides the regular job. The 
founders of the companies had a technical educational 
background, in the US in addition experiences in other IT­
businesses: research divisions of large companies or previous 
product development phases in other small and medium sized 
companies. By founding an own company the owners tried to 
raise money and time to develop a beta version of the product and 
to bring it to the market. 

Financial sources for this state of development were in this 
sample: (I) state funded "technology to market" programs 
(eastern part of Gennany), (2) industrial research projects (eastern 
part of Gennany), (3) IT-service projects (western part of 
Gennany, US), (4) venture capital (US), (5) private savings (US). 

To produce a beta version of the product it was necessary to 
thoroughly redesign and complete the prototype. The expenses 
were way above the developers' estimations. It included 
additional and often disliked tasks as documentation, installation 
of a help and security system, interface-construction for "nonnal" 
users. 

When the CEOs started talking to a first potential customer, the 
CEOs and the developers reported on an additional redesign: the 
customer-led redesign phase. In some companies this customer­
led redesign happened parallel to the beta version development 
and caused a chaotic situation in the development department 
with lots of confusions, contradicting work tasks, and a lot of time 
pressure. That happened especially in the companies financed by 
venture capital. 

Up to that point the picture of the end-users' requirements was 
more or less virtual. The first real potential customer gave the 
management and the software developers a more realistic view of 
the working conditions, the organizational restrictions, and the 
requirements of the end-users. The more realistic view of the end­
users' work evolved through discussions with the customer, and 
visits at the workplaces of the end-users. They were combined 
with observation and interviewing of the end-users by 
management and developers. 

The customer-led redesign phase caused again major 
reconstructions of the software - this time based on the beta 
version - in both software technical and usability dimensions. 
Metaphorically speaking it was necessary to develop packages of 
code that allowed a fast reconstruction of the software to meet the 
requirements of this customer. To reconstruct the code in such a 
way was a question of the technical software structure. In the 
usability dimension especially the layout of the interface, names, 
the hierarchy of functions, the speed of specific routines, the 
memory gathering of specific operations had to be changed and 
optimized. If this redesign was conducted thoroughly the software 
was flexible enough to handle the individual requirements of new 
customers and general technological changes in a very short time. 



None of the observed companies could keep a software version 
for long, but there were two ways of changing the system. 1) It 
could be upgraded in a certain timeframe. This upgrade contained 
the most urging changes asked for by the end-users and was 
delivered to all of them. 2) Each customer got his individual 
assembled software system. Most companies followed 2), one was 
organized around the development of a yearly upgrade and two 
companies sent upgrades to all customers in case of general 
technological changes. For both ways it can be stated: The better 
the software was constructed technically the faster they could 
realize the adoptions produced by new or changed customer 
requirements or technological changes. 

3.1.2 "Service first "-companies: software becomes 
a product 
These companies started to establish their own income by selling 
IT- or other services. The companies offering IT-services in the 
beginning were selling computer systems and software. Through 
these services they found customers and increasingly concentrated 
in the adoption of a special "off-the-shelf' software product 
requested by their customers. The customers started to trust in 
their technical abilities and also asked them to develop software 
solutions for their specific needs. The founders of these IT -service 
companies had a technical background and had gained practical 
experience as technical employees or contractors. Nearly all of 
them at least dreamed of a self-made product while doing routine 
software development for "old" technology. They planned the 
development of the product out of the already existing code. 

There were also companies with a self-made software product in 
the sample that had been starting with services in other branches 
as for instance conSUlting. The product idea arose with the 
increasing understanding of their customers' work. The CEOs 
realized the lack of appropriate software systems in their 
customers' application domain. Because the market for technical 
businesses was good until 2000 they found it worth a try to 
develop a self-made software system based on their knowledge 
about the customers. Because of their already established 
relationships to potential end-users of the system they had no 
doubt on their market success - if the system was well developed. 
Their lack of experience in software development supported a 
theoretical start by studying literature concerning: How to 
organize software development well? Based on their theoretical 
knowledge they hired one or several software developers and let 
them start. 

Once the decision to develop an own software product was made 
by these "service first"-companies they had to go through all 
phases described in the paragraph before: prototype development, 
development of the beta version, customer-led redesign phase. 
The already established relationships to customers helped them to 
get comments on their work in every phase and to find buyers. 
They had to gain their own experience in how to organize the 
software development process and to construct software in such a 
way that it could easily be adapted to the changing end-users' 
requirements. To see the specific organizational and technical 
needs related to software product development was the greatest 
challenge to these companies. 

Surprisingly the founders without technical background met at 
least the organizational challenges related to software 
development. Their experience at the customers' domain let them 
see the necessity to involve customers in the systems 

145 

development. Their lack of technical knowledge and experience 
forced them to study software engineering literature, and figure 
out the pitfalls in a project's course. For the technical challenge 
they depended on the abilities and experiences of the hired 
software developers. If they were capable to see especially the 
need for organizing and structuring the code from a technical 
point of view, the development moved on. 

The companies that started with offering IT-services were often 
not aware of both challenges of the software development 
process, as their software already functioned in the defined 
setting. However, if there were any - sometimes just slight -
changes, this could cause a complete rebuilt. This lack of 
appropriate technical structure was due to the restricted time and 
budget of the usual projects. This lack had to be resolved in the 
software code used for the product. They had also often hired 
developers that were fond of programming but didn't see the need 
for structuring code appropriately. But a software that should 
work as a marketable product demands thoroughly structural 
rework. The CEOs with technical knowledge in general but 
without specific software development experience were 
susceptible to oversee this. 

3.2 Relationships 
In both types of software companies, relationships to customers 
evolved. Because of the smallness of the companies, and the fact 
that they tried to sell software systems, most of the software 
developers came in contact to customers and end-users. In the 
interviews the software developers described their relations to 
customers. Based on examples of such descriptions I show 
chances and pitfalls of this cooperation, arguing that in a best case 
scenario customer-developer-links can be fruitful for both sides, 
resulting in mutual support. On the other hand, potential problems 
of such cooperation include fights for authority and appreciation. 

3.2.1 Examples from the interviews 
Albrecht worked as a software developer to finance his studies in 
computer science. In his job he had to work with an end-user that 
was an expert in the application domain and fond of 
programming. Albrecht had to support him in questions of 
programming and to offer him software parts developed by the 
company. Albrecht was upset about the bad programming style of 
that customer. In addition he had the feeling, that the customer 
always accused him if there was an error in the code. He tended to 
postpone the customer's requests and avoided to contact him. 
Instead he changed the parts of the software that were 
programmed by the customer without talking to him. 

Bert was a founder of a company and worked there as a 
developer. He described the work with two end-users as 
contrasting. One customer was really helpful in his opinion. The 
customer used his software parts, tried them out, told his 
preferences and discussed his ideas with the developer and vice 
versa. Bert had the feeling that this customer really appreciated 
his work and did never question his abilities. There were times 
they often called each other and times without any contact. But 
they could revitalize the relationship whenever it was necessary. 

The other end-user Bert had to work with did never test the 
system in one step. He tested a part and if there was an error he 
immediately reported it to him and waited for repair before he 
tested again. Bert had the feeling that the customer was just 
looking for errors and for something to complain about to have a 



reason to postpone the paying. Because of the customer's 
portioned testing he could never rework the system as a whole. 
Instead he had always to search for small error - a part of his 
work he hated. Bert postponed the error repair as long as possible 
and avoided to contact the customer. 

Rudolf was also a founder of a company and worked as 
developer. He had to work with an end-user that always called for 
help. As he could only do serious programming without 
disturbance he postponed his own work to support this customer. 
Through his questions Rudolf got an understanding how end-users 
might see the system, about what they were complaining. From 
that knowledge he draw some consequences how to rework his 
software. The customer also gave him feedback on his 
programming ideas. Rudolf talked to the customer when he ran 
across him or when he got a call from him. 

3.2.2 Interpretation 
As the descriptions of the developers show, relationships to 
customers are sometimes characterized by fights for power and 
appreciation, sometimes by reciprocal motivation and 
empowerment. In the cases where the developers feel frustrated 
by their contact to the customer, they reflected on the relationship 
- maybe to be able to continue the work with the customer at all. 
They all knew that they depend on the customers and that they 
have to keep them satisfied. But they also could not ignore there 
feelings of anger and frustration. 

Although the developers talk to each other about the customers 
there is no reported try to change frustrating relations: for 
example to talk to the customer on this subject or to give the work 
to a colleague who might be better able to deal with him. This 
might be interpreted as a lack of professionalism. 

The descriptions also give the impression, that customers have 
different roles. There seem to be key customers that give insights 
to their field of expertise to the developers and discuss ideas with 
them. The relation to a customer can also change over time. There 
are periods of intense cooperation and times with no contact at all. 
If a relation is positive for both sides, that seems to be no 
problem. If not, misunderstandings and accusations may follow. 
There also seems to be a good chance that contacts to customers 
fade away as a side effect of postponed support and delayed 
responses. 

4. CONCLUSION 
Analyzing customer-developer-links in an extended view reveals 
the social embeddedness of such relations as stated by 
Granovetter (1985). Personal relations on friendly terms back up 
constructive cooperation enhancing software usability and 
innovative product ideas. Relations dominated by distrust and 
frustration are susceptible to conflicts that result in cooperation 
and paying problems. The handling of these problems seems not 
to be professionalized in the small companies in my sample. 
There seem to be different categories of customers. >From the 
perspective of the developers, the cooperative or conflicting 
nature of the relationship between customer and developer seems 
to arise by chance. Their interventions are restricted to 
influencing the intensity of the contact but not the basic character 
of the relationship. 

However, in the projects' case studies I did not focus on the 
relationships between customers and developers. The example 

146 

descriptions are biased on the developers view and there are other 
elements that play a role in these links, as stated by Greenbaum 
and Stuedahl (2000). They analyzed the web design and 
development process and found on base of the Actor-Network 
theory time as a relevant (nonhuman) actor. In addition they 
identified several boundary objects that "were shared and shaped 
among the professional groups" (p. 71). A further research has to 
take these elements into account. 

The general differences between small software companies 
support the differentiation between several forms of development 
made by Keil and Carmel (1995) and partly by Grudin (1991). 
Keil and Carmel differentiate between custom and package 
development. Grudin (1991) identifies three types of development 
settings: product development, contract development and in house 
development. In my sample the software development process of 
the last two types did not differ, except that the last one was 
mostly realized at the customer's location. 

Each setting - "product first" or "service first" - seems to have its 
own advantages and disadvantages. On the one hand the "product 
first"-companies got a thoroughly structured software system and 
could meet the needs of varying end-users or changing 
technological requirements very fast. On the other hand they had 
a hard time to find enough customers to survive economically. 
The "service first" companies developed usable software that was 
on the contrary very expensive to change. The already existing 
network to customers didn't prevent them from the expenses 
necessary to improve the beta version in terms of usability and 
especially technical structure. To oversee or underestimate this 
last redesign step could result in a failing market implementation 
of the system. 

It seems worth while to explore customer-developer-links further. 
What are the preconditions of a successful cooperation? How can 
developers influence the quality of the relationship? Which roles 
play nonhuman actors like time and boundary objects as for 
example contracts and prototypes? To answer these questions a 
thoroughly designed research project has to be conducted in 
which both sides - customers and developers - have to be 
observed and talked to. The results could lighten the already 
existing working practices, support reflection and increase 
professionalism on that part of the process. The examples in the 
interviews already show: Customer-developer-links as fruitful 
cooperation of both sides are a valuable resource for the 
development process, a fundamental part to the existence of the 
company and to innovative software systems. 

5. ACKNOWLEDGMENTS 
Thanks for valuable comments on earlier drafts of this paper go 
especially to Annette Henninger, Werner Dilger, and Mandy 
Krauter. 

6. REFERENCES 
Carmel, E., Whitaker, R. D., and George, J. F. PD and Joint 

Application Design: A Transatlantic Comparison. In 
Communications of the ACM, 36,4 (June 1993),40-49. 

Clement, A., and Van den Besselaar, P. A. Retrospecitve Look at 
PD Projects. In Communications of the ACM, 36, 4 (June 
1993),29-37. 

Floyd, c., Reisin, F.-M., Schmidt, G. STEPS to Software 
Development with Users. In Ghezzi, C., McDermid, 1. A. 



(Eds.) ESEC ' 89, Lecture Notes in Computer Science No. 
387, Springer, Berlin, 1989,48-64. 

Granovetter, M. Economic Action and Social Structure: The 
Problem of Embedded ness. American Journal of Sociology, 
91,3 (Sept. 1985),481-510. 

Greenbaum, J., Stuedahl, D. Deadlines and Work Practices in 
New Media Development: Its about time. In Proceedings of 
the PDC 2000. CPSR Press, Palo Alto, CA, 2000, 70-77. 

Grudin, J. The Development ofInteractice Systems: Bridging the 
gaps between developers and users. IEEE Computer, 24, 4 
(April 1991), 59-61. 

Henninger, A., Sieber, A. Softwaredevelopment in Small 
Companies in the Eastern and Western Part of Germany. In 
Matuschek, I., Henninger, A., Kleemann, F. (Eds.) Neue 
Medien im Arbeitsalltag: Empirische Befunde­
Gestaltungskonzepte-Theoretische Perspektiven. 
Westdeutscher Verlag, Opladen, 37-54. 

Hofmann, L. Research Triangle Park. In Triangle City Facts: The 
triangles business almanac, Signatur, Raleigh, 200 I, 34-41 . 

Keil, M., Carmel, E. Customer-Developer-Links in Software 
Development. In Communications of the ACM, 38, 5 (May 
1995), 33-45. 

Kensing, F. Participatory Design in a Commercial Context: A 
conceptual framework. In Proceedings of the PDC 2000. 
CPSR Press, Palo Alto, CA, 2000, 116-126. 

147 

Mathiassen, L. Reflective Systems Development. Scandinavian 
Journal ofInformation Systems, I , 1& 2 (June 1998), 67-
118. 

McCormack, M., Forlizzi, J. Listening to User Experience: 
Integrating technology with proactive wellness management. 
In Proceedings of the PDC 2000. CPSR Press, Palo Alto, 
CA, 2000, 296-300. 

Mumford, E. The ETHICS Approach. In Communications of the 
ACM, 36, 4 (June 1993),82. 

Schwarz, A. Diverging Patterns of Informalization between 
Endogenous and Exogenous Exonomic Actors in the East 
German Transformation Proess: Results from a case study in 
the IT-Branch in Berlin-Brandenburg. Working Paper, 
Frankfurter Institut fUr Transformationsstudien, Frankfurt 
(Oder), Nov. 2000. 

Strauss, A., Corbin, 1. Basics of Qualitative Research: Grounded 
theory procedures and techniques. Sage, Newbury Park, 
1990. 

Torpel, B. Self-employed Labor meets Codetermination -
Participatory Desgin in Network Organizations. In 
Proceedings of the PDC 2000. CPSR Press, Palo Alto, CA, 
2000,184-191. 


