
Techniques and Tools for Continuous User Participation

Carola Lilienthal, Heinz Ziillighoven
Department of Computer Science

University of Hamburg
Vogt-Kolln-Str.30
D-22527 Hamburg

+49405494-2307/2414
{lilienth, zuelligh} @informatik.uni-hamburg.de

ABSTRACT
A widely accepted approach in supporting the development
of new software is user participation. Many different
techniques have been suggested that cover analysis and
prototyping. However, software development in general
includes changing and extending software that is already in
use. In addition, the further development of existing
prototypes and pilot systems is the basis for evolutionary
software development. This paper presents an approach that
supports user participation during the further development
of existing software. Various techniques as well as a tool
will be presented, that relate the documents used during
analysis and initial design to the process of further software
development.

Keywords
Use quality, prototyping, hyper documents

USER PARTICIPATION
User participation is a concept with several connotations.
Since the end of the seventies there has been a strong focus
in Central and Northern Europe on the political and
emancipatory aspects of user participation (cf. Briefs,
Ciborra, Schneider 1983, Docherty, Fuchs-Kittowski,
Kolm, Mathiassen 1987), i.e., user participation is seen as
a means of giving people a say in the conditions and
equipment used in their workplaces. This interpretation of
user participation has led accordingly to suggestions as to
how to organize the software development process. The
decision making process in particular should be organized in
such a way that the end users' ideas about a new system be
heard and accepted.

Use Quality and User Participation
As software engineers however, our understanding of user
participation stresses a different aspect. We are primarily
concerned with the quality of use in a process outcome -
the application software. The use quality has some obvious
application-oriented characteristics:

In PDC'96 Proceedings of the Participatory Design
Conference. J. Blomberg, F. Kensing, and E.A. Dykstra
Erickson (Eds.). Cambridge, MA USA, 13-15 November
1996. Computer Professionals for Social Responsibility,
P.O. Box 717, Palo Alto CA 94302-0717 USA,
cpsr@cpsr.org.

153

• functionality of the system should suit the tasks of the
application area

• the handling of the system has to be adequate for its
users.

• the implemented sequence of the system's functions and
operations should correspond with the sequence of the
actual work processes and so on.

These "external" factors of use quality are based on
"internal" software technical factors such as modular design,
information hiding and abstraction (cf. Meyer 1988).

Nevertheless, use is unavoidably related to the tasks, work
processes, concepts and terms of the application area. As
software developers we have to accept that the real experts
in the application area are those who are traditionally called
users or end users. At this point, our understanding of user
participation becomes apparent. Software experts and
application domain experts need to work together in order to
provide a useful and usable software product. One could
question though, whether this corporation should still go
under the heading of participation. Some have suggested the
alternative term of user involvement. We believe that every
software engineer has the professional responsibility in
ensuring that all parties cooperate in developing a system
where the quality of use is optimal.

This cooperation, however, doesn't occur without
difficulties. Much has been said about the gap between the
developers' world and the users' world (cf. Floyd 1987).
Bridging this gap in software development entails realizing
that the parties involved all have different perspectives (cf.
Floyd, Ztillighoven, Budde, Keil-Slawik 1992). The
development process should therefore be organized so as to
provide the techniques for making these perspectives
explicit. In meeting these requirements a software project
should result in a model which is an adequate representation
of the application domain for all parties concerned. It would
be desirable if this model were based on a "democratic
consensus" among the different groups, but from our point
of view this need not necessarily be the case.

With the quality of use as the central issue, it is more
important that the model reflects the essential tasks and
concepts of the application domain. The model should be
the basis of discussion between the developers and the
application domain experts. Therefore, software

development is seen as a communication and learning
process (cf. Floyd 1987). Note that this position does not
negate the importance of user participation as a means of
democracy at the work place, but it focuses on what seems
to be the "lower level" engineering prerequisites. Put more
simply, a software engineer's job is to provide a useful and
usable software system. Or, if the system is.n't relevant,
adequate or suitable to its users, what is left of
p~cipation? R. .~~q«?ks (1996) voices a similar idea saying
that software engineers should consider themselves as
toolsmiths for their users, which suggests that the ultimate
test for quality is use.

We have chosen an evolutionary, object-oriented approach,
called the Tools and Materials Approach, that aims at
providing software components with this degree of quality
in use. User participation here essentially means integrating
users and other relevant parties actively in the development
and further development of software. The aim is twofold:
firstly users provide their domain knowledge as the basis for
the system's design. Secondly they provide feedback in
analyzing, modeling and evaluating activities.

This paper proposes that this type of user participation
shouldn't be restricted to the traditional software project
notion which ends when the software is shipped and
installed at the workplace. Software has to be further
developed throughout its entire life cycle, i.e., as long as a
system is used within an organization. Seeing this further
development as an ongoing activity we have to provide
means for maintaining the quality of use.

In the following, we will outline the essentials of the Tools
and Materials Approach. This approach provides us with a
frame of reference for the ensuing discussion on continuous
user participation.

The Tools and Materials Approach
The Tools and Materials Approach can be seen as an
application-oriented interpretation of object-oriented design
(cf. Baumer, Gryczan, Ztillighoven 1995; Riehle,
Ztillighoven 1994). The essential point behind object
orientation in the context of this paper is the close
relationship between the tasks and concepts of the
application domain and the software model. However, this
modeling process is not geared towards work as a process
itself. As Alan Kay (1977) says "do not automate the work
you are engaged in, only the materials". Thus, application
software should provide appropriate and flexible
components to support the various ways of working.

This way of looking at software can be made more explicit
by what we call a leitmotif or general guideline. A
leitmotif, in general, should help developers and users to
understand and design a software system. As our leitmotif
we have chosen a workplace where a certain degree of
individual responsibility is called for. This leitmotif
becomes tangible with the help of a set of design metaphors
which solidify the general guidelines in a pictorial way.
Similar ideas have been discussed in MaaB and Oberquelle
1992. Design metaphors which have proven useful for
application software in office-like environments are

154

materials, tools, automatons and work environment (cf.
Baumer et al. 1995; Riehle et al. 1994).

The Tools and Materials Approach attempts to identify the
relevant objects and means of work in order to design an
electronic workplace. This workplace is equipped with a
useful set of materials, tools and automatons (see Fig. 1),
that aid in completing the task at hand.

environ
ment

Fig.1: The metaphors

Use

These central metaphors stem from the observation that in
many work situations people make intuitive distinctions are
made between those objects which are worked on, i.e.,
materials, and those which are the means of work, i.e.,
tools. These metaphors suggest certain use related
characteristics:

• A tool (see Fig. 1) supports recurring work procedures or
activities. It is useful for various tasks and aims.

• A tool is always handled by its user who decides when to
take up a tool and what to do with it.

• Materials (see Fig. 1) are the objects of work which
finally become the result or outcome of tasks. They
incorporate "pure" application domain functionality.

• A material is worked on by tools according to
professional needs. A material should be characterized by
its potential behavior not its internal structure.

Not everything in an office environment is a tool or a
material. There are certain cumbersome work routines a user
wishes to delegate to a machine. To fulfill these
requirements the metaphor automaton (see Fig. 1) was
added. An automaton is started by a user and is active over a
long period in the background. Once set and started it
produces a predefined result without user interaction.

Tools, materials and automatons need to be presented and
accessible to the user. There is always a place where work
is done and where tools, materials and automatons can be
found. The metaphor work environment (see Fig. 1)
corresponds to this. Users should have their own work
environment with its own arrangements of things and
privacy.

Using metaphors for software design is not a new idea (cf.
Carroll, Mack, Kellogg 1988). There has even been long
discussion in Scandinavia on using the tool metaphor (cf.
Ehn 1988). It should be noted, however, that we are
offering a comprehensive set of design metaphors integrated
within a uniform leitmotif. For each design metaphor there

is a set of design patterns (in the sense of Gamma, Helm,
Johnson, Vlissides 1994) describing the technical
architecture of the appropriate software components (cf.
Riehle et. al. 1994).

It should have become clear in the above that application
oriented quality in use is our central issue. It becomes, in
fact, the primary consideration in user participation. We
have outlined the leitmotif and the matching design
metaphors which help to guide and shape the design of the
future system. To allow user participation a set of
documents is needed. These are presented in the following
section.

DOCUMENT TYPES
Software development as described above should be seen as
a communication and learning process. The need for
application-oriented documents as the basis for this process
should be fairly obvious. Hence, there seems to be a general
consensus amongst those interested in the quality of use and
user participation that new document types are needed (e.g.
Carroll, Rosson 1990; Jacobson, Christerson, Jonsson,
Overgaard 1992).

Appropriate Document Types
We have evaluated the various proposals and have selected a
set of matching document types which fit our approach.
The predominant prerequisite is that these document types
be based on the professional language used in the
application domain. In most cases they have to be written
in prose. We have successfully used a set of application
oriented document types that are well-known under various
names in the literature (cf. Baumer et al. 1995):

• Scenarios (see Fig. 2) describing the current work
situation, the everyday tasks and the objects and means of
work. Scenarios are written by developers based on
interviews with users and the various other groups
involved.

• Glossaries defining and reconstructing the terminology of
the professional language in the application domain.

• System visions (see Fig. 3) anticipating future work
situations. They are comparable to u~e scenarios (cf.
Jacobson et al. 1992) and are frequently supported by
prototypes (cf. Lichter, Schneider-Hufschmidt,
Ziillighoven 1994).

In recent projects we have also successfully used
cooperation pictures, a variation of rich pictures based on
pictograms, to represent joint tasks (cf. Krabbel, Ratuzki,
Wetzel 1996).

The crucial point in using these documents is the transition
from the current work situation to the future system. While
documents that describe current work situations (e.g.
scenarios, glossary entries) can usually be discussed and
evaluated by the application domain experts without major
difficulties, discussing and evaluating the design of the
future system is different. People tend to find it difficult to
anticipate future ways of coping with tasks or handling a
system. For this reason and not surprisingly prototypes

playa central role in our approach (cf. Budde, Kautz,
Kuhlenkamp, Ziillighoven 1992).

An advisor fetches a customer advice file, looks for the
required product in the index and opens the file at the desired
spot. In addition to the customer advice file, there is a form
file in which standard forms (e.g., contracts with third
parties) are deposited, and a specimen file in which
completion guides and code sheets are deposited.

155

Fig. 2: A scenario

Prototypes are tangible objects for anticipating future
situations both from use-related and technical perspectives.
It is, however still important that the emerging vision of
the future system is documented beyond the actual
prototypes. A prototype does not show the intended use
context, explain design decisions or outline the anticipated
handling of tasks. Therefore a set of different "subtypes" of
system visions which relate to the different aspects of the
future system is provided:

• General visions represent an overview of how a system's
functionality is embedded in its context. The context can
be both the technical environment and the use context.
One general vision could describe for example to what
extent existing tasks will be supported by the future
system and which tasks will vanish due to rationalizing
effects of the system.

• Procedural visions (see Fig. 3) present how individual
tasks can be accomplished by utilizing tools, automatons
and materials. Again technical and application-oriented
procedural visions are written. While the technical
visions describe the algorithms and state transitions of
the software components the application-oriented visions
portray a task from a use perspective.

• Within component visions the functionality of
components is described without considering the tasks.
There are three different types of component visions: tool
visions, material visions, and automaton visions. Tool
visions consist of tool-interface sketches and a description
of the offered functionality. Material and automaton
visions include the functionality of automatons and
materials.

"

An advisor opens a customer advice file by double-clicking
the mouse, first selects all products from a visible table of
contents, and then selects the desired variant from a second
table of contents (also with a double-click) - thus also
causing the corresponding sales help facility to be dispayed.

Fig. 3: A procedural vision

Scenarios, a glossary and system visions are employed to
initiate the process of user participation. Since all
documents are written in prose the users are able to
understand and develop their own opinion of the various
texts. This cooperation between developers and users can be
increased by an appropriately organized development
process.

Setting Documents and Prototypes to Work
To get the learning and communication process going, it is
important that the traditional life cycle strategies be
substituted with an evolutionary concept of fast design and
feedback cycles (see Fig. 4).

anattze

des~n

Fig. 4: Feedback cycles

These cycles come about by employing documents
combined with prototypes (s. Fig. 5). For example
developers interview users at their workplaces and prepare
scenarios which are evaluated by the interviewees and other
users. In designing a new system on the basis of these
scenarios, system visions are written by developers and
respective prototypes are realized. These prototypes are
afterwards evaluated in workshops or "hands-on sessions"
by the users.

It is important to note that during these feedback cycles any
problems that occur should direct us to the appropriate
documents that need modification (see Fig. 5). There is no
predefined sequence of access to the documents; in principle,
all are at any point available.

analyz8 ;;t

lbe process:
All documents are
available and
processed as
appropriate

model

Fig. 5: The evolutionary process

On the one hand the various documents are a necessary
basis for the development of prototypes. On the other they
are of equal importance for evaluating prototypes. Some
advocates of "rapid prototyping" go as far as claiming that
written requirements and design documentation are
superfluous with prototyping. The domain knowledge ~d
professional experience of the users seem to be a suffiCIent
basis for prototype experiments and review discussions with
developers. Experience shows however, that this is usually
not the case.

156

A prototype represents only a partial solution for the
software support needed by the user. To enable a sufficient
evaluation of a prototype, the part of the application
domain for which the prototype offers a solution has to
become clear to the user. This part of the application
domain has to be described in a text in order to make proper
use of prototyping. Therefore scenarios, a glossary and
system visions are important for evaluating prototypes.

A Net of Documents
Preparing and evaluating the various documents and
developing prototypes in parallel leads to a lot of cross
referencing. A glossary and scenarios, for example, describe
the concepts and work tasks found in the application
domain under static and dynamic perspectives. In this way a
glossary and scenarios are related to one another. When
reading a scenario, a person will frequently want to access
the corresponding glossary entries for terms used in the task
description. At the same time these documents are the
conceptual basis for writing system visions and building
prototypes. Consequently, a net of potential relations
among the documents has to be constructed and maintained.

This means that scenarios, a glossary and system visions
should be organized as a hyper document. By using a hyper
document the documents are not only the subject of joint
evaluation but their relationships become clear and
traceable. The net of documents shows the degree of
communication during analysis and design. It also reflects
the level of understanding of the application domain and the
future system. By means of a hyper document the users are
then able to reexamine this understanding.
Misunderstandings between developers and users can already
be identified by comparing the various linked documents.

In order to allow reasonable access to the hyper document,
appropriate tool support is necessary. Typical tool support
for on-line documentation is a hypermedia system, for
example a WWW-server. These tools offer the technical
support for linked document structures. Two other problems
make the use of hypermedia systems seem advisable. First,
it is usually difficult to keep linked documentation
manually up to date. This problem is alleviated by keeping
the documentation on-line. Secondly, during a software
project a number of different document versions will be
produced. These different versions can then be archived in
the on-line documentation to allow reexamination of earlier
positions and designs in the communication between
developers and users.

FROM DEVELOPMENT TO USE
So far we have outlined a set of guidelines, techniques and
document types which support the development of a new
software system. This approach focuses strongly on the
quality of use based on user participation and employs
various documents and prototyping. Up to this point user
participation forms an important part of the various other
approaches (cf. Greenbaum, Kyng 1991). However once a
system is shipped and installed at the users' site -
participation seems to disappear.

The process of further development, occasioned by
adjustments in the software to changing needs and
requirements, is accomplished in a very different way. First
of all, this process is rarely seen as development, but as
maintenance. The users play a different and often more
inferior role, being restricted to writing bug reports or
proposals for new features. These reports are then added to a
long list of backlogged change requests. Change requests are
not usually handled by the original system developers but
by maintenance programmers. They often lack the necessary
application knowledge and know little about the history of
the development process. Furthermore, the changes are
described and dealt with on a primarily technical level as
features (e.g., a new procedure or a new data field for a
screen layout).

User participation, thus, isn't evident during the whole
period of actual system use. Lack of insight into the
necessity of user participation as well as an insufficient
document basis are reasons for this. In the following, we
will present the various aspects of our continuous
participatory approach, present during the entire life cycle of
a software system.

Continuous Participation
Discussion about prototypes between users and developers
is from our point of view only part, albeit an important
one, of user participation. By discussing a prototype with
the user, the developer is able to see how a prototype is
used and to gain hints about its usefulness. This
information, however, is not acquired in an actual work
situation but during experiments. The main focus of
attention is in fact directed at evaluating the prototype,
during which the user imagines various typical work
situations.

Although a lot of problems and misunderstandings will
already become clear during these initial stages, further
cycles are necessary to ensure the usefulness of the software
system. These are done with a small test group of users
working with a pilot system. The users are left to go about
their daily work with the pilot system and the on-line
documentation.

This leads to a first productive version of the software
system and installation at several work places. The users
continue their appraisal of the system with the aid of the
on-line documentation. Problems will surface but the focus
will shift to further development of the system.

A software system can only remain useful over a long
period of time when adjustments occur to suit the changing
surroundings. Some changes are occasioned by new
products or new regulations. Using the software system
will stimulate users to see their work from a new
perspective; new organizational ideas will occur as well as
insights into which new concepts to introduce. These all
form a crucial starting point for the further development.

Inclusion of the evaluation results as well as the users' new
ideas in the further development of pilot and software
systems require extension of the on-line documentation.

User Comments
The first extension allows the user to add to every text in
the documentation. If a concept seems to be misinterpreted,
a corresponding note can be made in a material vision or to
the glossary. Difficulties with the handling of the software
system can be commented on within the tool visions or
scenarios. To explain a misunderstanding of various related
concepts and work tasks the comments can form links to
other documents.

The comments will consist of notes on problems arising
with the tools, materials and automatons of the software
system. The communication between users and developers
will thus improve and be directed towards concrete parts of
the software system described in the system vision. If
misunderstandings aren't restricted to technical aspects but
include problems on an application domain level, the
glossary and scenarios will need to be discussed anew.

Relating software and documentation
The second documentation system extension concerns the
strong relationship between the actual work situation,
supported by the software system, and the documents
accessible within the documentation system. A
documentation system by rights shouldn't only be available
as an additional element of the software system. Users are
disinclined to search in the on-line documentation for the
appropriate area to place their comments.

157

To improve document access we have included a context
sensitive component. A system vision describing the
corresponding part of the software system exists for each
tool, material or automaton. When the user calls the
documentation system, the context sensitive component
identifies which tool or automaton the user is currently
handling and which materials are involved. In accordance
with this information - system visions, glossary entries or
scenarios are displayed.

This section has introduced how extended on-line
documentation serves users and developers. The context
sensitive component is a step towards more effective user
participation. Discussing the software system with the help
of the documentation supports user participation in a way
that would otherwise end with evaluating prototypes.

TOOL SUPPORT FOR USER PARTICIPA
TION
To realize our ideas about continuous user participation we
have used WWW-servers in several university and industrial
projects. The underlying concept of WWW-documents,
though didn't quite meet our requirements. With the help of
a WWW-server,developers can arrange documents for users
to read and provide comments, however fulfilling our user
participation criteria requires more support. In the
following, the handling of the documentation system (see
Fig. 6) will be described. This system has been
implemented and used in university projects (cf. Lilienthal
1995).

Yer"bin6.rog ~likation: akt.uelle Knotenliste:

• cme Kante><t I Alle I<noten CI I
~ HI t """text. ,..-______ -, Ais Doppelpf'eil

Zustand der Appl1kation Ais HochfDl"Mt
1tociJs: Ais QuerfOMlllt
Nlcht Als Standard
Selektiertes Syoobol: Ais Uebersichtsnetz
kelne Selel Als ausgehender Pfeil
Gueltige ~ationen: Als einlaufonder Pfeil
kelne I)perationen IIOI"hanc Als """""les Blatt

~iv

An Awl. anglelchen

~Iv. lias 1st das?
~gabe

~fgabe. lias 1st das?
~gabengoblet

~gabengeblet. lias 1st das?
~Qlbonnetz. lias 1st das?
~l

I Schlagwortsuche I

Fig. 6: The documentation system

Hypertext with comments
The glossary, scenarios and system visions are represented
as nodes in a hypertext, and are linked to one another.
Comments recorded by the users are also realized as nodes
in the hypertext

If a user decides to add to the documentation, a new hyper
node is created. In order to outline which documents a
comment refers to, users are able to create links between
their comments and other hyper nodes. In addition, the
documentation system allows the user to indicate whether a
comment is for public or for private access. Public
comments can be read by every user or developer who has
access to the documentation system.

Orientation in a Hyper Document
A frequently reported problem with hypertext systems is the
lack of orientation offered. Net-like structures only give
users scanty clue in finding their way.

In employing the documentation system the user will open
various browsers (see Fig. 7) to read system visions,
glossary entries or scenarios. Editors will appear on the
screen to be filled with comments. Each browser or editor
offers more than just the text of a document or a comment
and links to other documents. To support orientation some
basic information is displayed: the name of the tool
(browser or editor), the title, the type and the version of the
document worked upon as well as the name of the author
(see Fig. 7). This information enables users to distinguish
between the documents on a higher level of abstraction than
just textual. The users are able to identify different
categories of documents and develop their own ways of
working with them.

158

Knotem_ : F\rOktionelie Rolle. lias 1st das?
Klasslflkatlon: llllterlaiknoten

~~I EI_ ~tar I C Lesezelchen

l'\rOktlonelle Rollen stellen den ~ zwischen
Personen U'ld ~eaben (s. I~gabe. lias 1st das?l> dar. 51e
dlenen der z-t8SSll1g von .,IS eel iOeI Igor
Taetlgkelten (s. ITaetlgkelt. lias 1st das?l> oder
~gabengeblete (s.l~gabengoblet. lias let das?l>. Elne
f\rOktlonelie Rolle kI11'II von IIeIreren Personen 9<>"""
--.len.

F\rOktionelle Rollen sind I~ Ueberslchtsnetz (s.
IUeberslchtsnetz. lias 1st das?l> ird den daraus
entstehenclen Yerfelner'U'lgel'i (s. IYerfelneru!9. lias 1st
das?l, IVeriel~, lias 1st das?l> zu flnden. Elne
F\rOktionelle Rolle "Ire! In ~gabengeblete ird Taetigkeiten
vertelnert.

7:
documentation system

To equip users with more possibilities to work with and to
gain orientation within the documentation system three
other features were added. Users are able to mark hyper
nodes and return to them later on (see Fig. 7). A search
function allows access to documents by looking for a
specific word (see Fig. 6). Each browser and editor is
provided with a history, so that users can trace back to the
hyper nodes already visited (see Fig. 7).

CONCLUSION
We have introduced concepts andtechniques to enable user
participation during the entire software development
process. Document types that encourage user participation
during analysis and initial design have been linked to
prototyping and further development. An on-line
documentation system has been described. This
documentation system offers possibilities such as
comments, context sensitivity and several handling
facilities to support users in evaluating pilot systems and
software systems. On the basis of this, ongoing discussion
between developers and users can be supported and organized
more efficiently.

ACKNOWLEDGMENTS
We would like to thank Yvonne Dittrich, Charles MacInnes
and the reviewers for their advice and help.

REFERENCES
Briefs, U., Ciborra, C., Schneider, I. (1983) (Eds) Systems

Design For, With and By the Users. North-Holland,
Amsterdam.

Brooks, F.P. (1996) The Computer Scientist as Toolsmith
II. Communications of the ACM, 39, 3 (March 1996),
p. 61- 68.

Budde, R., Kautz, K., Kuhlenkamp, K., Ztillighoven, H.
(1992) Prototyping. Springer-Verlag, Berlin.

Baumer, D., Gryczan, G., Knoll, R., Ztillighoven, H.
(1996) Large Scale Object-oriented Software
Development in a Banking Environment. In: Cointe, P.
(Ed.) ECOOP '96 - Object· Oriented Programming,

Lecture Notes in Computer Science, Springer-Verlag,
Berlin, pp. 73-90.

Biirkle, U., Gryczan, G., Ziillighoven, H. (1995) Object
Oriented System Development in a Banking Project:
Methodology, Experience, and Conclusions.
Proceedings of HCI, Vol. 10, pp. 293-336.

Budde, R., Ziillighoven, H. (1992) Software Tools in a
Programming Workshop. In Floyd, C., Ziillighoven,
H., Budde, R., Keil-Slawik R. (Eds.) Software
Development and Reality Construction. Springer,
pp. 252-268.

Carroll, J.M., Mack, RL., Kellogg, W.A. (1988) Interface
Metaphors and User Interface Design. In Helander, M.
(Ed.) Handbook of Human-Computer Interaction, pp.
283-307.

Carroll, J.M., Rosson, M.B. (1990) Human Computer
Interaction Scenarios as Design Representation.
Proceedings of the Hawaii International Conference on
System Sciences, Los Alamitos CA IEEE Computer
Society Press, pp. 555-561.

Docherty, P., Fuchs-Kittowski, K., Kolm, P., Mathiassen,
L. (Eds.) (1987) System Design For Human
Development and Productivity: Participation and
Beyond. North-Holland, Amsterdam.

Ehn, P. (1988) Work-oriented Design of Computer
Artifacts. Almquist and Wiksell International,
Stockholm.

Floyd, C. (1987) Outline of a Paradigm Change in
Software Engineering. In Bjerknes, G., Ehn, P., Kyng,
M. (Eds.) Computer and Democracy, Avebury, Gower
Publishing Company Limited, AIdershot.

Floyd, C., Ziillighoven, H., Budde, R., Keil-Slawik, R
(Eds.) (1992) Software Development and Reality
Construction. Springer-Verlag, Berlin.

Gamma, E., Helm, R., Johnson, R, Vlissides, J. (1994)
Design Patterns - Elements of Reusable Object-Oriented
Software. Addison-Wesley, Reading.

159

Greenbaum, J., Kyng, M. (Eds.) (1994) Design at Work.
Cooperative Design of Computer Systems. Erlbaum,
Hillsdale.

Jacobson, I., Christerson, M., Jonsson, P., Overgaard, G.
(1992) Object-oriented Software Engineering. A Use
Case Driven Approach. Addison-Wesley, Reading.

Krabbel, A., Ratuski, S., Wetzel, I. (1996) Requirements
Analysis of Joint Tasks in Hospitals. In Dahlbom, B.,
Ljungberg, F., Nulden, U., Simon, K., Sorensen, C.,
Stage, J. Proceedings of IRIS 19 II. (August 10-13,
Lokegerg, Sweden) Gothenburg Studies in Informatics,
Report 8, June, pp. 733-750.

Kay, A. (1977) Microelectronics and the Personal
Computer. In Scientific American, Vo1.237, No.3,
Sepember, pp. 230-244.

Lichter, H., Schneider-Hufschmidt, M., Ziillighoven, H.
(1994) Prototyping in Industrial Software Projects -
Bridging the Gap Between Theory and Practice. In IEEE
Transactions on Software Engineering 20, II, pp. 825-
832.

Lilienthal, C. (1995) Konstruktion und Realisierung eines
an der Anwendung orientierten Hilfesystems nach der
Werkzeug-Material Metapher, Diploma Thesis,
University of Hamburg, in German.

MaaB, S ., Oberquelle, H. (1992) Perspectives and
Metaphors for Human-Computer Interaction. In Floyd,
C., Ziillighoven, H., Budde, R, Keil-Slawik, R (Eds.)
Software Development and Reality Construction.
Springer Verlag, Berlin.

Meyer, B. (1988) Objet-oriented Software Construction.
Prentice Hall, Hemel Hempstead.

Riehle, D., Ziillighoven, H. (1995) A Pattern Language for
Tool Construction and Integration Based on the Tools &
Material Metaphor. In Coplien, J.O., Schmidt, D.C.
Pattern Languages of Program Design. Addison-Wesley,
Reading, pp. 9-42.

