
On Participatory Design and User Involvement 
as Topics in Computing Education: 

A Contribution to a Curriculum Debate 
Karlheinz Kautz 

Norwegian Computing Center, P.O. Box 114 Blindem 
N-0314 Oslo, Norway 

Karl.Kautz@nr.no 

ABSTRACT 
The topic of participatory design has not yet been of central 
interest in the context of formal education for computing 
professionals. This paper addresses this issue and argues why 
an up-to-date education should include more human-centred 
approaches like participatory design. It takes its starting 
point in the ongoing curriculum debate and discusses how 
mathematical-, and engineering-based approaches and 
traditional system development training contribute to 
education in computer science and system development. It 
argues that all of these approaches have shortcomings as 
they each relate to a merely technical-oriented paradigm, 
ignoring vital aspects of computing, namely organisational, 
social, and political ones. It is therefore concluded that 
participatory design as an approach which deals with these 
issues should be part of a comprehensive computing 
education. The article is meant to provide the ground for the 
next step in a debate about participatory design and 
education, a discussion about how to integrate participatory 
design issues in current and future curricula and how to teach 
them. 

KEYWORDS: Computing education, Perspectives on 
software development, user involvement 

INTRODUCTION 
Participatory design, user involvement, and issues of social 
computing are gaining more and more attention as topics in 
the field of computing. The biannual conferences on 
participatory design ([1], [2]) are one sign, two special 
numbers of the Communications of the ACM ([3], [4]) 
another one. 

However, these topics are rarely addressed in the context of 
formal education in universities and schools, either by the 
participatory design community or by a broader curriculum 
debate in computer science and system development. 

This article tries to make up for this omission. As a first 
step for getting a discussion going and for gathering the 
different initiatives, it will argue why it is important to 

In PDC'94: Proceedings of the Panicipatory Design 
Conference. R. Trigg, S.l. Anderson, and E.A. Dykstra­
Erickson (Eds.). Chapel Hill NC USA, 27-28 October 
1994. Computer Professionals for Social Responsibility, 
P.O. Box 717, Palo Alto CA 94302-0717 USA, 
cpsr@cpsr.org. 

©Copyright Karlheinz Kautz 1994. All rights reserved. 

67 

integrate these topics into current and future curricula and 
why to teach them. As such the article is meant to provide 
the ground for the next step, for further arguments on how 
to do the integration and teaching. 

The curriculum debate in the United States serves as a 
starting point. In 1989, an ACM Task Force on the Core of 
Computer Science published its recommendations placing 
an emphasis on software development [5]. These 
recommendations were deeply rooted in a traditional 
perspective of the discipline with mathematics and 
engineering as its fundamentals. The committee proposed to 
change the name of the discipline into "Science of 
Computing" and recommended only gentle reforms. 

Accordingly, the curriculum contains the traditional 
components, algorithms and data structures, programming 
languages, architecture, numerical and symbolic computing, 
software methodology and engineering, databases and 
information retrieval, artificial intelligence and robotics, and 
as the only tribute to a development of the discipline, 
human-computer communication. No statements, however, 
are made about the concrete amount of mathematics and 
engineering within the courses. Nor is there a topic on 
"computers and society" in the curriculum. 

A Joint Curriculum Task Force formed by the ACM and 
the IEEE Computer society published their recom­
mendations in 1991 [6], for more comments see also [7] 
and [8]. The proposal has the same basic structure as the 
one of the earlier task forces. However it includes a 
component on "social and professional context" in which 
undergraduates are to be taught the basic cultural, social, 
legal, and ethical issues inherent in the computing 
discipline. No explicit mention is made of wider aspects 
concerning organisational issues, participatory design or user 
involvement. A similar debate can be found in the German­
speaking countries (see [9-12]), where we however find an 
explicit proposal for a software ergonomics education 
incorporating some of these topics [13]. 

In the remainder of this article a closer look will first be 
taken at the demands for a mathematical-, and engineering­
based education. Then traditional system development as 
another basis for software development will be discussed. On 
the background of the identified deficiencies the concluding 
argument why participatory design issues should be of an 
education for all computing professionals is put forward. 



THE DEMAND FOR A MATHEMATICS-BASED 
EDUCATION 
Dijkstra is a representative of those demanding a 
mathematics-based education. He contributes to the 
curriculum discussion 1989 with his paper entitled "On the 
Cruelty of Really Teaching Computer Science" (in [15]). 
From his point of view, computers are technical artifacts 
with a complexity which exceeds all other technical artifacts 
so far. However, the only thing he sees a computer can do 
is to manipulate symbols and to produce results of such 
manipulations. A program is an abstract symbol 
manipulator which can be turned into a concrete symbol 
manipulator by supplying a computer to it. Dijkstra 
presents benefits of seeing programs as formulas and arrives 
at the conclusion that computer science is concerned with 
the interplay between mechanised and human symbol 
manipulation. This is what, according to him, is usually 
referred to as "computing" or "programming". 

Hence, dealing adequately with the complexity of computers 
should be grounded in a mathematical-logical orientation of 
the basic education in computer science. The aim of such an 
education is to unfold the ability of writing correct 
programs, which means to transform given specifications 
into correct executable formulas. 

Dijkstra admits that there has to be more in an education 
of computer science than the formal derivation of programs. 
Computers are a radical novelty. Therefore the use of well­
known terms from other technical fields like software 
engineering, software maintenance, software tools, and 
programmers' work bench are misleading and give the 
impression that we are dealing with a known and easy to 
control technology. He warns of an unreflected use of such 
terms and demands that we stop referring to parts of 
programs or devices in anthropological terminology. But he 
makes a clear distinction between what he calls the 
"correctness problem" and the "pleasantness problem." The 
former deals with the question of how to design an artifact 
that meets its specification, whereas the latter comprises all 
those issues that cannot be handled by mathematical 
formalisms. Dijkstra does not give the impression that 
these issues are important enough to have a legitimate place 
in a basic computer science education. 

Gries [15J takes a similar stand. On the basis of a report of 
the Computer Science and Technology Board in the US, he 
also argues that a more rigorous use of mathematical 
techniques including formal methods and mathematical 
proofs will help to improve the low quality of software. 

Computer science as a discipline lacks professionalism and 
does not pursue the development of professional standards 
with the same energy as is usual in other engineering 
disciplines. From his point of view, the field relies far too 
much on intuition and guessing. What is needed to tackle 
the problems is a strong emphasis on basic mathematical 
skills that support dealing with algorithmic concepts. 

The pure mathematical approach to software development 
has been widely criticised. Among others, Winograd in his 
answer to Dijkstra's paper argues that computers are not just 
dealing with mathematical objects (in [14]). It might be 
right that they only manipulate symbols, but they do this as 
a means to an end. Computers are devices that fulfill certain 
functions within human activities. Software development 
does not aim at the perfect and optimal solution, but at the 
construction of reliable and reasonable ones. 

A second flaw in the mathematics-based argumentation is 
seen in the idealised view of programming as transforming 
a given specification into an executable program as the main 
task of computing professionals. This view seems to ignore 
the fact that there are big software packages in use which 
have not been formally specified. The problem does not 
seem to be dealing with formalism concerning existing 
specifications and programs, but how to gain the 
specifications, both informal and formal ones. 

Winograd concludes that it would be foolish to ignore the 
value of the abstract mathematical skills Dijkstra advocates, 
but it would be even more foolish to indulge the fantasy that 
they offer some magic that allows students to escape the 
hard work of learning about real computing. 

He supports an education which enables future computer 
professionals in a good engineering tradition to specify and 
design hardware and software devices in such a way that 
they will work effectively. 

THE DEMAND FOR AN ENGINEERING-BASED 
EDUCATION 
This leads to the demand for an engineering-based education 
which understands computer science, (information) systems, 
and software development as engineering disciplines. Lately 
the term "information systems engineering" has emerged 
(see [16]). The term "software engineering" was coined 25 
years ago on the background of the so-called software crisis 
which was manifested by software systems which were too 
expensive, contained numerous errors, were not ready in 
time, frequently did not fulfill their users' requirements and 
often did not lead to the expected economic savings. 

A more engineering-based approach which is based on the 
types of theoretical foundations and practical disciplines that 
are traditional in the established branches of engineering is 
seen as a way out of this crisis. Macro and Buxton (in [17]) 
define software engineering as "the establishment and use of 
sound engineering principles and good management practice 
.., in order to obtain ... software, that is of high quality ... ". 

It is obvious that the engineering approach aims at technical 
solutions and it is interesting to note that the approach was 
launched in a situation where the software systems to be 
developed were thought to be mainly used in technical 
contexts like controlling aircraft or telephone circuits, or to 
support engineers, for example, to design buildings, or to 
construct well-understood solutions for well-defined 
problems like payroll accounting. It seems that this 

68 



assumption is still shared by many supporters of the 
engineering perspective today. 

Parnas [18] relates computing explicitly to engineering and 
puts forward the following line of argumentation. He argues 
that most computing science graduates end up working in 
engineering jobs, thus they as such work as engineers as 
they are constructing technical artifacts. However in contrast 
to traditional engineers, students in computing do not learn 
fundamental engineering principles like systematic 
planning, analysis, documentation, and validation. 

The reasons for these deficiencies in computing education are 
seen in the more random-like development of the early 
curricula in the 60's. Mathematical and engineering-based 
topics were compressed into quick shallow courses, the 
biggest part of the curriculum was formed by subjects 
which were understood as the "good stuff', this mirrored the 
then actual research interests like programming languages 
and accompanying language compilers. As a result, Parnas 
today sees theoretical computer scientists who seem to lack 
an appreciation for mature mathematics and practitioners 
who lack an appreciation for the essentials of professional 
engineering. 

As a consequence he proposes a return to an approach in 
education which emphasises the classical fundamentals of 
engineering. Parnas is aware of the fact that some might 
find this curriculum old-fashioned, but he argues that it will 
allow for a flexibility and a lifetime of learning of new 
development, which is necessary in such a dynamic and fast 
changing field as computer science. 

The undergraduate education should mainly be based on 
mathematics and engineering, supplemented with basic 
knowledge in physics_and chemistry. Elementary computing 
science should be restricted to principles of structured 
programming, analysis and design of algorithms and data 
structures, technical documentation, systems' architecture. 
Parnas and Dijkstra agree that practical programming with 
concrete languages on concrete machines should not be part 
of an undergraduate education. 

One can hardly disagree that knowledge of engineering and 
technical principles, in technical design, in programming 
techniques, in documentation, as well as in quality control 
procedures have to be part of the equipment of a system 
developer. Without the basic technical know-how, no trade 
can produce quality products. As Winograd puts it, an 
engineering education needs a grounding in the experience of 
the profession. Experience can partly be passed on by 
examples, but has its main source in practice. He therefore 
requests a more practical oriented education which goes 
beyond the building and testing of small programming 
exercises. It should include working with large-scale 
systems and the design considerations that come from their 
embedding in situations of use. 

But within the engineering perspective emphasis tends to be 
merely on the technical construction of software. There 

seems to be a belief that requirements of software 
components can be described definitely and completely. 
Engineers seem to think that it is this kind of facts they can 
base their work on and that they have nothing to do with 
work organisation, work activities, and requirements 
analysis. 

There is also the opinion that conformity between 
specification and code is the adequate criteria for assessment 
of software and that only minor interaction between 
developers and clients and future users is necessary after an 
initial agreement about the specification between these 
groups has been reached. These, by the way, are positions 
Which, although they disagree about the importance of 
formal methods, are supported by both representatives of the 
classical mathematical and members of the traditional 
engineering school. 

This approach largely excludes the problems arising from 
determining requirements and proposing functional 
specifications. This is not that much a problem in technical 
areas where requirements are frequently fixed. But system 
development takes place in a context and computer and 
information technology frequently is embedded in 
organisations and changes of the requirements are often 
triggered by changes in the organisation or have their basis 
in factors which are not engineering issues, like 
misunderstandings and poor communication between, and 
within, clients' and developers' communities. What is 
needed is an understanding by computer professionals who 
do not only know engineering, but also can deal with this 
kind of problem. 

TRADITONAL SYSTEM DEVELOPMENT 
EDUCATION 
While the engineering perspective explicitly excludes the 
organisational context, a look at the field of information 
systems development and its relationship to computing 
shows that the emphasis here is on using the devices for 
processing business information in organisations rather than 
considering the devices as a subject of concern on its own. 
The focus of interest is extended to analysing the business, 
establishing requirements, specifying functions, and dealing 
with people as users in organisations. 

An International organisation, the International Federation of 
Information Processing, represents those active in this field. 
Already in 1968, the IFIP Technical Committee for 
Education initiated a working group to prepare a curriculum. 
The aim was primarily to address system analysis and design 
professionals. But there was also the foresight that there 
would be a need of education for those whose primary 
interests are in business and administration and to whom 
computer technology is only one management tool among 
others [19]. The topic of information system development 
and use attracted business schools. In fact, in the US 
according to Davis there still is a clear distinction between 
the field "information systems" of which 80% is taught in 
business schools, and "computer science" (see [19]). 

69 



Information systems development and software engineering 
have a number of things in common when it comes to 
software development: both have to deal with project 
management and organisation as well as with methods and 
tools for the development of soft,*are. They have different 
starting points: information systems development in system 
analysis and system design focusing on requirements and 
functional specifications, software engineering in coding 
and technical design, stressing the technical activities. 

A look into information systems text books and software 
engineering text books shows that the same methods for the 
early activities in software development projects are 
presented. The difference is that software engineering books 
still tend to give technical examples. Pressmann [20], for 
example uses the development of a home security system 
throughout his whole text. In information systems 
literature, on the other hand, the examples deal with 
applications in which people in organisations explicitly are 
involved. Olle et al. [21], for example, present a flight 
reservation system to demonstrate system development 
methodologies. 

The two fields overlap each other. !ivari [22] goes as far as 
identifying software engineering as one of the 'schools' 
within information systems development. The boundaries 
between the fields are blurred. To a certain extent it makes 
no sense to make a distinction between them at all. It looks 
as if the software engineering community at least to a 
certain degree has recognised the significance that other than 
mere technical issues have for software development. On 
the other hand the information system community seems to 
acknowledge the benefits of some engineering discipline. 

Then, however, taking seriously that software components 
are not merely technical artifacts, but parts of organi­
sations, means to include issues like establishing require­
ments, specifying functions, and in particular, dealing with 
users and user organisations in a computing studies 
curriculum independently from a particular perspective. 

This does not mean that only special methods should be 
taught. Emphasis should be on underlying principles with 
the use of certain methods as practical examples. Every 
professional should have this knowledge, regardless of 
whether he or she gained education at a university or a 
business school and there are already many places which 
offer this kind of education. 

However, in a conventional perspective, organisations are 
seen as unitary structures with a manifest and rational, and 
for the most part hierarchical organisational reality. This 
reality consists of objects, properties and processes that are 
directly observable. Thus, requirements specifications and 
design descriptions are considered as clear-cut documents 
which are as objective as possible. The resolution of 
polemical issues within the organisation is seen as a 
prerogative of management and not normally within the 
domain of the system developers. 

Their role is to be neutral experts in technology, tools, and 
methods of system analysis and design, and project 
management. Using these supporting means is seen to make 
system development more rational, placing less reliance on 
human intuition. Management provides the objectives and 
dictates the ends for the system development projects. The 
system developers take the objectives and tum them into a 
constructed product. Users operate or interact with 
information technology to achieve organisational objectives. 

In this view social issues are, if at all, considered in a very 
simple way and social phenomena are tackled in terms of 
static unilateral cause-effect laws. Computing professionals 
of all three schools presented so far share this with 
traditional organisational and management theorists. 
Management as a discipline of communication has under 
the influence of Taylorism been interpreted as a system of 
formal directives for action and formal descriptions of 
activities and tasks. In this view, communication is context­
free and unilateral: management gives directives, staff carry 
them out. 

This approach has been successfully used when formalised 
application areas are concerned. But it leads to some 
limitations when support for less formalised activities and 
structures and more dynamic organisations is aimed at. 
Specifications then often comprise only out-dated 
requirements and do not capture the "real" working practice 
in an organisation. Thus, the information technology 
applied does not support the work tasks of its users and 
further, quick and flexible adaptation to frequently changing 
organisational structures and tasks is hardly possible. The 
literature is full of stories reporting information technology 
failure. 

This is what Hirschheim and Klein [23] call the orthodox 
approach to information system development and has much 
in common with what Floyd [24] calls the traditional, 
product-oriented perspective on software engineering. It takes 
note of the existence of an organisational context. However 
it is very close to the engineering perspective as the general 
orientation is towards technical issues including some 
behavioural consequences. But it is oriented not towards 
social issues as a main subject of concern. Thus including 
organisational issues in a curriculum for computing 
professionals is a step in the right direction, but it is not 
sufficient. 

BEYOND THE TRADITIONAL APPROACHES TO 
COMPUTING EDUCATION - THE DEMAND FOR 
TEACHING PARTICIPATORY DESIGN 
System development, according to Andersen et al. [25], 
consists of all those activities that aim at changing an 
organisation through the use of computer technology. 
Software development as part of system development is not 
just a process of technical change, but also, or first and 
foremost, means organisational development. Hirschheim et 
al. [26] argue that system development which aims at the 
use of computer technology is a social process, which relies 
on technology. 

70 



Wastell [27] and Bjerknes [28] describe this social process as 
a dialectical reality of mutual reciprocating influences and 
contradictions in which organisations are seen as pluralistic 
structures. There, many points of view and interests exist. 
This makes system development a complex, social 
phenomena. The political dimension is, for example, 
stressed by Marcus [29] and by Franz and Robey [30]. 
Solutions and prescriptions that oversimplify the actual 
reality will hardly lead to success. 

System developers should try to understand the 
organisational, social, and political context of workplaces. 
They should not abstract away this context to pure 
information processing aspects as this is done by traditional 
approaches. There, system developers use structured analysis 
and design methods which allow them only to analyse and 
describe the technical features of organisations (cf. [29]). The 
failure of numerous system development endeavours due to 
neglecting these aspects is frequently reported (see, for 
example, [31], [32]). 

As a consequence alternative approaches have emerged. The 
system developers in these approaches are not neutral or 
objective, they take over responsibility for what happens in 
an organisation when information technology is to be 
introduced. The approaches may be distinguished by the 
different roles the system developers may play in 
development projects. A vison and Wood-Harper [33] make a 
distinction between system developers as facilitators, as 
agents for social progress, and as emancipators. Similar 
distinctions can be found in Hirschheim and Klein [23] and 
Dahlbom and Mathiassen [34]. Such a differentiation, 
however, is not relevant in the context here. 

What is relevant here, is what the approaches have in 
common: they all move the centre of interest away from 
organisations as abstract structures. The centre of interest is 
moved towards the everyday working practice of people 
within organisations. The development process is interpreted 
as a process of getting the users to understand, formulate, 
and define their problems and needs, instead of letting 
managers or consultants formulate a number of fixed 
problems. The need for user involvement is acknowledged. 
In line with Floyd [24] (see also [35]), Denning [36] sees a 
new paradigm for software development here. This paradigm 
has become known by the terms user-centred design or 
participatory design. Denning considers this paradigm to be 
well suited for the development of software, as it is required 
today, software that satisfies its users and supports their 
work. He argues that in this respect it is superior to formal 
approaches to software development. 

Knowledge about, and experience with, user involvement 
and participatory design as well as accompanying techniques 
exist. As the material is well-documented (see [1]-[3], [37]­
[41]) it can also be taught. It has to be taught as teaching it 
- together with all the other topics related to system 
development - means to offer an education for computing 
professionals which does not omit important parts, but 

which comprises all vital aspects of system development. 
This kind of system development education should be 
firmly established in any computing curriculum. 

SUMMARY 
In summary, different approaches to computing education 
have been presented in this article. The mathematical one, 
the engineering one, and the system development approach 
supplement each other and a modern curriculum must 
comprise all of them. But it is not sufficient to stick to the 
traditional, merely technocentric approaches. A modern 
education also has to include human-centred approaches like 
participatory design. This is necessary because computing 
professionals have to be prepared to meet not only technical, 
but also organisational, social, and political challenges, and 
it is possible because the existing knowledge is fairly well 
documented. Further discussions should now address how 
these issues can be integrated in computing curricula and 
how they actually can be taught. For this purpose it will be 
useful to collect and compare existing teaching experience. 

REFERENCES 
1. P. Czyzewski, J. Johnson (eds.), Proceedings of the 
Participatory Design Conference '90, Seattle, Palo Alto, 
CA, Computer Professionals for Social Responsibility, 
1990. 
2. M. J. Muller, S. Kuhn, J. A. Meskill (eds.), 
Proceedings of the Participatory Design Conference 1992, 
MIT, Cambridge, US, 1992. 
3. Communications of the ACM, Special Issue on 
Participatory Design, Vol. 36, No.4, June 1993. 
4. Communications of the ACM, Special Issue on Social 
Computing, Vol. 37, No.1, January 1994. 
5. P. J. Denning, D. E. Comer, D. Gries, M. C. Mulder, 
A. B. Tucker, A. J. Turner, P. R. Young, Computing as a 
Discipline, in Communications of the ACM, Vol. 32, No. 
1, pp. 9-23, 1989. 
6. A. B. Tucker, B. H. Barnes, Flexible Design: A 
Summary of Computing Curricula 1991, in IEEE 
Computer, Vol. 24, pp. 56-66, November 1991. 
7. P. J. Denning, Educating the new Engineer, in 
Communications of the ACM, Vol. 35, No. 12, pp. 83-97, 
1992. 
8. J. Hartmanis, Computing the Future, in Communi­
cations of the ACM, Vol. 35, No. 11, pp. 30-40, 1992. 
9. L. Bonsiepen, W. Coy, Eine Curriculumdebatte, in 
Informatik Spektrum, Vol. 15, pp. 323-325, 1992. 
10. M. Broy, Zur Aus- und Weiterbildung im Bereich der 
ingenieurmassigen System- und Prograrnmentwicklung, in 
Informatik Spektrum, Vol. 16, No.1, pp. 31-33, 1993. 
11. J.-A. MiHler, Kommt die Entwicklung betrieblicher 
DV-Anwendungssysteme ohne Systems Engineering aus?, 
in Informatik Spektrum, Vol. 16, No.3, pp. 167-169, 
1993. 
12. S. Wendt, Defizite im Software Engineering, in 
Informatik Spektrum, Vol. 16, No.1, pp. 34-38, 1993. 
13. S. Maass, D. Ackermann, W. Dzida, P. Gorny, H. 
Oberquelle, K.-H. Rodiger, W. Rupietta, N. Streitz, 
Software-Ergonomie-Ausbildung in Informatik-Studien-

71 



gangen bundesdeutscher Universitaten, in Informatik 
Spektrum, Vol. 16, No.1, pp. 25-30, 1993. 
14. P. J. Denning (ed.), A debate on Teaching Computer 
Science, in Communications of the ACM, Vol. 32, No. 12, 
pp. 1397-1414, 1989. 
15. D. Gries, Teaching Calculation and Discrimination: A 
more effective Curriculum, in Communications of the 
ACM, Vol. 34, No.3, pp. 44-55, 1991. 
16. A. S~lvberg, D. C. H. Kung, Information Systems 
Engineering - An Introduction, Springer, Heidelberg Berlin 
New York, 1993. 
17. P. Naur, B. Randell, and J. N. Buxton, editors. 
Software Engineering - Concepts and Techniques. New 
York, 1976. NATO Science Committee, Petrocelli/Charter. 
Proceedings of the Nato Conferences at Garmisch, Oct. 7-
11, 1968 and at Rome, Oct. 27-31, 1969. 
18. D. L. Pamas, Education for Computing Professionals, 
in IEEE Computer, Vol. 23, pp. 17-22, January 1990. 
19. D. E. Avison, G. Fitzgerald, Information systems 
practice, education and research, in Journal of Information 
Systems, Vol. 1, pp. 5-17, 1991. 
20. R. S. Pressman, Software Engineering, A Practitioner's 
Approach, 3rd Edition, McGraw-Hill, New York, 1992. 
21. T. W. Olle, J. Hagelstein, I. G. Macdonald, C. 
Rolland, H. G. Sol, F. J. M. van Assche, A. A. Verrijn­
Stuart, Information Systems Methodologies, A Framework 
for Understanding, 2nd Edition, Addison-Wesley, 
Wokingham, England, 1991. 
22. J. Iivari, A paradigmatic analysis of contemporary 
schools of IS development, in European Journal of 
Information Systems, Vol. 1, No.4, pp. 249-272, 1991. 
23. R. Hirschheim, H. K. Klein, Four Paradigms of 
Information Systems Development, in Communications of 
the ACM, Vol. 32, No. 10, pp. 1199-1216, 1989. 
24. C. Floyd, Outline of a Paradigm Change in Software 
Engineering. In G. Bjerknes, P. Ehn, and M. Kyng, editors, 
Computers and Democracy, pages 191-210. Avebury, 
Aldershot, Brookfield, Hongkong, Singapore, Sydney, 1987. 
25. N. E. Andersen, F. Kensing, J. Lundin, L. Mathiassen, 
A. Munk-Madsen, M. Rasbech, P. Soergaard, Professional 
Systems Development, Experience, Ideas and Action, 
Prentice Hall, 1990. 
26. R. Hirschheim, H. Klein, M. Newman, A social action 
perspective of information systems development, in J. 
DeGross, C. Kriebel (eds.), Proceedings of the 8th 
International Conference on Information Systems, pp. 45-
56, 1987. 

27. D. G. Wastell, The Social Dynamics of Systems 
Development: Conflict, Change and Organizational Politics, 
in S. Easterbrook (ed.), CSVW: Cooperation or Conflict?, 
Springer Verlag, London Berlin New York, pages 69-91, 
1992. 
28. G. Bjerknes, Dialectical Reflection in Information 
Systems Development, in Scandinavian Journal of 
Information Systems, Vol. 4, pp. 55-77, 1992. 
29. M. L. Markus, Power, Politics, and MIS Implement­
ation, in Communications of the ACM. Vol. 26, No.6, pp. 
430-444, 1983. 
30. C. R. Franz, D. Robey, An Investigation of User-led 
System Design: Rational and Political Perspectives, in 
Communications of the ACM, Vol. 27, No. 12, pp. 1202-
1209, December 1984. 
31. K. Lyytinen, R. Hirschheim, Information systems 
failures - a survey and classification of the empirical 
literature, in Oxford Surveys in Information Technology, 
Vol. 4, pp. 257-309, Oxford University Press, 1987. 
32. R. Hirschheim, M. Newman, Information Systems and 
User Resistance, Theory and Practice, in The Computer 
Journal, Vol. 31, No.5, pp. 398-408, 1988. 
33. D. E. Avison, A. T. Wood-Harper, Multiview: An 
Exploration in Information Systems Development, 
Blackwell, Oxford, 1990. 
34. B. Dahlbom, L. Mathiassen, Computers in Context, 
Blackwell, 1993. 
35. C. Floyd, F.-M. Reisin, G. Schmidt, STEPS to 
Software Development with Users, in C. Ghezzi, J. A. 
McDermid (eds.), ESEC'89, Lecture Notes Computer 
Science, Springer Verlag, pp. 48-64, 1989. 
36. P. J. Denning, Beyond Formalism, in American 
Scientist, Vol. 79, pp. 8-10, 1991. 
37. G. Bjerknes, P. Ehn, M. Kyng, Computers and 
Democracy - A Scandinavian Challenge, A vebury, 
Aldershot, 1987. 
38. P. Ehn, Work-oriented design of computer artifacts, 
Erlbaum, Hillsdale, 1988. 
39. G. Bjerknes, B. Dahlbom, L. Mathiassen, M. 
Nurrninen, J. Stage, K. Thoresen, P. Vendelbo, I. Aaen 
(eds.), Organizational Competence - A Scandinavian 
Contribution, Studentlitteratur, Lund, Sweden, 1990. 
40. J. Greenbaum, M. Kyng (eds.), Design at Work, 
Erlbaum, New Jersey, 1991. 
41. D. Schuler, A. Namioka, Participatory Design, 
Principles and Practices, Erlbaum, 1992. 

72 


