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A. The traditions

It is not possible to speak of any specific Biblical mathematics.
Neither the Old nor the New Testament were products of
cultures carrying a mathematical tradition of their own above
a normal level of »folk mathematics«. But both Testaments
were products of cultures in contact with well-established and
sophisticated mathematical traditions.

One of these is the Sumero-Babylonian tradition known
from a wealth of cuneiform tablets. Though probably less
vigorous than in the early second millennium B.C. it was still
alive during the Babylonian exile; furthermore, it was ap-
parently reflected in scribal education and in practitioners’
ways throughout the Syrian area during the second and much
of the first millennium B.C.

Another mathematical tradition of some importance for the
Old Testament is that of Ancient Egypt. Already around the
mid-second millennium B.C. was the Syrian orbit politically
and commercially connected to Egypt; the Joseph story from
Genesis 41 displays an Israelite view on precisely the features
of Egyptian economy which molded Egyptian mathematics;
and in the centuries of the Divided Monarchy the Egyptian
hieratic number script was taken over.

The New Testament was written in the Hellenistic world
and in Greek. In spite of this, the high, »theoretical«, level of
Greek mathematics has left no traces in its text. Various



quasi-philosophical currents dependent on Greek theoretical
mathematics, however, are reflected both in the New Testa-
ment text and in Ancient and Medieval exegetical com-
mentaries.

B. The »folk« substratum

The existence of a »native« ethnomathematical substratum
among the early Hebrews follows mainly from indirect argu-
ments: From all we know their cultural level was such that
they needed it, as did all Near Eastern populations in the
second and first millennia B.C. Hebrew mé?of, »one hundreds,
is also a common Semitic word. Hebrew [F2dm, »the people,
on the other hand, corresponds to Akaddian lim, »one thou-
sand«, while Hebrew Zelep, »one thousand«, corrresponds to
Ethiopian «ten thousand«; linguistic reasons thus suggest that
the counting range shared by early Semitic tribes did not
exceed the hundreds.

A trace of »primitive« attitudes to numbers and counting
can be found in II Samuel 24 (and I Chronicles 21), where
David counts his people and is punished for his temerity; this
fear (or taboo) of counting one’s belongings is in fact wide-
spread among populations who are either not familiar with or
estranged from centralized states and administration.

Both because of the high numbers involved and because
no traces of such estrangement from the ways of civilization
turn up, the many other censuses found in the Old Testament



can not be connected compellingly to the ethnomathematical
substratum. The occurrence of borrowed Babylonian metro-
logy (the Segel) in textual vicinity of the important censuses in
Numbers also speaks in favor of a possible borrowing of the
habits and techniques of neighbouring older civilizations.

C. Babylonian mathematics

Babylonian mathematics was, in its origin, precisely an off-
spring of early »civilization« understood etymologically, as
incipient state formation. Basically, it was a scribal activity,
carried by scribes and similar practitioners and used for
practical purposes—and since almost all practical applications
of mathematics before the classical era consisted in computa-
tion of something, the unorthodox label »Babylonian computa-
tion« would fit the endeavour better than the name »mathe-
matics« {which shall none the less be used in the following).
This does not mean that Babylonian mathematics consisted
in nothing but a set of practitioners’ recipes. Firstly, as it shall
be argued below, Babylonian calculators knew what they
were doing and why they did so. Secondly, like many profes-
sional environments making heavy use of mathematics, the
Babylonian scribal culture produced a level of particularly
complex, »pure« (i.e., not practically relevant) problems with

appurtenant techniques, especially in the field of algebra (cf.
below).



Traditionally, only the mathematics of the Old Babylonian
and the Seleucid periods have been investigated and discuss-
ed in the literature. From the mid-1970es onwards, however, a
number of texts have been discovered which permit to outline
at least tentatively the development of Babylonian mathe-
matics from the proto-Sumerian beginnings around 3000 B.C.
to the Late Babylonian and Seleucid periods. Some of these
texts and the conclusions drawn have been published but
others (as of February 1989) only presented at the Workshops
on Concept Development in Mathematics (Berlin(W) 1983,
1984, 1985, 1988), especially by Jéran Friberg, Peter Damerow,
Robert Englund and Marvin Powell, Jr.

Already long before the late fourth millennium had a
systemn of arithmetical recording or accounting based on small
clay tokens been in use in the Near and Middle Eastern
region (Schmandt-Besserat 1977). In the Uruk IV period (late
fourth millennium, the period of state formation which also
witnessed the development of writing), this system appears to
have inspired both the development of writing and that of
numerical and metrological notations. In as far as mathema-
tics is concerned, furthermore, a trend toward harmonization
of the various systems set in. So, the area unit sar (apparently
meaning a »garden plot«, the area to be irrigated from a
single well, and in any case a »natural unit«) came to be
understood as the square of the basic length unit (the nindan,
=6 m), and in general the whole system of area measures was
keyed to the linear system (see Powell 1972); sub-unit metro-
logies were developed, as far as one can judge beyond the
range of the traditional system; etc. The whole system was
interconnected in a way which soon permitted coherent cal-



culations linking arithmetically linear extensions, areas, time,
and other quantities which belonged together in technical or
social practice (part of the background for these statements
has only been presented in workshops and is as yet un-
published; but see, e.g., some examples presented by Joran
Friberg (1984) and the implicit overview in Damerow &
Englund 1987).

No doubt proto-Sumerian mathematics was created for the
purposes of practical administration in what economic anthro-
pology calls a »redistributive economy«; the replacement of
»natural« but unconnected units by a complex of mathemati-
cally connected metrologies corresponds to the needs of the
planning and accounting official rather than to those of the
immediate producer. But the complexity of the system ap-
pears to go beyond even bureaucratic needs. Even though it
is difficult to distinguish possible school tablets from indubi-
table administrative texts (only the latter contain officials’
names) it is thus a fair assumption that the immediate root of
the reorganization of a bundle of arithmetical techniques as
coherent mathematics was the teaching in the temple school
(this is argued more closely in Heyrup 1980: 14-17).

The early administration seems not to have distinguished
bureaucratic from other priestly functions, and nothing in the
mathematical substance distinguishes possible school exercises
from other calculating texts. Only around the mid-third mil-
lennium is the term for »scribe« (dub-sar) found in the
sources; at this time we also encounter non-bureaucratic use
of the professional tools of the scribes: Literary texts and
mathematical exercises beyond the context of daily admini-
stration, the latter dealing, e.g., with the division of extremely



large numbers by »irregular« divisors like 7 and 33 (a theme
which dominates the small group of mid-third millennjum
mathematical exercises from Suruppak and Ebla—see Friberg
(1986: 16-22) and Heyrup (1982). Even though such problems
will have played no significant role in practical administration
they were evidently a central concern for a scribal profession
testing its own intellectual abilities.

The trend toward increasing regularization continued
throughout the third millennium, and was brought to fruition
in Ur IIT (21st century B.C.) (see Powell 1976). Early in the Ur
III period an administrative reform was implemented which
made extensive use of systematic and extremely meticulous
book-keeping. It seems probable that it was for use in this
context that the sexagesimal place value system was created
(see NUMBERS AND COUNTING). Mathematical school
exercises pointing beyond the administrative domain have not
been found, and from parallels in other cultural domains it
seems to be a reasonable assumption that the centralized state
had drained the sources for scribal autonomy and thus for
further development of non-utilitarian mathematics.

Non-utilitarian mathematics was, on the other hand, cen-
tral to Old Babylonian mathematics, which is well document-
ed in the sources (1900 to 1600 B.C., mainly the second part
of this time-span). In this period, which was characterized by
a highly individualized economy (compared to other Bronze
Age cultures) and by an ideology emphasizing the individual
as a private person, the scribal school developed a curriculum
which stressed virtuosity beyond what was practically neces-
sary; the triumphs of Babylonian »pure« mathematics, not
least the »algebra«, appear to be a product of precisely this



Old Babylonian scribal school and scribal culture (see Heyrup
1985: 10-16).

Until Ur III, all mathematical texts had been in Sumerian;
even in Semitic-speaking Ebla, Sumerian mathematics was
taken over in the original language. Old Babylonian mathe-
matics, on the contrary, was written in Akkadian—supple-
mentary evidence that it represents a new genre and a break
with the (plausibly more purely utilitarian) Ur Il-tradition.
Truly, quite a few texts are written predominantly by means
of logograms of Sumerian descent; grammatical analysis
shows, however, that all but a handful of these word signs
are simply elliptic representations of Akkadian words and
sentences.

Many mathematical tablets from the Old Babylonian pe-
riod onwards are compilations, containing a variety of prob-
lems. Often, utilitarian and »pure« problems are found to-
gether; but mathematical and non-mathematical matters are
not treated in the same texts. Obviously, Old Babylonian
mathematics was not divided into fully distinct disciplines; on
the other hand, mathematics as a whole was an autonomous
concern—perhaps even (in the form of engineering, surveying
and accounting or as a teacher’s specialty) a distinct vocation.

In 1600 B.C., the Kassite conquest put an end to the Old
Babylonian social order, to the age-old scribal school, to the
characteristic Old Babylonian scribal ideology—and at the
same occasion to the characteristic form of Old Babylonian
mathematics. Scribal training was from now on taken care of
by scribal »families« as apprenticeship; to a certain degree,
mathematics came to be mixed up with other subjects on the
same tablets, having lost its disciplinary autonomy; and the



»mathematician« would from now on identify himself in the
colophons of tablets, e.g., as »exorcist« (@ipu) or »priest«
{sangit).

In the first centuries after the Kassite conquest, mathe-
matical texts are even virtually non-existent; a few Late Baby-
lonian mathematical tablets have been discovered recently
(one of them will appear in Friberg & Hunger, forthcoming).
In the Seleucid era, the development of computational astro-
nomy (starting already under the Achaemenids) gave rise to a
renaissance of numerical computation and, as a sequel, of
some of the old »pure« problems.

As already stated, Babylonian »mathematics« spells »com-
putation«. In intermediate calculations, it made use of the
sexagesimal place value system (see NUMBERS AND
COUNTING). The use of this system, and the conversion of
metrological values into »pure numbers« (and reversely, after
a result was found) presupposed extensive use of mathema-
tical, metrological, and technical tables. The first group en-
compasses tables of multiplication and of reciprocals (the
division mfn was carried out as a multiplication m-'/,); tables
of squares and square roots, and of cubes and cube roots; of
the root n of n’+n’; and even quite a few tables of successive
powers of a number. The second group contain tabulated
conversions of metrological values into sexagesimal multiples
of the basic unit (corresponding to this list for classical Eng-
lish currency: »1 s. = 0.05 [viz., £]; 2 s. = 0.1; 3 5. = 0.15; etc.);
technical tables, finally, contain »fixed factors« to be used in
technical computation (the ratio between the squared diameter
and the area of a circle; the quantity of bricks to be carried
by one worker over a given distance in one day; etc.).



The basic contents of Babylonian utilitarian mathematics
correspond to these tables: Multiplication tables, tables of
reciprocals and metrological tables were aids for calculation,
and the technical tables constituted the nexus between mathe-
matical computation and administrative and engineering
reality. Mathematics was taught in school because the scribes
should be able to calculate the areas of fields and the volume
of canals to be dug out and siege ramps to be built and, not
least, the manpower needed for that. All these calculations
were made pretty much as they would be made today, with
one important exception: The Babylonians had no concept of
quantifiable angle and hence nothing similar to trigonometry.
In practical mensuration, they would divide complicated fields
into practically right triangles, practically right trapeziums and
practically rectangular quadrangles (distinguishing, we might
say, a right from a wrong angle); they would then calculate as
we do, knowing that their results were not absolute truth but
apparently without any definite idea about the nature and
size of the errors. Presumably, they would see no decisive
difference between the imprecision of manpower calculations
and those of area determinations.

With these qualifications, the Babylonians knew the area of
a right triangle (in practical mensuration, they would divide
an obviously non-right triangle into two; in school exercises
they might use the semi-product of the two »best« sides). In
a Late Babylonian text we also find the calculation of a height
(by means of the »Pythagorean theorem« known already in
the Old Babylonian period). Similarly, they would find cor-
rectly the area of a rectangle and of a trapezium considered
»right«. The area of an irregular quadrangle might be found



by means of the »surveyors’ formula«, as average length
times average width. In practical mensuration, this technique
has probably only been used for fairly regular quadrangles,
where it gives acceptable results. In school texts it is also
used as a pretext for formulating algebraic problems in cases
where it is extremely unrealistic. The area of the circle was
normally found as '/, times the square of the circumference
{corresponding to n=3), and the circumference as thrice the
diameter. (One table of constants, however, has been assumed
to contain a correction factor corresponding to n=3'/5).

Prismatic and cylindrical volumes were calculated as base
times »height« (viz., a side approximately perpendicular to the
base). The volume of a truncated cone was found as that of a
cylinder with the average diameter (which is correct for a
cylinder, and only 3/, of the true value in the extreme case
where the cone is not truncated), and that of a truncated
pyramid in one text as height times average base (in another
text perhaps correctly). When in doubt, once again, the Baby-
lonians would opt for a (rather arbitrary) compromise instead
of giving up in the face of theoretical difficulties.

Prismatic and cylindrical volumes were probably derived
from a »naive« consideration of proportionality. The basic
unit of area was the sar, and the basic unit of volume 1 sar
times 1 cubit, also called a sar (to distinguish, modern histo-
rians speak of a »volume sar«). A prism with base A [sar]
and height 1 [cubit] would then have a volume of A [volume
sarl; if it were h cubits, whence h times as high, the volume
would have to be A:-h. A corresponding argument of propor-
tionality was apparently used when the height of a slope was
found and in similar cases. Certain terminological considera-
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tions suggest that even the area of rectangular figures was
originally thought of in this way.

A specifically Babylonian geometric problem-type is the
partition of areas. Initially, this may have been a practical
problem. No later than the 23d century B.C., however, it
turns up as a »pure« problem: Which is the length of the
transversal if a trapezium is bisected by a parallel transversal?
In the Old Babylonian period even more complex problems of
a similar kind are common, as are also a number of other
more or less complex and more or less artificial division
problems.

Many practical computations, of course, were not con-
cerned with geometric entities but with quantities of grain to
be levied as dues, with commercial exchange, etc. The techni-
ques used can be illustrated by paraphrasing an illustrative
problem: Two fields 1 and II are given, from one of which
4 gur (1 gur = 300 g4, 1 ga = 1 liter) of grain are to be levied
per bur (= 1800 sar), while the other yields a rent of 3 gur/
bur. The total yield and the difference between the two areas
is given. First everything is converted into sexagesimal mul-
tiples of the fundamental units sar and ga, in part through
calculation, in part by means of a metrological table. The
yield of that part of field I which exceeds field 1I is found.
The remainder of the yield must them come from the remain-
ing area A, which is composed from equal portions from field
I and field II. The yield of one average sar is found, this is
divided into the remaining yield, giving the remaining area,
etc.

The idea behind the last step seems to be the »single false
position« also known from other Babylonian texts: If the
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remaining area had been 1 ga it would consist of sar from
each field, which permits that the yield be found as (say)
p ga. In reality it is (say) N.p ga, and therefore the remaining
area must be N sar.

The procedure gives an impression (confirmed by many
other texts) of ad hoc improvisation, built on concrete thought
rather than standardized techniques when we get beyond the
most basic methods (conversions etc.). The same feature is
also found in Old Babylonian second-degree and higher
»algebra«, perhaps the most astonishing accomplishment of
the Babylonian mathematical tradition. The term is put in
quotes because it is not founded on symbols like post-Renais-
sance algebra, nor on words for unknown numbers as Medi-
eval Islamic and Italian algebra. Instead, it builds on »naive«
geometry: where modern algebra presents us with a problem
x’+x=A (which may be transformed into x-(x+1)=A), the Baby-
lonians would consider a geometric rectangle whose length is
known to exceed the width by 1, and whose area is known
to be A; where we transform the equation in order to isolate
x the Babylonjans would make corresponding cut-and-paste-
transformations of the rectangle. The way they did it would
be intuitively obvious, and they would provide no Euclidean
proof that the procedure was correct (hence the term »naive«).

The basic transformations, e.g. the cutting up of rectangles,
were made according to fixed schemes. But the Old Babylon-
ian scribes would also solve quite complex problems, and
when transforming them into simple problems they would
make use of a stock of customary tricks but of no standard
recipes—precisely as they did in arithmetical problems. When
used with intelligence (as it is in many texts), Old Babylonian
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»algebra« is therefore highly flexible: as long as we stick to
one or two variables and to the second degree almost as
flexible as (and in its sequence of operations very similar to)
modern symbolic algebra. Only in more complex cases (from
which the Babylonians did not abstain) do the disadvantages
of their techniques become manifest.

Three qualifications should be given to the statement that
Old Babylonian »algebra« was geometric. Firstly, the geome-
tric entities involved were not abstract but concrete, measur-
able line segments and areas. Secondly, the geometric founda-
tion did not prevent the technique from being applied to non-
geometric quantities; as we represent, e.g., an unknown
weight or an unknown price by a pure number x would the
Babylonian represent them by a line segment of unknown
(but numericaily knowable) length. Naive-geometric »algebra«
was an all-round way to find unknown quantities involved in
complex relations. (Truly, only artificial relations. Babylonian
scribal practice presented no problems of the second or higher
degree; these had to be and were constructed in order to allow
the display of scribal virtuosity).

Thirdly and finally, the statement is at cross-purposes with
established beliefs. The interpretation which Neugebauer
presented in the 1930es as a »first approximation« was at that
time accepted at face value, and it has since then been con-
ventional wisdom among historians of mathematics that
Babylonian »algebra« was an algebra of numbers dealt with
»thetorically« as in the Arabic and Latin Middle Ages. Only
recently has a detailed philological and comparative analysis
of the text corpus and its terminology at large demonstrated
that the numerical interpretation is in fact only a first ap-
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proximation. (The reasons for this and the details of the
reinterpretation are presented in Heyrup 1987).

A final important problem type is made up by numerical
investigations. Some of these are connected to the computa-
tion of reciprocals, and hence to the needs of common com-
putation. Others are inspired by the partition of the trapezium
mentioned above, and lead to indeterminate problems for
pairs or sets of numbers. The most famous of all such texts is
the tablet is Plimpton 322, a table making use of sets of

Pythagorean numbers (ie., numbers 4, b and c fulfilling the
condition @*+b*=c?).

Any mathematical corpus of knowledge is organized in a
way which reflects its purposes, the ways of thought in-
volved, and the underlying cognitive style. So was Babylonian
mathematics as we know it. A general characteristic is its
dominance by methods, not problems. At the first, utilitarian
level this betrays that we know Babylonian mathematics from
school texts which served to train future scribes in the me-
thods of their profession. For that purpose, problems had to
be constructed allowing the display of the methods to be
trained. In practical life, on the other hand, the problems to
be mastered were of course primary and the methods applied
for that purpose secondary.

If we go to the »pure« level, however, we find the same
primacy of methods, while Greek (and modern) pure mathe-
matics takes problems as their starting point and develop the
concepts and methods needed to surmount them. In this case,
the training of practitioners explains nothing, since the par-
ticular methods belonging at this level had no practical appli-
cation. Babylonian »pure« mathematics, however, had a pur-
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pose different from the scientific aim of Greek mathematics.
As explained above, its rationale was the display of profes-
sional virtuosity; this is also the explanation why it flourished
in the Old Babylonian era and disappeared from the archae-
ological horizon with the death of the scribal school.

Mathematical methods can be taught in two ways. One
may present the methods in abstract terms, as theory, event-
ually to be illustrated by examples—or one may train them
exclusively through paradigmatic examples. Nowadays, the
former way is supposed to be used at higher educational
levels, and the latter is reserved for the early stages of school.
This was different in Babylonian mathematics, where we
know of no case of formulated theory, and only of two or
three where a paradigmatic example is used as the basis for
sort of more general discussion of the method involved
(though precisely these texts suggest that oral teaching would
do so more often). The only case where rules are formulated
in the abstract, is a couple of texts from Greek-ruled Uruk
(Joran Friberg, unpublished).

This feature of Babylonian mathematics can be compared
to the make-up of Babylonian legal texts like the Codex
Hammurapi. »Hammurapi’'s Law« is no law-book in the
likeness of Roman Law. It is a collection of legal decisions
made by the King, but of course only put together because
the Royal decisions were supposed to serve as paradigms for
the judges of the realm. We may also compare with the
listing of hundreds of separate cases in Babylonian »omen
science«,

One could say that Babylonian thought was more concrete
and less inclined to abstraction than the modern mind. These
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terms, however, are used differently by a cognitive anthropo-
logist like Levi-Strauss (1972) in his distinction between »
savage« and modern mind. In other domains, Babylonian
thought may be »concrete« in a Levi-Straussian sense, con-
crete entities acting as classifiers and imparting thereby some
of their properties upon the class which they embody (as a
primitive society may suppose the members of an »arrow
clan« to be swifter than others). But already in the systemati-
zation of the omen literature is an underlying implicit ab-
straction visible in spite of its origin in magic thought (Larsen
1987), and at least Old Babylonian mathematics is still farther
removed from Levi-Straussian concreteness. It was not their
gencral mental make-up which prevented Old Babylonian
scribes from transforming their (already autonomous) mathe-
matics into abstract science, but rather a lack of motivation
for doing so: The sort of »pure mathematics« which they
created corresponded precisely to their socio-cultural needs, as
the later development of Greek philosophy corresponded to
that of the intellectually sophisticated stratum of the leisure
class.

This is perhaps less true for the post-Kassite scribal
priests, whose tablets might list together metrological conver-
sions and the sacred numbers of gods (Friberg, personal
communication concerning an unpublished tablet). Since early
times, indeed, the technical cunning of scribes had been
surrounded by sort of sacred aura. In the 22d century B.C.
King Gudea of Lagash claimed that he had designed the plan
of the temple, in the likeness of the scribal goddess »Nisaba,
who knows the essence of counting«. From the mid-third
millennium, »sacred numbers« were also associated with the
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gods, and numbers were used in writing according to the
rebus-principle (the very first instance known integrates the
two principles in a way reminding of Levi-Straussian »savage-
ness«}; the divine numbers went into the sacred calendar. In
the early first millennium (before the development of mathe-
matical astronomy), numbers were used cryptographically in a
few astrological omen texts; in certain other texts, 0o, num-
bers were used for »coding«, in a way which may explain
how the Assyrian King Sargon claimed the »number of his
name« to be 16283. All these phenomena are hardly to be
considered ingredients of Babylonian mathematics; but they
reflect the existence and importance of mathematical activities,
and do so most strongly in periods when mathematics was
no autonomous endeavour (they are significantly absent from
the sources for Old Babylonian scribal school mathematics);

like marginal phenomena in general, they owe their existence
to the core.

The main source collections for Old Babylonian and Seleu-
cid mathematics have been published by Neugebauer (1935),
Thureau-Dangin (1938), Neugebauer and Sachs (1945) and
Bruins & Rutten (1961). The best overviews of the contents of
Babylonian mathematics as known until 1975 are the ones by
Vogel (1959; in German) and, especially, Vaiman (1961; in
Russian, but a German translation is underway). A more
popular introduction is due to van der Waerden (1962: 37-45,
62-81). An overview of the various interpretations of the
Pythagorean friples of Plimpton 322 has been given by Fri-
berg (1981). The first survey of third-millennium mathematics
was published by Powell in 1976; recent discoveries of im-
portance are presented by Damerow & Englund (1987); Eng-
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lund (1988); Friberg and Hunger (forthcoming). A global
overview including all recent discoveries is going to be pub-
lished by Friberg (forthcoming), who has also written an
excellent selective bibliography (in Dauben 1985: 37-51).

D. Syrian descendants

The Israelites will have encountered Babylonian mathematics
during the exile, but only in the late phase when it was
mixed up with Babylonian religion and divination and pre-
sumably already for that reason a suspicious subject. But long
before that they will have been confronted with its de-
scendants »at home«, in late second and early first millen-
njum Syria.

After the mid-second millennium, the Canaanite city states
of Syria were politically dominated by  Egypt.
Characteristically, however, the Canaanite kinglets and Pharao
corresponded in Akkadian; Ugarit, the most prominent Ca-
naanite state, developed its alphabetic script on the basis of
cuneiform, and Ugaritic scribes were—ijust like their Hittite
and Assyrian colleagues-~taught according to the Sumero-
Babylonian tradition (see Krecher 1969). The only traces of
mathematics in their curriculum, however, consists in metro-
logical lists. We may reasonable deduce that only the utilita-
rian stratum of Babylonian mathematics was adopted, while
the »pure« superstructure was too much dependent on the
particular Old Babylonian socio-cultural situation to be inter-
esting in the Canaanite cultural outposts. The same will in all
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probability have been the case in early Israel, whose vista of
Babylonian culture was much more indirect, somewhat later
and (since it was largely mediated by the Canaanites) marked
by distrust.

The closest point of contact will not have been the scribal
but rather the ill-documented master builders’ or architect’s
tradition. We are told in I Kings 5-7 and II Chronicles 2-3 that
Solomon called in Phenician masters for the building of the
Temple, and it seems indeed that they also followed Canaan-
ite models (CAH 1I(2), 149). We have no direct testimony of
the geometric lore of these masters; but an Islamic 9th cen-
tury mensuration text by one Abu Bakr shows an astonishing
degree of continuity with the Old Babylonian »algebra«, not
only in mathematical substance and methods but down to the
rhetorical and grammatical structure, and a story told by the
late 10th century mathematician Abi'l-Wafa® suggests that the
carriers of the continuous tradition be »artisans« (sunmnac), ie.,
master builders and the like (see Heyrup 1986). There are
even reasons to believe that the starting point for the Old
Babylonian scribal »algebra«-tradition was a pre-existent
artisans’ tradition, although the evidence is not compelling,
and the artisans may instead have been inspired by an ori-
ginally scribal scheme.

Irrespective of its original relation to the Old Babylonian
scribal tradition, the same artisans’ tradition seems to have
permeated then and later the whole Middle East; one Biblical
reflection is well known: The »molten sea« set up by Solomon
in the Temple is claimed (1 Kings 7: 23-24 and 2 Chronicles 4:
2) to posses a diameter of 10 cubits and a corresponding
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circumference of 30 cubits, corresponding to the above-men-
tioned »Babylonian m« of 3.

E. Egyptian mathematics

The other great Bronze Age mathematical tradition whose
echoes can be traced in the Bible and, more 3istinct1y, in the
archeological remains of the Divided Kingdom, is that of
Egypt. Though in many ways parallel to the Babylonian
tradition, the two were obviously independent.

Like its counterpart, »Egyptian mathematics« is a scribal
endeavour which should rather be labeled »computation«. It
arose in connection with administrative needs in the early
state; Genesis 41 provides an Israelite perspective on that
particularity of Egyptian social life (compared to that of pre-
Salomonic Israel) which called for extensive computation:
Egyptian economy was, like that of the early Sumerian States,
a redistributive system (the Biblical descriptions of Solomon’s
Temple building contain redistributive features, too). Cor-
respondingly, the calculation of rations and of provision for
workers are central topics in Egyptian mathematical texts, as
are also the calculation of areas and of the volume of grana-
ries.

It is not possible to distinguish a particular »pure« level in
Egyptian mathematics. In that respect the two traditions
differ. This is not to say, however, that Egyptian mathematics
was a collection of recipes, nor (as we shall see below) that
everything was always made in the way which suited practi-
cal applications best. There is, moreover, textual evidence that
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the scribes themselves saw their mathematical cunning as a
high point of knowledge, as »rules for enquiring into nature,
and for knowing all that exists, [every]l mystery, .. every
secret«—as Peet (1923: 33) translates the introductory passage
of the Rhind Mathematical Papyrus (RMP in the following).

There are much fewer sources for the history of Egyptian
mathematics than in the Babylonian case, and their chronolo-
gical distribution is no less uneven. It is therefore only pos-
sible to give a very general overview of the historical devel-
opment. The applicatiron of measures and the development of
the metrological system began no later than the outgoing
fourth millennium. Measures of capacity and of areas occur in
texts from the third to fourth dynasties (c. 27th century B.C.).
Already at the beginning of the first dynasty (late fourth
millennium B.C.) the system of linear measures was used in
the canon governing the pictorial representation of human
beings (Iversen 1975: 60-66); and from an early date it must
also have been used in architectural design.

No direct evidence for third millennium calculational
techniques is available. From the way measurements and
results are expressed, however, one can deduce that the later
unit fraction system (see below) was not yet existent as a
coherent system but only as a way to express ad-hoc-expan-
sions of the systems of metrological subdivisions. We also
know that the scribal calculators were taught as apprentices,
in immediate practice, and not in a school (see Brunner 1957;
11-15).

All this was to change in the Middle Kingdom, at the
beginning of the second millennium. Scribal education from
now on took place in a school, and many texts are known
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which reflect the way professional self-esteem was inculcated
in the future scribes. The introduction to the RMP quoted
above shows that even mathematics served this purpose, just
as in the Old Babylonian school.

A reorganization of the repertoir of fractions into a co-
herent unit fraction system appears to have taken place at
this time. The old metrological subdivisions were conserved,
but they were now supplemented by a systematic notation for
abstract numerical fractions. Its basic elements were the unit
fractions '/, /3, /4 .., '/u ... together with the complement
?/; Any fraction had to be expressed as a sum of such unit
fractions in decreasing order (none of them identical). The
Egyptian scribe would thus regard */; not as a number but as
a problem, whose solution was '/,+'/,;. For practical uses,
these expressions were less handy than metrological sub-
divisions. For teaching purposes, however, they were better
suited than subdivisions because everything could be ex-
pressed precisely; we may also assume that they played a
role similar to that of Old Babylonian higher algebra, because
the manipulation of unit factions required the same kind of
mathematical virtuosity.

Once the unit fraction system had been introduced into
the school curriculum, the scribes began using it in practical
life too. At times the resulting contrast between gross, un-
noticed errors and the meticulous precision of the notation
may strike us; it is understandable, however, if we see the
use of the system as sort of art pour 'art, as an expression of
professional identity, and not as a merely utilitarian device.

Our main sources for the over-all contents and the techni-
ques of Egyptian mathematics are two large papyri copied
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from Middle Kingdom originals, the Rhind Mathematical
Papyrus (RMP) and the Moscow Mathematical Papyrus
(MMP). The former is a fairly systematic handbook containing
a wealth of intermediate calculations, while the latter is rather
disorderly and apparently a students workbook. Especially the
RMP is therefore excellent as a survey of Middle Kingdom
Egyptian mathematics, and not very much is supplied by
other sources beyond confirmation and clarification of du-
bious issues.

Almost a third of the RMP is devoted to the computation
of 2/, (n=3, 5, ... 101) as a sum of unit fractions. This table is
a prerequisite for all later calculations, because of the distinc-
tive way in which the Egyptians performed multiplication and
division: Multiplying a number A by 29 the scribe would find
by successive doublings 24, 4A, 8A, and then 10A and, by
another doubling, 204, and finally add A, 8A and 20A to find
the result . That is, the whole procedure was founded on
successive doublings and decuplings. If A contained fractions
with an odd denominator, the doublings would involve use
of the 2/n-table; so, if A='/s, 2A="/,+'/,, 4A=*/ 3"/ 1+ /a0,
Dividing (as in RMP, problem 33) the number 37 by B=
14%/3+7/,#'/;, the scribe would calculate successively 2B, 4B,
8B and 16B, seeing that 16B fills out 37 apart from a remain-
der which is 2 two times an implicit sub-unit '/y; since B is
97 times this same sub-unit, the remainder is twice '/4,B, and
the full result of the division is 16+’/, ie. in the required
system, 16+'/ s+ / ot/ 176.

Simple multiplications and divisions might give the im-
pression that Egyptian mathematics was purely additive. As
shown, however, by the latter part of the division, as by

23



many problem solutions making use of »false positions« (cf.
above) and of free manipulation of appropriate sub-units, the
Egyptian scribes had a perfect though implicit grasp of mulfi-
plicative relations and proportionality. Otherwise, indeed, they
would have been unable to take care of their practical tasks.

A substantial part of the RMP aims at training the solu-
tion of problems arising through the use of the unit fraction
system, especially in connection with problems of division
and proportionality. Some such problems deal with abstract
numbers, others make the connection to daily practice clear,
e.g., when loaves are distributed to workers and foremen
(with double rations for the latter), when the connection
between unit fractions and various metrological systems are
dealt with, or when the quality of beer and the size of loaves
come in.

Another dominant interest is in geometrical computation.
As in Mesopotamia, area measures are mathematically con-
nected to linear measures, but even more clearly conceptual-
ized as the product of a fixed standard width and a variable
length. As in Babylonia, the concept of a quantifiable angle is
absent, and triangular areas were found as the product of
two sides containing a »practically right« angle. Trapeziums
and trapezoids are absent from the sources, but the area of a
circle is found as the square on D-'/;D (D being the dia-
meter), corresponding to n =*/4 = 3.16..—much better than
the normal Babylonian rule.

Prismatic and cylindrical volumes were of course found
without difficulty; it is more astonishing that the volume of a
truncated pyramid was found correctly (MMFP, Problem 14). It
is disputed whether a »basket« in MMP (Problem 10) is
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meant to be a hemisphere. If it is, its surface is found ac-
curately (given the above-mentioned »n«); if a hemisphere is
not meant, the computation suggests that the Egyptians would
find the circular circumference (correctly) as the quadruple
area of the circle divided by the diameter, and the area of
semicylinder as the product of the curved and the straight
side.

Geometry and geometrical computations were also used in
Egyptian architecture. Architectural and building problems,
however, are not very conspicuous in the mathematical texts,
which in fact only contain two types: Firstly the calculation of
the slope of pyramids; according to the RMP, where it is
dealt with five times, this must have been a prominent prob-
lem type. Secondly the volume of a truncated pyramid, which
is only known from MMP.

It is a recurrent claim that the Egyptians knew the Pytha-
gorean theorem and used it in architectural construction. If
should be observed, however, that the claim is not supported
by any positive evidence. Many buildings, it is true, contain
rectangles whose sides are to each other as 3 to 4; but no-
thing suggests that the Egyptians knew or were interested in
the length of the diagonal.

Related to the use of geometry in architecture is the use in
the pictorial arts of square grids and fixed proportions linked
to the system of linear measures. This »canonical system« is
one of the main factors creating the unique tenor of Egyptian
art and upholding its stable character for several millennia,
until a metrological reform in the 7th century B.C. made it
instead a factor of change.
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Anything similar to Babylonian second-degree algebra was
absent from Egyptian mathematics. The closest we come are
two types of geometric problems. One is found repeatedly in
the MMP: In a (»practically«) right triangle, the area and the
ratio between the sides containing the right angle are given;
this is solved by means of a consideration of proportionality.
The other comes from the Berlin Papyrus 6619 and can be
translated into modern symbols as x’+y’=100, y=’f;-x; the
solution is obtained by means of a false position (»always
take a square of side 1; then the other is '/,+'/«).

These problems are atypical by being of the second de-
gree. In fact, everything else related to algebra is of the first
degree. But the techniques made use of are typical also of
those first-degree problems which we would be tempted to
solve algebraically. The »false position«, in particular, may be
regarded as a »poor man’'s x«. The point in using an x is, in
fact, that you can manipulate with the unknown quantity as
if it were a known number; taking preliminarily the unknown
to be 1 (or any other convenient number) gives you the same
possibility, as long as you stick to »homogeneous problems«
{i.e., problems which can be reduced to the type x"=A).

The above description does not exhaust the contents of
Egyptian mathematics, but it covers the principal features as
far as we know them, and does so until the Assyrian domi-
nation. Then (modest) change set in: a number of Demotic
mathematical papyri from the Hellenistic and Roman periods
show, indeed, that material from the Babylonian or Middle
Eastern practitioners’ tradition had diffused into Egypt during
the first millennium B.C. (perhaps carried by Persian military
or fiscal surveyors?). Most conspicuous is an adoption of the
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»Babylonian m«.

Egyptian mathematical texts are problem collections, just
like the Babylonian ones. The closest we come to general
descriptions of methods is a phrase like the »always take a
square of side 1« quoted above. But even in Egypt the prob-
lems were meant to be paradigmatic—as told in the introduc-
tion to the RMP they were regarded as »rules«. In the texts,
methods are thus primary and the problems secondary. In
scribal professional practice, of course, the problems of real
practice were primary, and since no clearly distinguishable
level of non-utilitarian calculation developed in Egypt, the
problems found in the texts are either real-life-problems or
structurally similar to problems encountered in »real life«—
including problems arising from the idiosyncratic multiplica-
tion and division algorithms and the unit fraction system.
Globaily regarded, the structure of Egyptian mathematics was
thus determined by its practical duties and its characteristic
methods and techniques, in mutual interaction and on an
equal footing.

As in Babylonia, the mode of thought expressed in the
mathematical texts is concrete. There is, however, one im-
portant difference. Babylonian mathematics, as we have seen,
tended to represent other unknown entities by measurable
geometric entities; the Egyptians, on the other hand, tended
to represent everything by pure numbers (at least from the
Middle Kingdom onward). Even though Babylonian mathe-
matics is much more sophisticated in content than its Egypt-
ian counterpart, the latter can thus be claimed to have gone
farther in mathematical abstraction.

27



Old Babylonian mathematics, as we saw, appears to be
purely secular. In later times, on the other hand, the border-
line between mathematics, divination and religion seemed to
be somewhat blurred. In Egypt, too, numeration and numbers
played a religious-mystical role; in the Book of Dead, the dece-
ased king is required to count his fingers (Neugebauer 1969:
9). But in spite of the »mysteries« and »secrets« spoken of in
the RMP-introduction, the mathematical texts themselves
appear to be devoid of religious and occult connotations.

This is of course in disagreement with the wide-spread
speculations on »pyramid mysticism«. The pyramidological
arguments build (at best) on a variety of numerical ratios
purportedly found in the Cheops pyramid and claimed to
reflect a precise knowledge of n and the »golden section«.
Two flaws, however, characterize these assertions (see Robins
& Shute 1985). Firstly, precise measurement of the (originall)
dimensions of the worn-down pyramid is difficult, and in
order to obtain their favorite ratios the pyramidologists avoid
using the best measurements. Secondly, nothing in the mathe-
matical texts suggests the slightest interest in the numbers
claimed to be embodied in the pyramids; so, e.g., the Egypt-
ians did not use a number corresponding to © but instead an
approximation (viz. ¢/,) to Wn/4), which is quite another entity
though of course just as mathematically serviceable. On the
other hand, the best measurements of pyramidal slopes cor-
respond precisely to the way pyramidal slopes are indicated
in the RMP, and come out mostly as 5 palms 1 finger or 5
palms 2 fingers horizontally per vertical cubit (the former
value being the favourite value in the RMP).
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Both RMP and MMP exist in excellent editions. RMP was
edited by Peet in 1923 with a hieroglyphic transcription (the
original is hieratic), english translation and commentary, and
again in 1927-29 by Chace et al, with free translation and
commentary (vol. I), reproduction, hieroglyphic transcription,
transliteration and literal translation (vol. II). MMP was edited
by Struve in 1930 with reproduction, hieroglyphic transcript-
ion, German translation and commentary. A new edition of
RMP intended for interested laymen has been published in
1987 by Robins & Shute (not yet seen by the present author).
A collection of Demotic mathematical papyri was published
(with transliteration and English translation and discussion of
terminological and technical continuity and change since
Middle Kingdom mathematics) by Parker in 1972.

Excellent surveys of Egyptian mathematics have been
written by Vogel (1958; in German) and Gillings (1972). The
latter work is inspiring but should be used with some cau-
tion, since the author often shows what imagined sources
might have looked like, and does so in the most exquisite and
convincing hieratic hand. Both surveys include references to
other works and to publications of minor sources. A com-
prehensive bibliography of works on Egyptian mathematics
up to 1929 compiled by Archibald is included in (Chace et al
1927-29); a recent selective bibliography will be found in
Dauben (1985: 29-37).

A fictional satirical letter much beloved in the school and
reflecting the importance of mathematical computation in
scribal occupations has been published by Gardiner (1911).

The »canonical system« of the pictorial arts was described
by Iversen (1975). Badawy’s exposition of Egyptian architec-
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tural design (1965) should be used with circumspection.

The full range of Egyptian mathematics was probably
never diffused to the Palestinian area. From the time when
the Israelite Kingdoms began approaching a redistributive
economy, however, and when the royal scribes came in need
of computational tools, epigraphic evidence shows that they
took over the Egyptian hieratic numbers (survey of the main
evidence in Ifrah 1986: 271), These, however, are more com-
plex than the hieroglyphic numbers which they represent in
shorthand, and one can hardly imagine that they were adopt-
ed in isolation: They must have been imported together with
at least part of that wider mathematical culture which they
served. In all probability, the administration in the Divided
Kingdom will thus have been effected by means of Egyptian
routines and techniques.

E Greek and Hellenistic mathematics
and its aftermath

The third mathematical tradition of some importance in the
Biblical context was that of Ancient Greece and of the Hellen-
istic world.

Early classical Greece was the cradle of »philosophy«, ie.,
of intellectual and scientific interest radically separated from
direct social utility. While the non-utilitarian stratum of Baby-
lonian (and, as far as it existed, Egyptian) mathematics had to
look like a tool for scribal practice in order to serve the socio-
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psychological maintenance of scribal identity, Greek mathe-
matics had to look »pure«, ie., unbound by social utility.
Scribal work, indeed, had become a lowly occupation in
Classical Antiquity, and had stopped being intellectually
productive.

The starting point was apparently intellectual curiosity vis-
a-vis the techniques of surveyors and accountants: Why did
these techniques work? At the end of the road we find Eu-
clid’s Elements, Archimedes’ computations of circle, sphere
and paraboloid, and Apollonios’ Conics, together with a num-
ber of minor astronomical works disguised as pure spherical
geometry, and Ptolemy’s monumental Almagest. All of this
was fairly irrelevant to both Jewish and Christian culture
until the High Middle Ages, and there is no reason to discuss
it further here.

More relevant than the majestic cedar forest is the mathe-
matical undergrowth. Several classes of vegetation can be
distinguished.

First there is the alphabetic number system (see NUMBERS
AND COUNTING). It has been much disputed who were the
first to use the letters of the alphabet for numbers, and the
question is not settled definitively. The Greeks did so at least
from the late third century B.C. onwards. So did also the
Jews and other Semitic peoples; no evidence for this, how-
ever, can be dated before the first century AD. and until
then another system was in use. For this (and various other)
reasons it is thus the most reasonable assumption that the
alphabetic number system was invented by the Greeks and
then taken over by others in the Hellenistic world (see the
discussion in Ifrah 1986: 286-302).
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Originally, this was just a clever notation for numbers;
soon, however, the possibility to read any alphabetic letter as
a number was exploited in gematria, the substitution of the
sum of constituent numbers for a word. An early and most
famous example is found in Apecalypse 13: 18, the number of
the beast being »the number of a man; and the number is
666«. (This reminds of the Assyrian King Sargon’s claim
concerning the »number of his name«, but the resemblance is
probably accidental).

Greater importance was the technique to acquire in Medi-
eval and Renaissance exegesis, viz. in the kabala, where it was
used extensively for symbolic identification of words with the

same gematric number (see the description of both Jewish
and Christian cabala in Blau 1944).

Next there is the Pythagorean tradition. The Pythagorean
brotherhood had formed around the late sixth century B.C.
around Pythagoras, who was (pace an abundance of neo-
Pythagorean and modern authors) in all probability no »scien-
tist« or »mathematician« but rather a shamanistic figure, as
has been argued by Burkert (1972). Plausibly, however, nu-
merology (on a traditional, »folk« level) was a major ingre-
dient in his doctrine. Over the fifth century, then, and concur-
rently with the development of scientific mathematics, the
Pythagorean brotherhood (or one branch of it) appears to
have extended the numerological interest, first by adopting an
existing number-theoretical interest (the »doctrine of odd and
even«} and extending it, and then by taking up also theoreti-
cal geometry. (A satisfactory discussion of the relative chro-
nology of »philosophical« and »Pythagorean« mathematical
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achievements would lead too far; but see Knorr (1975: passim)
and Heyrup (1985: 19-21)).

In the fourth century B.C., the Pythagorean movement
disappears as a scientific school; throughout Antiquity, how-
ever, the basic Pythagorean arithmetical doctrine remains
important. It is, in fact, a doctrine rather than a theory. The
fundamental constituents are the canon of figurate numbers
and the classification of numerical proportions. The doctrine
was put forth through examples and without proofs. The
discoveries made by late Ancient neo-Pythagorean authors (if
indeed they made them) were made empirically.

Figurate numbers are the numbers which arise when
points are arranged in certain regular patterns. We still know
the square numbers 1-1, 2-2, 3-3, etc., and the prime numbers
which can only be arranged in a single row and in no other
rectangular pattern. A third species are the triangular numbers
1, 142, 14243, 1+2+3+4, etc., and still others exist (rectangular
numbers of the form n.(n+l); pentagonal numbers
1+2+...+(n-1)+1% etc.).

The doctrine of proportions was coupled to the theory of
musical harmony. An octave corresponds to a ratio 2:1 (in
frequency, which the Ancients did not know, and as string
lengths on a monochord, which they knew); a fifth corre-
sponds to the ratio 3:2, a fourth to 4:3, etc. All these are
superparticular ratios, ie. they have the form (n+1)mn. Other
classes are defined in similar ways.

Neo-Pythagorean arithmetic was considered indispensable
for the understanding of (especially Platonic) philosophy, and
was hence a prolegomenon in the basic late Ancient philo-
sophical curriculum. In this way, it was spread to much
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wider circles than high-level mathematics. One place in ge-
neral culture which was influenced by the Pythagorean doc-
trine was poetry. A number of texts (so Vergil's Bucolica and
Georgica) are constructed around simple proportions (identity
and superparticulars) and prime numbers; these mathematical
relations turn up in the counting of lines, words, and letters—
especially vowels.

Interestingly, this same technique appears to have been
used in the Gospel According to Luke. As it is well known, the
Sermon on the Mount and the Lord’s Prayer are rendered
differently by Matthew and Luke; according to the linguist
Jens Juhl Jensen (1986), who has compared the Gospel text
with the principles used in »Pythagorean« poetry from the
same epoch, Luke’s version (but not Maithew’s) follows
Pythagorean principles. It is of some exegetical interest that
part of the difference between the two evangelists may be the
necessary difference between translation into prose and into
poetry governed by strict rules.

Neo-Pythagorean doctrines were also important in Ancient
and Medieval exegesis, in particular the figurate numbers. An
important character in this connection is Philo of Alexandria,
and a good example his discussion of the measures of Noah's
Ark (edited by Paramelle (1984: 148-163) with a numerological
commentary by Sesiano (205-209)). The length of 300 [cubits]
represents the universe, because it is the 24th friangular
number, 24 being the number of hours in a day and the
number of letters in the Greek alphabet, 24=2°+2%+2%, and the
triad 1+1+1 thus occurring doubly in 24 representing equality
(identity of beginning, middle and end), .. . Furthermore,
300=(1+3+...+23)+(2+4+...+24)=144+156, 144 being 12! and thus
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including (as dot patterns) the first 12 squares, while 156=
12-13 »includes« (in the same sense) the first 12 rectangular
numbers. So, 300 unites in itself equality and inequality,
whereby it is similar to and represents the universe. Similar
astute observations are made on the width and the height of
the Ark.

Philo’s numerology was taken over by both Ambrosius
and Augustine (who as a teacher had taught neo-Pythagorean
arithmetic in his own youth). But Christian authors until the
early Renaissance would also make their own numerological
exegesis. A late and beautiful example is Nicholas Cusanus's
mathematical »proof« that Trinity could not possibly have
been Quaternity (De docta ignorantia 1, xx; ed. Wilpert 1967 I,
59-60): maximal and minimal entities coincide (a fundamental
principle in Cusanus’ philosophy); in surveying, the necessary
reduction to minimal entities leads to triangulation; ergo ... .

»Scientific« Greek mathematics only affected Medieval
exegesis on one point. As mentioned above, the »Babylonian
fi« is accepted in the Bible. This became a problem to Medi-
eval Jewish authors, who devised the explanation that the
thread measuring the diameter of the molten sea ran around
the inner surface (so explained in Misnat ha-Middot V, 3—ed.,
tr. Gandz 1932; in fact, the same idea has been proposed not
so long ago by the pyramidologist Berriman (1953: 97)).

Summing up the influence of Greek and Hellenistic mathe-
matics we may conlude that it only affected the Biblical text
itself in a few and not very central points. As Judaism and
(later) Christianity became integrated into general Hellenistic
culture, however, neo-Pythagoreanism and elementary Ar-
chimedean surveying had become an indisputable (and non-
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coniroversial) part of the intellectual baggage of the Fathers
and other commentators, and they would see no problem is
using it as a tool for their exegetical efforts. Nor would their
disciples in the Middle Ages and the early Renaissance.
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