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The present essay traces the career of a particular mathematical problem-—to
find the side of a square from the sum of its four sides and the area—from its
first appearance in an Old Babylonian text until it surfaces for the last time in
the same unmistakeable form during the Renaissance in Luca Pacioli's and Pedro
Nunez' works. The problem turns out to belong to a non-scholarly tradition
carried by practical geometers, together with other simple quasi-algebraic
»recrational« problems dealing with the sides, diagonals and areas of squares
and rectangles. This »mensuration algebra« was absorbed into and interacted
with a sequence of literate mathematical cultures: the Old Babylonian scribal
tradition, early Greek »metric« geometry, Islamic al-jabr. The aim of the article
is to explore how these interactions inform us about the early history of algebraic
thinking.

As far as possible I have referred for detailed documentation to eariier
publications, in particular to my own analysis of Babylonian »algebra« and its
reflections in later traditions. In cases where documentation is not discussed in
depth elsewhere I have still tried to be concise, but none the less felt obliged
to present at least an outline of the full argument.

1. An Old Babylonian »square problem«

A famous cuneiform mathematical text (BM 13901"} contains as its N° 23
the following problem

In a surface, the floJu[r fronts and the surflace [ have accumulated, 417407,
4, the floulr fronts, yolu inscrlibe. Theigi of 4is 15"

157 to 41°40°" [you rlaise: 10°25” you inscribe.

1, the projection, you append: 1°10°25"" makes 1°5° equilateral.

1, the projection, which you have appended, you tear out: 53” to two

you repeat: 10° nind an confronts itself.

The text was written in the Old Babylonian period, i.e. between 2000 BC and
1600 BC, and probably during the eighteenth century BC. Originally, it appears
to have contained 24 problems of »algebraic« character dealing with one or more
squares and their sides (in its present state, the tablet is damaged, though most

' Ed. [MKT Ii, 1-5]. The ranslation is mine, as are all translations of sources into English in the
following.



problems can be safely reconstructed).

The translation is meant to render the terminology as precisely as possible,
and follows principles which 1 have developed for the translation of Babylonian
»algebra«?, In the present context, only a few words’ explanation can be made.
Numbers, first of all, are rendered in the »degree-minute-second« notation, which

means that 1°10725°" is to be read 1+%+ L

{one should remember that the

original text contains no indicators of absolute order of magnitude, merely the
sequence 1 10 25). »Accumulating« (Akkadian kamarum™) is a genuine addition
of numbers, where both addends loose their identity and merge into a sum; as
here, it may be used for additions with no concrete interpretation (length plus
area). »Appending« {wasdbum), on the other hand, is a concrete additive
operation, where one entity (one may think as example of one’s own bank
account) is augmented by another (the interests of the year-—actually labelled
»the appended« in Akkadian) without changing its identity (it remains my
account). »Appending« possesses an inverse operation »tearing out« (nasaljum);
the other (»comparative«) subtractive operation »a exceeds b by x« (a eli b x iter)
is only used for concretely meaningful comparisons, and is thus no real inverse
of »accumulating«.

The »igi« of a number n is its reciprocal as listed in a table of reciprocals.
When having to divide by #, the Babylonians would multiply by igi #, using
an operation labelled »raising« (nasim)—probably best to be explained as
»calculation [of something] by means of multiplication«; other multiplicative
operations are »a steps of b« (b a-ra a), designating the multiplication of
number by number in a multiplication table; »repeating to n« (ina n &sgpum),
which is indeed an n-fold concrete repetition; and »making @ and b hold each
other« (the most plausible reading of a i b sutakalum), which means arranging
the lines [with lenghts] a and b as sides of a rectangle [whose area will then be
ab). A variant of the latter operation is »making a confront itself« (a Sutamfurum),

? See [Hayrup 1990:45-69), where the principies of translation as well as the single operations and
terms are discussed in full. In this work | also explain why the detailed investigation of the texts
and their terminology invalidates the received interpretation of the Babylonian technique as a
numerical atgebra, and suggests a reading as »naive« cut-and-paste geometry.

? Most of our text is written in Akkadian, the spoken language of the Old Babylonian period.
Akkadian terms are transcribed in italics. The present text contains only few Sumerian terms
(indicated by spaced writing}, most of which are genuine loan words, and which go back to the
mathematics of the Sumerian epoch (before 2000 BC). Other texts (mathematical as well as non-
mathermatical) may contain many more Sumerian terms, but as a rule these functioned as word signs
for Akkadian speech.



which means making 4 the side of a
square. The reverse of the latter opera-
tion is to find out what »makes [the
area) B equilateral« (B ib-sig), ies i
what length a will be the side if B is
formed as a square (arithmetically:a = :
VB). The »projection« (wasftum) 1, | - e
finally, is a line segment of length 1
which, projecting orthogonally from
another line segment {with the length]
a, transforms it into a rectangie [with
the area] 1z = a. Lengths are measur-
edintheunitnindan (Inindan =
6 m) and areas in sar (= nindan?

With this is mind, we can under-
stand the text. The first line tells that we have to do with a surface {details in
the grammar see indeed to suggest 4 field). The sum of the measuring numbers
for the four sides (not just four times the side) and the area is 41°40”". In modern
notation, and if 5 is the length of the side, this corresponds to the equation Fds =
41°40", which is the reason that this and similar Babylonian problems are
generally regarded as »algebra«. The second line prepares a division by 4, which
takes place in line 3; in our equation, this division would express itself in a
transformation into (*/,)*+1s = 41°40°"/4 = 10°25"". The addition of 1 in line 4
would tell us that (/;+21¢/,)+1 = 1°1025"; finding the »equilateral«
corresponds to the transformation /41 = ¥1°10725" = 1°5°, leading us to the
further conclusion that */, = 5—and finally s = 10".

The numerical steps of the solution are thus meaningful when seen in the
perspective of symbolic algebra, yet the use of the term »projection« (and the
addition of a mere »1« instead of »1%« in line 4, which is an otherwise compulsory
Babylonian practice) tells us that the Babylonian calculator operated in a very
different representation—see Figure 1: Each of the four sides was thought of
as provided with a »projection« (i.e, a »projecting width«) 1 and thus

Figure 1. The procedure of BM 13901, N° 23,

* Imagining lines as provided with an implicit standard width seems indeed to be quite common
in field measurement which has not interacted (or not interacted intensety) with Euclidean abstraction.
It was the practice of Ancient Egypt (cf. [Peet 1923:25]); Leonardo Fibonacci describes it as the system
used when land was bought and sold in thirteenth-century Pisa (Pratica geometrie, ed. [Boncompagni
1862:3f), and Luca Pacioli [1523:{111,6"-7'] does the same for fifteenth-century Florence.

One may ask whether the Euclidean definition of the line (»a length without width«) was
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represented by a rectangle sx1; the area was represented by a square sxs; and
the sum hence by a cross-shaped configuration. When the Babylonian scribe
divided by 4 in lines 2-3, what he did was to single out one fourth of this
configuration, e.g. the gnomon in the upper left corner. The addition of »1 the
Pprojection« calls for a general commentary: We think of a square as being (e.g.)
4 square feet and having the side 2 feet (knowing that, strictly speaking, the
square is a complex configuration which can equally well be characterized by
any of these parameters). The Babylonians, on their part, thought of the square
as being 2 feet and having an area 4 square feet®. Appending »1 the projection«
thus means fitting in the square contained by the gnomon, each of whose sides
is indeed the projection. Thereby the gnomon is completed as a square with
known area 1+10°25" = 1°10°25"", which is »made equilateral« by ¥1°1025" =
1°5". From this, the projection (this time, according to our distinction, viewed
as the side of the completing square} is torn out, leaving 5 as the width of the
gnomon leg. »Repeating« this to two, i.e, uniting it with its mirror image,
produces the side of the original square, that which »confronts itself«.

This »cut-and-paste-procedure« is »naive« in the sense that everything can
be »seen« immediately to be correct. There is no attempt to prove, e.g., that the
gnomon is a rectangular gnomon and contains precisely a square; such »critical«
reflection (in a quasi-Kantian ser.se) had to wait until Euclid. But the procedure
can be seen to be correct (and can be transformed into a »critical« proof without
difficulty), and is thus justification and algorithm in one (as is the stepwise
transformation of a modern algebraic equation). It is also »analytical« in the sense
that the unknown side is treated as if it were known until it can be isolated from
the complex relation in which it is entangled. If »algebra« is understood primarily
as the application of analysis (as Viéte would have it), the method is clearly
algebraic in nature. But if algebra is a science of number (or, post-Noether,
generalized number) by means of abstract symbols, the Old Babylonian »algebra
of measurable line segrnents« is not algebra. In the following I shall compromise
and retain the quotes, speaking of »algebra«.

Many features of the present problem are shared by the Old Babylonian
»algebra« texts in general: The distinction between two additive procedures—i.e.,

originally {and well before Euclid, of course) introduced with the purpose of barring this
»misunderstandinge«.

* Those who know the terminology of Greek geometry may observe that the dynamis is a square
considered in the same way—f. [Hoyrup 1990c].
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procedures which when translated into modern equations become additions;
the analogous distinction between two different subtractive and no less than
four different multiplicative procedures; and the use of »naive« cut-and-paste-
geometry in procedures which are their own immediate justification. Other
features, however, single out the problem of »the four sides and the area« as
a remarkable exception.

If we designate the quadratic area by ( and the corresponding side by 5 (;
and s, i = 1, 2, ... when several squares are involved); by ;s »the four« sides of
a square); if D) stands for the area of the square on the line segment 2 and
c=(a,b) for that of the rectangle »held« by 4 and b, the tablet contains the
following problems (#° stands for r-60'):

9.
10.
i1
12.
13.
14,
15.

16.
17.

18.

19,

20.
21.
22.
23.
24,

© NG W W N

Q+s = 457

Q-s=1430

Q1730+ /s = 207

0-1/3Q+s = 4°46°40°

Q+s+'/,5 = 55

Q+1/y5 =35

110+7s = 6°157

Qi+, = 217407, s+s, = 507 (re-
constructed)

Q+(Q; = 217407, 5, = 5,+10°
Q+Q; = 21°157, 5, = 5=/ 8
Q+Q, = 28°15", 5, = 5+ /5,
QuQ; = 21407, ©ls,8,) = 107
Qi+Q, = 28207, 5, = '/ 5,

040, = 25257, 5, = 1/ 5,45
Q+Q:+Qs+Q, = 27757, (5,558 =
G/ 3 s

Q-1s=5

Q+Q+0; = 10012°45°, 5, = Y/ s,
s3= /55,

Q+Q,+0y = 237207, 5, = 5+10°,
83 = 5p+107

Q+Q,+0(s;—s;) = 237207, 548, =
50°

[missing]

{missing]

[missing]

S+Q = 417407

&—s5—¢€ a

a4

/[\

5

N

Figure 2. The =normal« procedure of BM 13801
for the solution of Qwes = C.

Q+Q+0Q, = 297107, 5, = 3/ 5,457, 5, = 1/,5,+2°30”

We observe that N° 23 is the only problem referring to »the four« sides of
a square. It is also the only problem mentioning the sides before the area. It is



certainly not the only normalized mixed second-degree problem dealing with
a single square, but all the others refer to a general method {in semi-modern
terms: halving the number of sides, squaring this half, etc.). In geometric terms,
a sides are expressed as ==(a,s); this rectangle is bisected, and the total area
Q+2e3(Y%4,9) is transformed into a gnomon which is then completed; etc—see
Figure 2. The procedure of N° 23, on the other hand, depends critically on the
number 4; already now we may observe that this use of an amazing and elegant
but non-generalizable solution makes the problem remind more of a riddle than
of a normal piece of mathematics (Babylonian or modern); so does, in fact, the
presence of precisely those four sides which really belong to the square, instead
of an arbitrary (and thus virtually general) multiple.

Other differences are no less striking. All remaining problems tell that they
deal with squares by using the term which at one time designates the quadratic
configuration and the length of the side; N° 23 is alone in stating at first that
it deals with »a surface« or {probably) »a field«. It is also alone in using the term
translated here as »front« (piitum), an Akkadian term corresponding to Sumerian
sag, the »width« of a rectangle. In normal »algebraic« problems the Sumerian
term is compulsory; the use of a word belonging to the spoken vocabulary of
surveyors indicates that we are supposed to think of a »real« piece of land.

Even the solution is uncommon. Other problems of the tablet dealing with
a single square have the side equal to 30" (or 30), except for one case of 20". These
are indeed the standard values of square sides in Old Babylonian »algebra«
problems, which may have to do with the roundness of these numbers in the
sexagesimal place value notation used in mathematics teaching (30° =1/,,20" =
/). All other cases where 10" is found are caused by the use of other
favourites (ratios 4 and 7, differences 10" and 57} Only N° 23 (at least among
those problems which are conserved) is constructed from the side 10" as a
deliberate choice. And only N° 23 tells the unit of the result, as if it were to be
entered into a cadastral or similar document (cf. note 6).

The final puzzling feature does not concern the problem itself but its place:
Apart from N° 16 (which can be suspected of having been displaced), problems
of the type 0Q=+fs = C occur in the beginning of the tablet, and the neighbours
of N° 23 are considerably more complex. Is seems as if the difference in method

¢ It is forgotten in most general histories of mathematics but should be strongly emphasized that
the place value system used in the Babylonian mathernatical texts appears only to have been used
for intermediate calculations (like a slide-rule, it was a pure floating point system, presupposing
that the reckoner knew the order of magnitude) and in the mathematical school texts. Economical
texts (of course) use other number systems where the absolute order of magnitude is fixed.
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as reflected in the contrast between Figure 1 and Figure 2 was understood as
a difference between mathematical genres.

I1. The Proofs of al-jabr

No other Babylonian mathematical tablet contains a problem involving »the
four« sides of a square or making use of the peculiar method of Figure 1. Inorder
to find parallels we have to make a jump to the early ninth century CE.

This was the moment where the Khalif al-Ma’main asked al-Khwiérizmi to
put together a treatise covering those parts of the field al-jabr wa'l-mugabalah that
were either »brilliant« (latff) or practically useful”. Al-Khwarizmi is thus not
tobe considered the inventor of al-jabr (Latinized as algebra), and as we can read
in a treatise by the slightly later Thabit ibn Qurrah®, it was practiced by a
group of »al-jabr-people, evidently some kind of professional calculators. Yet
within another generation or two, Abi Kamil would regard it as al-Khwarizmi's
discipline—and al-Khwarizmi appears indeed (together with his contemporary
ibn Turk) to have reshaped the discipline, in particular the treatment of second-
degree problems, which was its core!®,

The problem which we translate as #+10x = 39 would be formulated as
follows by the al-jabr-people: A treasure together with 10 roots equals 39 dirhems.
Fundamentally, the problem hence tells that an unknown amount of money (the

7 This is what al-Khwarizmi tells in the preface ([Rosen (ed., trans.} 1831 13}, cf. corrections in {Ruska
1917:5)). This translation was made from the manuscript Oxford, Bodleian § CMXVIIL Hunt. 21 4,
fol. 1-34, as was Rozenfeld’s Russian transiation and the Arabic edition {Mugatrafah & Ahmed 19391,
A close analysis of the text and comparison with Latin transiations made in the twelfth century by
Robert of Chester and Gherardo of Cremona shows that the text of the Oxford manuscript has been
amended by at least two different editors {at least one of whom must antedate Robert of Chester)}—see
{Heyrup 1991]. For most purposes, Gherardo’s version {now availablein a critical edition prepared
by B. B. Hughes [1986]) is to be preferred to the revised Arabic text; unfortunately for historians
of mathernatics, however, Gherardo omitted the preface as well as the second and third part of the
work (the practical geometry and the arithmetic of legacies), for which we have to trust the corrected
Arabic text or one of its derivatives.

® Verification of the Problems of Algebra through Geometrical Demonstrations, ed., rans. [Luckey 1941).

* That second-degree problems constituted at least the core of al-jabr follows from al-Khwarizml's
introduction. Most likelv, however, the formulation and solution of secondi-degree problems by means
of »treasures«, »roots« and »dirhems« (cf. below) was not onfy the core of al-jabr but also the meaning
of the term siricto sensu.



ntreasure« or mal) together with 10
times its [square] root (jadr) equals 39

dirhems (strictly speaking, the correct a
translation is hence y+10Wy = 39). They g census
would find the root by an unexplained b

rule: You halve {the number of] roots
(which gives 5), multiply it by itself
(25), add this to the dirhems (64), take
the root (8), and subtract the half of
the [number of] roots. Thus the root
is 3, and the treasure is 9.

This rule is given by al-Khwarizmi
and repeated by Thabit ibn Qurrah. It
can safely be assumed to belong to the
inherited lore of the group. Al-Khwa-
rizmt’s most important innovation was to give a geometrical proof that the
traditional rule (and the corresponding rules for the cases Treasure and number
equeal roots and Roots and number equal treasure) was correct. As in the Greek texts
translated by al-Khwarizm1's colleagues at the Baghdad court, points and areas
are labelled by letters in these proofs. In essence, however, they only differ from
the cut-and-paste proofs which we have encountered above by being more
precisely argued and hence less »naive«.

For the case The treasure together with 10 roots equals 39 dirhems, two different
proofs are given. The second corresponds directly to the rule, and is made on
a diagram similar to Figure 2 (see Figure 3, which renders Gherardo’s translation).
The first corresponds to a procedure that differs from the one whose correctness
is to be proved: 10 is divided by 4 (2'/,), squared (6'/,), multiplied by 4 (25),
and added to 39. The diagram (see Figure 4) corresponds to that of Figure 1.
There is no reason within al-KhwarizmT's text to bring a diagram so obviously
at odds with what is to be proved (elsewhere, he confesses no particular
infatuation with symmetry). If the diagram is there it must be because it comes
first to his mind, or because he expects it to come first to the reader’s mind. It
must hence be supposed to have been familiar either to al-Khwiarizmi or to his
»model reader«—not from the al-jabr- but from some other tradition. (It is indeed
also more »naive« in style than the following proofs.}

quinque

anbuindb
a.

Figure 3. Al-Khwarizmr's second prooi. From
Hughes 1986:238.



IIT. Abii Bakr's »mensuration
algebra«

This conjecture is amply confirmed
by another treatise, a Liber
mensurationum written by one un-
identified Abfi Bakr. According to
terminological criteria the work will
be grossly contemporary with al-
Khwarizm1's"”. No manuscript of
the Arabic text is known, but a careful
Latin translation was made by Ghe-

t census g

Figure 4. Al-Khwarizmfs first proof. From Hughes
1986:237.

rardo of Cremonal’!). Moreover, as we shall see, Leonardo Fibonacci has used

the work in his Pratica geometrie.

Formally, the work deals with practical geometry, and some of it really does.
Thus, in the beginning of the first chapter it is told how, given the side of a
square, the area and the diagonal can be calculated. Then, however, Abu Bakr
goes on with »brilliant« problems of no or scarce practical interest and mostly
asking for some kind of »algebraic« treatment; all in all, the initial chapter (on
squares) contains the following problems:

s=10: Q7
s=10:d?

s+Q = 110: s?
S0 = 140: 5.7
Q-s = 90: 5?
Q-5 = 60: 5,7
S=s Qs
Ss=0Qs?

W0 N o L

10.
11.
12
13.

d = \200; 5?
d = ~200; Q7

S+Q =60:5.7

Q-3s = 18: 5?

£-Q = 3: 5,7 (Both solutions are given)

'® An analysis of the relevant parts of this treatise, together with arguments for the dating, is given

in [Heyrup 1986], cf. also [Hayrup 1992].
¥ Critical edition in [Busard 1968].



14 5=3/y s

5. Q/d=7%ks?

16, ds=4:5?

17.  d-s = 5 {no question, refers to the previous case).

18. d = s+4: s? (no reference is made to N° 16).

19, Q/d=7,: 8, d?
Here, ( again denotes the area and s the side of the square; d is the diagonal,
. stands for »[{the sum of} its four sides« (or merely »its sides«, meaning the
same), and s, for »each of its sides« (below, A shall be used about the area of
a rectangle, and I, and /, about its sides). The next chapters (rectangles regarded
as »quadrates longer on one side«, and rhombs) are similarly weighted toward
»algebraic« problems; only then come chapters dominated by genuine geometrical
calculation (and clearly related to the Alexandrian/Heronian tradition). In order
to possess a name for this particular kind of quasi-algebra [ shall speak in the
following about »mensuration algebra«.

Returning to the chapter on the square we observe, firstly, that »the four
sides and the area« turns up as N° 4, and again with a different numerical
parameter as N° 12—the sides being once more mentioned first (in the Liber
mensurationum this is the common usage). Secondly, that all problems involving
sides except N° 13 deal with the side or the four sides; later on, the sides of
rectangles also invariable turn 1.p in geometrically meaningful company—the
shorter or the longer side alone, these two together, or all four together (similarly
also the diagonals of thombs). Thirdly, that the standard square has a side equal
to 10, the only real exceptions being N® 8-9 and 12-13",

Abii Bakr solves many of the quasi-algebraic problems in what he regards
as two different ways. One of these receives no special label and can thus be
identified as a standard method, the method habitually belonging with the
tradition of »mensuration algebra« as he knew it. The other is al-jabr (aliabra in

2 The text is corrupt {(or possibly intentionally enigmatic, as is indeed N° 50). More or less at the
corresponding place in his exposition, Leonatdo (ed. [Boncompagni 1862: 61]) discusses the problem
SR =TTy

% The datum of N* 16 and 18 {d-s = 4) points back to the crude idea that 5 = 10, 4 = 14 {the result,
however, is found correctly as 4+432). In N° 19, the diameter is found as 27"/, and the problem
is thus constructed backwards from the value 4 = 14'/,, an approxdmation to the length of the
diagonal in a 10x10-square that is given in the beginning of the chapter. The quasi-identity between
N* 16 and 18 shows that the tradition has been jumbled at some point {(whether during the copying
of Abii Bakr’s manual or in the sources on which he draws), N° 18 representing the original
formulation (traditionally, differences had been told as excesses). For this reason, the »seven and
one half« of N° 15 is probably to be understood as a distorted version of the »seven and one half
of a seventh« of N° 19.

10



Gherardo’s translation). A literal translation of N* 3, 4 and 6 will serve as
illustration:

3

And if he [a »somebody« presented in N° 1] has said to you: [ have aggregated the
side and the area, and what resulted was 110. How much is then each side?

The working in this will be that you take the half of the side as the haif and
multiply it by itself, and one fourth results; this then add to 110, and it will be 110/,
whose root you then take, which is 10'/,, from which you subtract the half, and 10
remain which is the side. Understand!

There is also another way for this according to al-jabr, which is that you posit
the side as a thing and multiply it by itself, and what results will be the treasure which
will be the area. This you thus add to the side according to what you have posited,
and what results will be a treasure and a thing which equal 110. Do thus what you
were told above in al-jabr, which is that you halve the thing and multiply it by itself,
and what results you add to 110, and you take the root of the sum, and subtract from
it the half of the root. Actually, what remains will be the side.

And if he has said: | have aggregated its four sides and its area, and what resulted
was 140, then how much is each side?

The working in this will be that you halve the sides which will be two, thus
multiply this by itself and 4 result, which you add to 1<40 and what results wilt be
1>44, whose reot you take which is 12, from which you subtract the half of 4, what
thus remains is the side which is 10.

And if he has said: I subtracted its sides from its area and 60 have remained, how
much thus is each side?

In this the working will be that you hatve the sides which will be two. This you
thus multiply by itself and add it to 60, and take the root of the sum which is 8, to
this you thus add half the number of sides, and what results will be 10 which is the
side.

But its working according al-jabr is that you posit the side as a thing, which you
multiply by itself, and a treasure results which is the area. From this then subtract
its four sides, which are 4 things; thus remains # treasure minus 4 things which equals
60, restore thus and oppose, that is that you restore the treasure by the 4 things that
were subtracted, and join them to 60, and you will thus have a treasure which equals
4 things and 4 dragmas. Do thus what you were told above in the sixth question
[of al-jabr], that is that you halve the roots and multiply them by themselves and
join them to the number and take its root, and what shall result will be that which
is 8. To this you then join the half and 10 results, which will be the side.

This piece of text calls for a number of commentaries. First of all we observe

that the numerical steps of the basic and the al-jabr-methods coincide (which
is actually noticed by Abai Bakr, as can be seen by his identification »that which
is 8« in N° 6). The difference between the two methods must thus depend on
something else (even though, in certain other problems, the two also differ

I1



numerically).

Al-jabr is evidently the technique explained by al-Khwarizmi, and AbG Bakr's
treatise on mensuration must have been produced as a companion piece to an
explanation of aljabr—though not to al-Khwarizm1's treatise but to something
in more archaic style. This appears from certain terminological peculiarities: more
precisely from the use of the concepts »restoration« (Arabic al-jabr) and
»opposition« (Arabic al-mugdbalah), the very terms which had given the technique
its name.

Al-Khwirizmi uses »restoration« exclusively about the elimination of a
subtractive term, in the way it is employed in Abd Bakr's N° 6; the elimination
of a coefficient by division is termed differently, without distinction between
coefficients larger than and smaller than 1", In Abii Bakr's al-jabr-expositions,
»a treasure minus 4 things« is »restored« as »one treasure« by the addition of
4 things, and »one fourth of a treasure« is »restored« through the multiplication
by 4 (in N° 55). In Ab@i Bakr's usage (which is confirmed in the »standard
treatment« of N° 4, and again in the genuine geometrical part of the treatise,
in N* 67, 100, and 102), »restoration« thus repairs any deficiency, whether
subtractive or partitive {on one occasion it even repairs an excess by subtracting
it, viz in N° 55).

»Opposition« as used by al-Khwarizmi is the inverse of his restoration, the
subtraction of an addend on both sides of an equation. In the Liber mensurationum,
the meaning once again is less specific and mostly different. Where al-Khwérizmi
has the recurrent phrase »restore, and add« (the restoration being the elimination
of a subtractive term -t on one side of the equation, and the addition the
concomitant addition of an additive term ¢ on the other), Aba Bakr has »restore,
and oppose« (N* 5, 6, 9, etc.)™; in one place (N° 22), the term covers an al-
Khwarizmian opposition; and repeatedly, when an entity A is »opposed with«
or »by« another entity B, the meaning is that the equation A = B is formed (most
clearly in N™ 41, 48, 49 and 50, but also in N* 7, 24, 25, 31 and elsewhere).
Summed up in one concept, »opposition« means »putting on the opposite side«,
either in an already existing equation or by establishing an equation”.

" Cf. the following passages in Hughes’ edition [1986] of Gherardo’s translation: I1A:11f; HIB12-14;
VIE:18,45f,70; VH:6f,30-34,521,84,92,119£,121f. »Opposition« occurs in VL.74 and VII:19.

5 In the passage from N° 55 whete »restoration« meant the elimination of 144 dragmas from one
treasure and 144 dragmuas, the »opposition« stands for the subtraction of 144 from the other side of
the equation.

* Speaking about »the opposite side« comes naturally when we refer to our own equations, where
the sign of equation separates two sides. 1t comes less easily if equations are formulated in spoken
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Abi Bakr is not alone in not complying with the usage which was canonized
thanks to the fame of al-Khwarizm's treatise. Even al-Karaji, though he defines
the terms as does al-Khwarizmi, uses »opposition« in Abfi Bakr's way'"”\. There
can be little doubt that Abi Bakr’s loose parlance is original and al-Khwarizmi's
stricter usage an innovation, in all probability an intentional and premeditated
innovation: the natural trend for the terminology of a mathematical culture
undergoing a process of dynamic maturation (as that of ninth to tenth century
Islam) is to increase its precision and stringency, not to abandon its accuracy.
Aba Bakr's al-jabr is thus pre-al-Khwarizmian, if not necessarily by date then at
least in substance and style (but given the triumph of al-Khwarizmi's Algebra
it cannot then be too much later).

So much concerning the al-jabr-method. Returning to the standard method
we remember that it did not (or did not always) differ from al-jabr in its
numerical steps. None the less it was regarded as something different by Aba
Bakr. Why?

A first observation to make is the care by which the al-jabr-sections explain
that the treasure represents the area of the square, and the root (or »the thing«,
which is used in the same sense until the moment when the standard equations
are derived"®) its side. The implication is that treasure and root/thing are rot

words, as are al- Khwirizmi's and Abii Bakr’s srhetorical« equations. Abi Bakr’s use of »opposition«
thus suggests that this terminology was formed around some kind of material representation of
equations (as we shall see, al-Khwarizmi's usage must be secondarv), most probably a sort of scheme.
The use of schemes with opposing sides is indeed known from India [Datta & Singh 1962:28-32],
and even though al-jabr can hardly have been borrowed from the »scientific« algebra of »scientific«
mathemmaticians like Aryabhata and Brahinagupta (cf. [Heyrup 1987:286]), a connection to Indian
practical mathematics is strongly suggested by the term »root« {(Arabic jadr), used first about the
square root of a number and next {via the square root of the unknown treasire) about the unknown
of an equation. The term makes no metaphorical sense in the Arabic al-jabr-tradition, where the root
was taken of a number or of an amount of money and had no geometrical connotations {(cf. below);
in India, however, the square root was understood as the base of a geometrical square, and designated
since early times by the term mila, »base« or »root [of a tree]« [Datta & Singh 1962:1,169f}.
¥ The al-Khwaérizmian definition is found in the K4ff led., trans. Hochheim 1878:111,10); on the use,
see [Saliba 1972:195f].

¥ In first-degree problems (e.g., in the inheritance algebra treated as part Il of al-Khwarizmi's
Algebra), it is customary to label the unknown »a thing«; »a root«, as a matter of fact, would give
no sense. One text (published in Medieval Latin translation by Libri [1838:1,304{] uses »a treasurex,
which is of course also a meaningful name for an unknown amount of money.

While »the root« may point to Indian practical mathematics, weak indications exist that »the
thing« is related to Greco-Egyptian practice, either by descent or by common descent (the evidence
is listed but not thoroughly discussed in [Hoyrup 1990b, end of chapter IV]). However, since
mathematical problems circulated between China and the Mediterranean no later that the first
Christian century (cf. below), Indian and Greco-Egyptian connections are not mutually exclusive.
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in themselves understood geometrically but indeed as numbers. The basic method
may then differ from al-jabr precisely by referring directly to the geometric
method.

This conjecture is confirmed by several further observations. One concerns
the word »understand« (intellige in the Latin text), whose occurrences are
scattered throughout the work, in somewhat varying contexts. On two occasions,
the word stands as an exhortation to penetrate a intentionally opaque and
superfluously intricate computation and to grasp why it works after all (N> 50
and 74). Ina number of questions concerned with »real« geometrical computation
it asks the disciple to look at or understand fromn actually appearing diagrams
why the computation is correct (a square with diagonal in N° 2; an isosceles
trapezium in N° 78; etc.); this reminds of another Gherardian translation from
an Arabic text, according to which the Indians »possess no demonstration [for
a particular construction] but only the device intellige ergo«—where indeed Indian
geometrical texts have the phrase nydsa, »one draws« {etc.) followed by a diagram
when they want to illustrate a rule, algorithm or algebraic identity which has
just been stated™.. Finally, the word is used repeatedly as in N° 3, i.e., after
the presentation the standard solution (but not the al-jabr-solution) of a quasi-
algebraic problem. Even though no diagrams are given on these occasions, the
parallel to the »real« geometric problems suggest that here too the exhortation
might refer to understanding through a diagram—in N° 3 to a diagram similar
to Figure 2.

Significantly, some of the solutions which carry the »understand« are termed
in a way which shows that the original constitutive geometrical entities are
thought of all the way through. One instance is N°® 43, dealing with a rectangle
(a »quadrate longer on one side«) and indeed a rectangular version of »the four
sides and the area«:

If indeed he has said to you: | have aggregated its four sides and the area, and what
resulted was 76; and one side exceeds the other by two. How much thus is each side?

The way to find this will be that you multiply the increase of one side over the
other, always [i.e, whatever the actual excess] by 2, and what results will be 4.
Therefore subtract this from 76, and 72 will remain. Next aggregate the number of
sides of the quadrate, which is 4, and join it to the increase of one side over the other,
and what resulis will be 6. Thus take its half, which is 3, and multiply this by itself,

However, since mathematical problems circulated between China and the Mediterranean no later
than the first Christian century, Indian and Greco-Egyptian connections are not mutually exclusive.

¥ The fragment was published by Marshall Clagett [1984:599); references to the Indian practice will
be found in (Heyrup 1992:note 22].

14



and 9 results, which you join to the 72, and
81 results. Then take its root, which is 9, and
subtract from it the half of 6, which is 3, and
the shorter side will remain, which is 6. To
this then add 2, and the longer side will be
8. Understand.

The way according to al-jabr, however,

The numerical steps can be explained in
several ways; algebraically, we may call the
width x, and the length thus x+2; proceeding
mechanically from here we get Abi Bakr's [_U =
al-jabr-procedure. Or we may call the two
sides x and y (y = x+2), and observe that the
area plus the sides is then xy+2x+2y =
X y+4x+22 = x{y+d+4; if Y= y+4, we
therefore have xY= 764= 72, Y=
x+(2+4) = x+6. The problem has thus been
reduced to finding the sides of a rectangle
whose area is 76-4 = 72 {4 being 2 the excess
times invariably 2), and whose length exceeds
the width by 2+4 (4 being the number of
sides). This interpretation makes sense not
only of the numbers but also of most of the Figure 5. Liber mensurationum,  the
words of the text—including the use of the procedure of " 43.
identity-conserving »joining« of 4 to the

excess, since the result is still an excess (as the Old Babylonian texts, Aba Bakr
distinguishes between additions, even if less sharply).

x's and y's, however, are anachronistic, and the second interpretation has
itself to be reinterpreted in order to become relevant. This is done in Figure 5:
Initially, the sides are thought of as provided with the standard width 1 (the
»projection« of our Old Babylonian texts®). The excesses are cut off, after
which the sides are »aggregated«, and collectively »joined« to the excess. The
rest goes as in Figure 2: The excess of the rectangle over the square is bisected
and a gnomon is formed, to which the quadratic complement is »joined«, etc.

N° 38—a kind of rectangular counterpart of N° 1—may be even more

® Even Leonardo and Nunez, when they are to explain the geometrical interpretation of al-jabr, refer
to the »root« as a rectangle with length equal to the side of the square, and with width 1. Cf. below.
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elucidating, because the solution builds ona fallacy
which turns out to make excellent sense in a
diagram:

If indeed he has said to you: I have aggregated its
longer and shorter sides and the area, and what
resulted was 62; and the longer side exceeds the
shorter by two. How much then is each side?
The way to find this will be that you subtract
2 from 62, and 60 remains, then add 2 to the half
of the number of sides, and 4 results. Join this to 60,
and 64 results. Thus take its root, which is 8. This,
in fact, is the longer side. And if you want the
shorter, subtract 2 from 8, and 6 remains, which is

the shorter side. j v\\‘E!
Figure 6 shows what goes on: We start as before,
but this time, taking advantage of the coincidence
between number of sides involved and the excess
{and thereby depriving the solution of any general
validity), we produce the gnomon by moving the
width to a position along the length and splitting :U :
off the excess from the length. The gnomon is -
completed as a square by fitting in the loose end
of the length together with another piece (with
width 1 and length) equal to »the half of the
aumber of sides« (i.e,, equal to the number of sides actually involved). The area
of the completed square being 64, its side (which equals the length according
to the diagram) is 8.

The correct solution of N° 43 might in principle have been obtained by other
means than the use of a diagram (there are always many ways to obtain a correct
result), even though it seems difficult to explain the precise phrasing without
the geometrical cut-and-paste-interpretation. The lapses of N° 38, on the other
hand, can only have resulted meaningfully from a representation where it goes
without saying, firstly that the excess of length over width equals the number
of sides involved, and secondly that the two together contain the completing
square (the number of sides translated into »projections«)—i.e., ina geometrical
representation drawn or imagined in more or less correct proportions. We may
confidently conclude that Aba Bakr’s standard method was based on geometrical
operations—-and that at least the method used in the problems translated above

Figure 6. Liber mensurationum, the
pracedure of N° 38.
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was in »naive« cut-and-paste-style™!. Moreover, the geometrical operations
concern the very entities which define the problems™—and these, as pointed
out in passing above, are always geometrically meaningful. They do not involve
entities like aQ or Ps (or v/;-81,) but instead: the single area; the side, both sides,
or all four sides; the two diagonals of a thomb; etc.

The geometrical technique of Abii Bakr's »mensuration algebra« reminds
of what one encounters in Old Babylonian texts, and »the four sides and the area«
certainly reminds of BM 13901, N° 23. No surviving Babylonian problem
possesses precisely the structure of Abf Bakr’'s N* 38 and 43, but one text (also
belonging to the early phase of the development of Old Babylonian »algebra«)
contains a close parallel, which happens also to make use of a »change of
variable« for its solution: AO 8862 N° 1%, Here, in symbolic translation,
x y+(y-x) = 3'3°, y+x = 27; by addition, x y+2y = (x+2}y = 3°30° or Xy = 3°30°,
y+X = 27+2 = 29,

Several other similarities between the Old Babylonian corpus and the
standard part of Abll Bakr's quasi-algebraic problems can be enumerated:
Particular methods; and the highly systematic and rather intricate shift between
past and present tense and between the first, second and third grammatical
person (there is also one significant though only partial divergence, which we
shall discuss below). We may thus safely conclude that the two kinds of quasi-
algebra are somehow connected. How they are connected is a question to which
we shall return,

* The conclusions do not hold for all problems: the voluntarily abstruse standard solution of N°
50, for instance, is a mere translation of the tortuous al-jabr-solution which follows it; other standard
solutions appear to be geometrical but do not use cut-and-paste techniques. These exceptions,
however, do not concern us here, however relevant they are for a complete analysis of Aba Bakr’s
eclectic manual.

2 This does not go by itself even within a »naive« cut-and-paste algebra, as demonstrated by the
Old Babylonian »algebraic« corpus: Old Babylonian lines and surfaces may not only represent pure
numbers or prices, which permitted the scribal mathematicians to solve non-geoinetric problems
by means of their naive-geometric technique. A line could also represent an area, which made possible
the treatment of biquadratic problems (e.g., BM 13901 N° 12, which is solved as a biquadratic even
though a simple quadratic solution is possible).

In contrast, a technique which restricts itseif to manipulating those geometrical entities which
enter the problem directly is by necessity prevented from developing into an ail-purpose algebra.

2 Ed. {MKT I, 108f}. Analysis in [Hayrup 1990:309f].
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IV, Twelfth- and thirteenth-century evidence

First, however, we shall look at two somewhat later authors who still draw
on the same tradition: Abraham Bar Hiyya—better known as Savasorda, from
a twisted pronunciation of his court title—and Leonardo Fibonacci.

Savasorda’s early twelfth-century Hibbur ha-mesihah we'tisboret (Collection on
Mensuration and Partition), translated into Latin by Plato of Tivoli as Liber
embadorum (Book of Areas)™, is much more oriented toward genuine geometrical
computation than Abfi Bakr's work. In contrast with Abli Bakr, Savasorda also
draws on the Elements, first in the initial chapter, where he copies the definitions
from Elements [ and Elements VIl and a number of theorems, and later in the work
in a number of proofs. At one point (Chapter 2, part 1, §7), however, he tells
that before going on with triangles and with those quadrangles whose treatment
presuppose triangulation, he will present some problems »so that by solving
them, with God's assistance you may prove yourself a keen and swift enquirer«.
First come some problems concerning squares:

§8.  s=10,dv
§9. d=+200; 57
§10. Q-5=21,075?7
§11.  Q+s=77,Q?s?
§12. Q= 3, 5,7 (Both solutions are g—iven).
There can be no doubt that Savasorda has borrowed this sequence of problems,
and no doubt that it is related to what we have encountered in the Liber
mensurationun, It is uncertain, however, and not very plausible that he has used
Abii Bakr's manual directly. If he had done so and then made the present meagre
selection, changing furthermore the order in §§9-11 and the value of the unknown
in §§10-11, it does not seem too likely that he would keep §12 unchanged
{(comparison between the treatments of rectangles in the two treatises supports
this conclusion). That the side of §§10-11 is precisely 7 is also in itself noteworthy,
as possibly related to the crude approximation that was behind Aba Bakr's N
16 and 18 (side 10 and diagonal 14).
Abi Bakr's standard method appeared to be a geometrical cut-and-paste-

¥ An edition of the Latin text with German translation was published by Maximilian Curtze [1502:
1-183], who also traced the parallels between Savasorda’s text and Leonardo’s Pratica geometrie.
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procedure referring to geometrical diagrams, but
at least Gherardo’s translation brings no dia- B B
grams beyond those that show the square, the
rectangle, the thomb (etc.} with which the prob-
lems deal. Savasorda’s manual does contain I
diagrams demonstrating the correctness of his K H
solutions {on the other hand, Savasorda provides
no al-jabr-solutions®). Formally, however,
these refer to the Euclidean theorems which are D <
reported in the introduction. It is therefore e =

. A Figure 7. The naive diagram showing
possible that they have been associated afresh nat (24 = (1,£1)? in a rectangle.
with the traditional problems by some editor
(Savasorda or a predecessor) with Euclidean schooling or familiar with Thabit
ibn Qurrah’s Verification of the Problems of Algebra through Geometrical Demonstra-
tions (which demonstrates the correctness of the standard algorithms of »the al-
Jjabr-people« for the solution of mixed second-degree problems by means of
Elements I1.5-6 in a way which is very similar to Savasorda’s). It could also be,
however, that this editor has simply reformulated a number of traditional and
still current »naive« geometrical procedures in Euclidean style—this would be
quite easy, since the Euclidean theorems in question look precisely as »critical«
recastings of a »naive« cut-and-paste inheritance (compare, e.g., Elements .6 with
Figure 2): in other words, it is possible but not too likely that Savasorda’s diagrams
descend directly from the procedures traditionally connected with his quasi-
algebraic problems®.

* It is thus wholly wrong even though a generally accepted view that the treatise is »the earliest
exposition of Arab algebra written in Europe« (Levey, "Abraham bar Hiyya ha-Nasi”, 22).

% Savasorda’s treatment of his §18 speaks against his being familiar with traditional cut-and-paste-
procedures. Here he finds the difference between the sides of a rectangle from the area and the
diagonal from the rule that d® = 2A+({1,-1,)%, which is stated in §14 and argued there from Elements
IL7. After that he solves the problem from the area and the difference between the sides. If he had
thought of the »naive« diagram probably underlying his rule, however, it might also have told him
that (I+1,) = d*+2A, which would have simplified the solution {cf. Figure 7). It seems as if Savasorda
(or his source) knew the rule, and found a Euclidean justification for it, but did not any longer connect
it with the naive diagram.

It is noteworthy that the proof of Elements I1.7 builds on the sub-diagram MGCJ of Figure 7
(without diagonals), while that of Elesments 114 (from which follows that (4, +1, = #+24, and of which
Leonardo Fibonacci makes use when solving the corresponding problem) employs the complete
diagram (without the lines E} and KH and without diagonals).
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Leonardo Fibonacci wrote his Pratica geometrie” in 1220, and certainly drew
on many sources. As Curtze pointed out in the critical notes to the Liber
embadorum, Savasorda is one of them. The whole structure of the work indicates
that Leonardo has read the Liber embadorum. Quite a few of the shared features,
however, derive not from direct borrowing but from one or more shared sources.

This regards precisely the group of problems which concerns us here. As
pointed out by Curtze, Savasorda’s §§8-12 recur in the Pratica. Their order,
however, has been changed, as has some of the parameters (+n counts lines from
the top, -n from the bottom of the page).

p. 58 s=10,d?

p- 58% d =200; s?

p. 59%%. Q4= 140, 0757

p- 59 Q-5=77,Q7s?

p. 60" s-Q = 3, 5,2 (Both solutions are given}
The formulations, furthermore, are wholly different from Savasorda’s, even
though at other places (e.g., when Abii Bakr's N° 38 is reproduced—cf. below)
the phrases of a source are taken over without any change beyond grammatical
polishing. Most decisive is, however, that several of Leonardo’s deviations from
Savasorda are agreements with the »background tradition« as we know it from
Abii Bakr. Like the latter in Gherardo’s translation, he refers to quatuor eius latera,
while Savasorda takes away omnium suorum laterum in unam summan collectum;
and like AbQi Bakr, the side in the problem Q+s = A is 10.%!

There can be no doubt that Leonardo had Gherardo’s version of the Liber
mensurationum (in full or in excerpt) on his desk while writing parts of the Pratica.
A striking proof is provided by the problem dealt with from p. 66 onward,
which coincides with Aba Bakr's N° 38 (see above, p. 15/

Again, the two sides with the expanse amount to 62; and the larger side exceeds the

smaller by two. How much then is each single side?

The way to find this will be that you subtract 2 from 62, and 60 remain, then
add 2 to the half of the sides, and 4 result. Join this to 60, and 64 result. Thus take

their root, which is 8. That, in fact, is the longer side. And if you want the shorter,
subtract 2 from 8, and 6 remain, that is the shorter side. For example: posit the smaller

7 Ed, [Boncompagni 1862:1-224].
# We may also mention Leonarde’s counterpart of Savasorda’s §18 (cf. above, note 26), where
Leonardo (like Abt Bakr) finds the sum of the sides, and refers in his proof to Elements 11.4.

® The two translations have been made so as to show precisely the extent and character of the
agreements/ disagreements between the two texts, in vocabulary as well as in the choice of
grammatical forms. For the sake of creating one-to-one-correspondences, the translation »expanse«
has been used for embadum, a term for the area which Leonardo share with Savasorda/Plato.
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side as a thing, then the larger will be a thing and two dragmas. From the multiplica-
tion of this shorter side by the longer results the expanse. Therefore multiply the
thing, that is the smaHler side, by the thing and by two dragmas, and you will have
a treasure and two roots as the expanse; which, if you add to them the two sides,
namely 2 roots and 2 dragmas, will be a treasure and 4 roots and 2 dragmas, which
equal 62 dragmas. Remove 2 dragimas in each place, and a treasure and 4 roots
remain, which equal 60, and so on.
We see that the statement differs from Aba Bakrs—among other things,
Leonardo speaks here about the »larger« and »smaller« side, where Abl
Bakr/Gherardo has »longer« and »shorter«. In the end, Leonardo gives a solution
by means of al-jabr (which he seems to regard as an explanation, even though
completion of the al-jabr-procedure would highlight the fallacy™), where Aba
Bakr has none in this particular problem. In the description of the standard
procedure, however, all he has done is to change the grammatical number,
considering »60« etc. as plurals and not singulars.
In other places, Leonardo has geometrical proofs, some of them similar to
Savasorda’s. We may look at Leonardo’s treatment of »the four sides and the
area« {p. 59°%):

And if the surface and its four sides make 140,
and you want to separate the sides from the
surface. Let a quadrate ezit be put together, and
the rectangular surface a¢ added to it. And let ai
prolong the straight line it, and be prolong the
straight line ez; and let each of the straight lines
be and ai be 4 because of the number of the sides
of the quadrate; because the surface e equals a g t 4
four sides of the quadrate et, since the side ei of
the latter is one of the sides of the surface ae; and
the surface et contains indeed the expanse of the
quadrate 21, and [not] its four sides. Therefore the surface za is 140; and that is what
we have said, namely that the treasure with four roots equal 140; and the treasure
is the quadrate et, and its four roots are the surface ae. Divide indeed the straight
line ai in two equals at the point g; and because the line ti is added to the line ai,
then the rectangular surface it on at with the square on the line gi will be equal to
the quadrate on the line gt. But the surface it on at is as the surface zf on at, since
it is equal to tz. Thus the surface zf on at with the square on the line gi equals the

Figura 8. Leonardo's diagram for »the
area and its four sides make 140«

* In the completion of the al-jabr-procedure, the 4 to be added to 60 are to be found as the square
on half the number of roots, not as 2 plus this half. The root (and thus the shorter side), furthermore,
is found as Y64 minus half the number of roots, and the longer side finaily as the shorter plus 2
the difference between the sides.

All this wili certainly have been recognized by Leonardo. In all probability, his »and so on«
serves to conceal that he does not understand what goes on.
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square on the line gt. But zf on af is the surface za, which is 140. Which, when the
square on the line gi, namely 4, is added to them, give 144 as the quadrate on the
line gf; therefore gt is 12, namely the root of 144. Therefore, if gi, namely 2, are
dropped from gf, remains if as 10, which is the side of the quadrate ef; whose expanse,
namely 100, if its four sides are added, which are 40, will be 140, as claimed. And
like this is done in all questions in which a number equals one square and roots,
namely that to this number is added the square of the half of the roots, and the root
of the sum is found; from which the half of the posited roots is removed, and the
root of the treasure which is asked for will remain; which when multiplied by itself
makes the treasure. For example: 133 dragmas equal one treasure and twelve roots.
Therefore, if we add the square on the half of the roots, namely 36, to 133, they will
make 169; when 6, namely the half of the roots, is subtracted from its root, namely
from 13, 7 will remain as root of the treasure asked for; and the treasure will be 49.

The geometrical proof is similar to Savasorda’s (and Thabit's), and the same
observations could be made. The treatment of the problem »the two sides with
the expanse amount to 62 ...« (above, p. 20) supports the conciusion that Leonardo
has no direct access to the »naive« procedures which had still been known to
al-Khwirizmi and Aba Bakr. It is also characteristic that Leonardo only gives
an al-jabr-treatient of the »four sides and rectangular area« (Aba Bakr's N° 43,
where the »naive« procedures were most clearly reflected in the phrasing—see
above, p. 14).

This would go by itself if Leonardo’s only windows on the tradition were
Savasorda and Abii Bakr/Gherardo. Plausibly, however, he has also known at
Jeast another version of Abli Bakr's manual or a close relative of this work.
Gherardo, indeed, had worked on a defective manuscript, as revealed by certain
corrupt passages and by references backward to problems which in the actual
manuscript come later. Among the seemingly corrupt passages is the solution
of problem N° 14, »I have aggregated the four sides [of a square], and they are
3/, of its area«. At the corresponding place, Leonardo has »the four sides and
3/, of the expanse equal 77'/,«. It is unlikely that Leonardo (who was a fairly
systematic writer) should have produced this problem in order to repair the
defect in Gherardo’s version, since the problem is preceded by ,s = */5Q, and
followed by ;s = Q and s = 2Q. It is also remarkable that Leonardo this time
mentions the sides before the area, as done by Abl Bakr and in our Old
Babylonian tablet. In the preceding treatment of the problem »sides plus area
equal 140«, Leonardo has indeed »normalized« the order of the members; there
is certainly no reason to expect that he would innovate in this respect when
repeating an inherited problem and return to the ancestral idiom when inserting
a problem of his own making. The problem will hence have been borrowed, if
not from a different version of the Liber mensurationum, then from its closest kin.
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Al in all, Savasorda, Gherardo and Leonardo have thus been in touch with
at least three different versions of the quasi-algebraic tradition to which the
problemn of »the four sides and the area« belongs (as we shall see below, Pacioli
seems to use material stemming from a fourth version). All these versions,
however, appear to have lost contact with the original naive-geometric techniques,
replacing (or possibly recasting) those proofs which allowed that with cor-
responding propositions from Elements 11, and handing down those solutions
which did not allow such Euclidization {like Ab{i Bakr's N* 38 and 43) without
geometrical support (which explains why Leonardo gave up in front of N° 38,
cf. above, note 30)B!,

The transformation of the tradition between Aba Bala’s and Leonardo’s time,
and its gradual assimilation to an increasingly geometrized al-jabr-tradition, is
also shown by another feature. Abii Bakr, as we remember, took great care to
distinguish the »standard procedure« from the al-jabr-method, and to explain
how »the treasure« of the latter represented the area of the square (etc.).
Savasorda, as we saw, was even more respectful of the geometrical tradition,
and does not mention the al-jabr-tradition (which would anyhow, one may
presume, not have been be very informative for his intended public); his only
»algebraic« theory is borrowed from Elements II. Leonardo, as we see, and as
it is made even more explicit in the beginning of the section on quadrilaterals
{pp. 56f), has abolished the distinction completely. Where al-Khwarizmi [ed.
Hughes 1986:233] tells number to fall into three classes, roots, treasures, and simple
numbers without any reference to either, there Leonardo tells the three natures
of numbers and their fractions to be roots of squares; squares; and simple numbers:
this in spite of obvious al-Khwarizmian inspiration for the passage in question
(revealed by characteristic phrases borrowed from Gherardo’s transiation of al-
Khwarizmi).

Savasorda’s and Leonardo’s texts thus tell us two things. Firstly, that the
tradition carrying the problem about »the four sides and the area« was stiil
present in their world. Secondly, that it had been reduced to a shadow; after
having served al-Khwérizmi's coordination of al-jabr with geometry, and after
centuries of coexistence with the »Euclidization« of applied geometry, it had
no mathematical standing of its own, and it only survived as a collection of

¥ There is a vague possibility that Leonardo still had access to the habitual diagrams for a number
of complex problems involving the diagonal of a rectangle {e.g., l+L+d = 24, A = 48, ed.
[Boncompagni 1862:68]), where he introduces diagrams which generalize the one which was shown
in Figure 7. But he may also have developed these diagrams anew, since they follow without too
much difficuity from the procedure.
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venerated problems. As Gherardo must somehow have tried to express when
translating Abh Bakr’s al-jabr as aliabra, algebra had come to encompass much
more than the purely numerical technique of the pre-al-Khwarizmian al-jabr-
people.

V. Reconstructing the process

In the closing chapter we shall consider the end of the disintegration process.
Since, however, the forces at work in this phase differ from those which shaped
the earlier development, it may be convenient to discuss first what we can learn
about the prehistory of algebra from following the career of »the four sides and
the area« and its cognates from the cradle through the High Middle Ages. This
we shall do, on one hand by summing up and connecting observations which
were already made above, on the other by drawing new conclusions.

The first question concerns, precisely, the cradle. Our earliest encounter with
the tradition and with the characteristic problem embodying it was in an odd
comner of an Old Babylonian mathematical scribe school text. Several features
of the formulation of the problem, however, hinted at real surveying practice—
and our next encounter with the problem was in an Islamic handbook concerned
with that very practice. Is it likely that a problem created within the tradition
of scribe school »algebra« but dressed as a »real« problem for surveyors would
be adopted by these together with a narrow selection of other problems and
continued as a tradition of »mensuration algebra«, while the main body of Old
Babylonian »algebra« would remain the exclusive property of the scribe school
and die with it? Or should we rather expect the scholar-scribes to be the debtors?

The question is a variant of a traditional problem of folklorists: Are folktales
gesunkenes Kulturgut, as the Romanticists believed, or not? Are folktales the
remnants of myths and high-level literature, or are myths created on the basis
of folk tale motifs? In the final instance: Is genuine culture produced by prophets,
priests and scholars alone, and the »low« culture of other strata merely derivative,
misconstrued and defective?

Several observations speak decisively against the hypothesis of a scribe school
descent, and in favour of an origin of the »mensuration algebra« among practical
geometers.

One of these is the length of the side of the Old Babylonian version of »the
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four sides and the area«. As in AbQi Bakr's and Leonardo’s corresponding
problem, it is ten—but ten minutes. Now, 10 is a »natural« choice in any culture
using a decadic number system; 10°, however, is not—neither a priori nor
according to the Old Babylonian tablets. Indeed, 10 in any order of sexagesimal
magnitude (including 10°) would be an untypical side length in any Old
Babylonian text. It is highly improbable (to say the least) that the queer problem
should have been invented within the scribe school and been constructed around
the »unnatural« value of the unknown side, and then taken over by people who
by accident could correct 10 (which they would see as /() into the »natural«
value 10. The scribe school mathematician, on the other hand, when borrowing
a problem with the parameter 10, would be quite likely to locate this number
in his habitual order of magnitude, which in the tablet in question is that of
minutes.

Another observation has to do with the topic and general character of the
problem. As already hinted at, the combination of the geometrically meaningful
(all four sides of a square field) with the practically meaningless (which
practitioner ever knew the sum of the sides and the area without first knowing
them separately?) gives the problem the character of a bizarre riddle. Such riddles,
when mathematical, are known as »recreational problems«. In pre-Modern times,
they were transmitted within environments of mathematical practitioners, where
they served the purpose told by Savasorda: »that by solving them, with God's
assistance you may prove yourself a keen and swift enquirer; or, in another

formulation taken from a Carolingian problem collection (I quote the puzzle in
full):

A paterfamilias had a distance from one house of his to another of 30 leagues, and
a camel which was to carry from one of the houses to the other 90 measures of grain
in three turns. For each league, the camel would always eat 1 measure. Tell me,
whoever is worth anything, how many measures were left.*?

In other words, these problems—which according to their dress belong within
the domain of the practitioners in question {(surveyors and caravan traders,
respectively) but which are more complex or more bizarre than the problems
solved in everyday practice—serve to train the mental agility and enhance the
professional self-esteem of the members of the craft (whence the term »brilliant«
used by al-Khwarizm to characterize the useless second-degree part of al-jabr-—cf.

* Propositiones ad acuen:ios fuvenes, problem 52, version I led. Folkerts 1978:74]. Emphasis added.
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above, p. 7)*¥. Invariably, they have something stunning in their formulation:
unless a clever trick is applied (an intermediate stop), the camel will eat exactly
everything; in another widespread problem, 100 monetary units will buy exactly
100 animals; repeated doublings run to 30 or 64, because this fits the days of
the month or the cases of a board game; etc.™

The topic—the real sides of a reat field; the striking parameter—exactly all
four sides; and the solution by means of a doubly weird trick—quadripartition
and quadratic completion: all three features indicate that »the four sides and
the area« was hatched not in a scribe school but in a non-scholastic environment
of practical geometers.

A third observation allows us to locate this environment tentatively in time
and space. As stated above (p. 17), Abf Bakr's discourse is astonishingly close
to what we find in Old Babylonian school texts. There is one exception to this
rule, however. Abi Bakr always has a hypothetical »somebody« posing the
question (in the first person singular, past tense). Old Babylonian texts, instead,
start directly with the question {as in BM 13901, N° 23), implying that it is the
teacher who asks. One group of texts, however, starts its problems with the
familiar »if somebody has asked ..«. These texts come from Tell Harmal and Tell
Dhiba’i, both in the Kingdom of E¥nunna, and belong to the earliest eighteenth
century B.C.”. Enunna is an early focus for that Akkadian scribal culture
which arose around the mid-Old Babylonian period: late nineteenth century
Esnunna produced the first law code in Akkadian, half a century in advance
of the Codex Hammurapi. Since »algebra« is an Akkadian genre with no
identified Sumerian antecedent, E&nunna may thus be the location where the
recreational lore of Akkadian-speaking practical geometers was adopted into
the curriculum of the Akkadian scribal school.

* This relation between professional mathematical practice and »recreational mathematics« is a focal
theme in {Heyrup 1990al.

* This characteristic has a double explanation: A riddie is always better the more surprising its
formulation. Moreover, as longs as the parameters of a problem are not noteworthy, they are likely
to change when transmitted within a semi-oral culture; once somebody has chosen a remarkable
parameter it is likely to be remembered, both because this follows from remarkability per se, and
because it makes the riddle as a whole better.

Mathematical riddles are hence liable to be born striking, and to conserve this characteristic
when they are transmitted. If by accident they are born without marked parameters, a kind of
attraction law guarantees that they will acquire them soon {or that they will be forgotten).

A particular variant of the quest for the extraordinary was mentioned above: The presence in
the Liber mensurationum of deliberately opaque and perplexing problem solutions, which the disciple
is asked to look through.

* The texts were published by Taha Bagqir {1951; 1962].
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An Akkadian origin fits the side of our square field. Akkadian, indeed, as
Arabic (and as the likely intermediate carrier language of our tradition, Aramaic)
is a Semitic language and has a decadic number system. It also fits the name
»Akkadian method« given to the quadratic completion in a late Old Babylonian
mathematical texf; it agrees with the discovery made by Robert M. Whiting that
the problems contained in a school text from the Old Akkadian period (the 22nd
century BC) dealing with area measurement are so much facilitated by familiarity
with the geometric-»algebraic« rule (R-r) = R-2Rr+ that this rule is likely to
have been presupposed; and it matches the presence of a tablet with a bisected
trapezium (another favourite problem foliowing our tradition until Abll Bakr
and Leonardo) in an Old Akkadian temple®™. it looks as if already the Old
Akkadian scribe school had adopted part of the recreational lore of the Akkadian
surveyors, but that the strictly utilitarian neo-Sumerian school (21st century BC)
did not transmit it™.

Since there is, anyhow, close affinity between the Old Babylonian »scribe
school algebra« and the tradition of »mensuration algebra, it is reasonable to
assume the former to have developed from the adoption of the latter under the
fecundating influence of the systematic spirit of the school. The quadratic
completion, originally another weird trick comparable to the quadripartition and
the intermetiate stop, may have been the cornerstone on which the whole
stupendous edifice of Old Babylonian »algebra« was erected.

The overlap between the »algebra« of the scribe school and that of the Liber
mensurationum {(and other post-Babylonian sources} allows us to draw up a list
of problems which can be ascribed with some confidence to the »mensuration
algebra« of the early Old Babylonian epoch. Of course (sticking to the symbols
introduced on p. 10), s+Q = a.and s+Q = B (we may even be confident that & =
110, B = 140"); probably also problems with differences (area minus side(s), and
side(s) minus area) and questions about the diagonal when the side is given,
and vice versa. For rectangles, furthermore, A = o, [, 21, = B; A+(Lil)) = a, L=l =
B; A = o, d = P (this latter problem is found on the Tell Dhiba’i-tablet). Highly
likely is also the presence of problems dealing with several squares, at least
Q1+, = ©, 5,5, = B (an alternative possibility is the presence of the rectangle

* See [Hayrup 1990:326); [Whiting 1984:65f); and [Friberg 1990:541].

¥ Since no traces of genuine second-degree »algebra« are found in the Old Akkadian school texts,
we may also surmise that the discovery of the quadratic completion (the » Akkadian method«) took
place somewhere between the 22nd and the 19th centusy BC.
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problems I,xl, = o, d = f*¥). Rhombs and right triangles (both of which are
used as pretexts for the formulation of quasi-algebraic problems in the Liber
mensurationum) seem to be beyond the horizon, as is anything involving non-right
triangles.

Old Babylonian scribal »algebra« developed into a sophisticated discipline,
but most of its higher achievements were lost when the Old Babylonian era was
interrupted by conquest and social breakdown after 1600 BC, at which occasion
the scribe school also disappeared. The late Babylonian period, in particular in
the Seleucid era (from 300 BC onwards), produced a certain revival of »algebraic«
activity, it is true; discontinuity in the use of Sumerian word signs demonstrate,
however, that much the transmission had taken place outside the scribal
environment, and that a readoption of material from the »mensuration algebra«
tradition occurred.

In the meantime, so it appears, new problem types had been invented or
imported into this tradition. The most systematic Seleucid treatment of second-
degree problems is found on the tablet BM 34568, All problems except two
deal with rectangles, where various combinations of sides, diagonal and area
are given®!. With a single exception, the rectangle problems recur in the Liber
mensurationum (at times with other parameters); moreover, the exception
(1,+D and 1,+d given) is not really one, since Abii Bakr's N° 36 (;+d and I,-],
given) is reduced to the Seleucid problem and then solved in the same way.

Interestingly, the only rectangle problem dealing with a diagonal of whose
presence in the early »mensuration algebra« we are sure (viz A =, d =, found
in the Tell Dhiba’i tablet) is absent from the Seleucid anthology. Also interesting
is one of the two problems which do not consider rectangles. It deals with a reed
leaning against a wall, and is equivalent to the rectangle problem d-; = o, I, =
B (Abii Bakr's N° 31). Nothing with the same mathematical substance is found
in the Old Babylonian corpus. The dress, on the other hand, is familiar, but
originally it covered a problem translatable into the much more trivial 4 = a,

* BM 13901 N* 8§ and 9 deal with two squares, about which the sum of the areas and the sum
of/difference between the sides are stated. The square sum of the sides sides (20° and 307 is no
square, and thus the problems cannot be transformed into rectangle-diagonal-problems without a
change of parameters. Evidently it is not excluded that surveyors’ rectangle-diagonal-problems have
been adopted and transformed, and the parameters then changed. However, reflections of our
tradition in classical sources (in particular Elements Ii, cf. below) speak in favour of the two-square-
conjecture

# Ed. [MKT ilI, 14-17].

9 1 and 1: 1. and 4; I.+d and I L+, and A; L+l and & L+d and L; §+d and L+d; L+Hp+d and A
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I, = a-p.

On the whole, the Seleucid tablet thus looks like a listing of the new problems;
the reed problem may be meant to demonstrate how this fascinating new wine
could be poured into an old cherished bottle, thereby lending new quality to
both. In any case, and quite in contradiction to the traditional view, the tablet
demeonstrates the discontinuity of Babylonian mathematics in spite of apparent
continuity“".

Also at variance with widespread convictions, but the other way round, is
the perspective we get on the core of Elements 11 if we correlate propositions 1
to 10 of the Euclidean work with what we have come to know about »mensura-
tion algebra«*. Postponing for a moment propositions 1 to 3, the rest can be
seen as »critiques« of the familiar procedures: prop. 4 is used, e.g, by Leonardo
when he finds the sum of the sides of a rectangle from the diagonal and the area,
while Savasorda {proceeding like the Teil Dhiba’i text) finds their difference
via prop. 7%, prop. 6 explains the solution of all problems Qxcs = B (including

*' This discontinuity can be traced on several levels beyond those already mentioned (Sumerian word
signs and problem types): the structure of the terminology; the construction of problems from integral
solutions and iniegral coefficients (evidence that the problems have been borrowed rather directly
from the mensuration tradition, without much further systematization or tinkering); and a tendency
to construct solutions from sum and difference rather than semi-sum and semi-difference (as had
been the Old Babylonian habit, and as AbQ Bakr would mostly still do in the »old« problems).

* For convenience | translate the propositions into symbols (it should be remembered that such a
translation is always somewhat arbitrary—cf. the two different translations of prop. 7k
1. colaprge.+) = =2(a,p) + eslag) +.+ exlat).

OHa) = c=(a,p) + =x{aa-p).
cafga4p) = O) + ==(a,p).
Da+b) = (@) + OB + 2e=(ab).
cala,b) + O/} = OC* /).
cla,a+py + OF/ ) = CHe+* /).
DMa+p) + Oa) = 2={a+p,a) + OUb) ; or, alternatively, O(a) + O(P) = 2zalab) + THa-b).
dc(a,p) + Dla-p) = Da+p).
Ola) + T = 2{0* /) + O/,
. C;a) + Dla+p) = 2A0¢F/) + Oa+ /)1

We observe that prop. 6 coincides with prop. 5 if only b = a+p. Prop. 5 corresponds, however,
to the situation where the sum of the two sides is known (as in prop. 9, 2 and b result from the
splitting of a line in unequal segments), and where they are thus drawn in continuation of each
other in the proof; prop. 6, on its part, is adapted to the situation where one exceeds the other by
p.and the proof thus draws them in superpositicn. Precisely the same relation holds between prop.
9 and prop. 10, while prop. 4 and prop. 7 are similarly but not identically correlated.

“ Cf. note 26. It should perhaps be stressed once more that Savasorda’s and Leonardo’s use of
propositions from Elements does not mean that they were employed within the tradition of
»mnensuration algebra« in the form we (and Leonardo and Savasorda) know them, only that they
were still close enough to this tradition to be serviceable.
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»the four sides and the square«} and A = o, -, = p (and Leonardo quotes it
on these occasions); prop. 5 has a similar relation to rectangular problems A =
a, I+, = B and to as-Q = B (again noticed by Leonardo); prop. 7, beyond the
use made of it by Savasorda, explains the rule which seemed to be presupposed
already in an Old Akkadian school text {cf. above, p. 27); prop. 8 does not seem
to enter any problem directly which we have discussed so far; but it may be
connected to the configuration of »four sides and area« (showing that, if we add
the four sides to a square 0(s), we do not get a square O{s+2)—instead, we have
to add the four sides of the average square O(s+1); conversely it can be linked
with the concentric inscription of one square into another (also familiar from
Old Babylonian practical geometry). Propositions 9 and 10, finally, which like
prop. 8 serve nowhere else in the Elements (and which must therefore have been
supposed to possess a value of their own)"*, solve the problems where the
sim of two square areas and either the sum or the difference between their sides
are known*® (Leonardo also makes appeal to prop. 10 a couple of times).
The proofs of propositions 9 and 10 are obviously of the Greek and not the
»naive« type. The others, however, fall into two sections, of which the second
is in essence a cut-and-paste-proof, and the first explains why the various
constituents of the diagram are really squares, rectangles etc. Section 1 thus, so
to speak, takes care that the subsequent cut-and-paste section is not »naives.
Propositions 1 to 3 have a similar function. Prop. 1is a general »critique of
mensurational reasone, justifying the cutting and pasting of rectangles; proposi-
tions 2 and 3 apply this insight to the particular situations where sides (provided
with a »projections, it goes by itself) are added to or subtracted from a square.
Elements 11110, we may hence conclude, is closely connected to the cut-and-
paste mensurational algebra and is precisely, as formulated above, »a critique«.
We may observe, furthermore, that the whole group of propositions points back
to the stock of problems and procedures which seems to have been present
already in Old Babylonian times. There is no trace of the »new« problem types
from the Seleucid tablet.
Arguments can be given that the kind of area geometry which was canonized

“ Strictly speaking, prop. 9 is cited, but in what seems to be an interpolated lemma. As pointed out
by Ian Mueller [1981:301], propositions 8 and 10 might have been cited in the same way, as
justifications of unproved assumptions. It seems as if the kind of knowledge contained in the three
propositions was too familiar to require explicit citation.

% And also problems about rectangles where the diagonal and either the sum of or the difference
between the sides are known. As stated above, at Jeast one of these groups will have belonged to
the early phase of the »mensuration algebra«.
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in Elements I was developed in the fifth century BC in connection with a
theoretical investigation inspired by surveyors’ geometry and »algebra«'*.
If this is really so, then there is some reason to believe that the »new« problems
reached or arose in the Near Eastern and Mediterranean world after 550 BC,
but before 200 BC. We may think, either of the contacts resulting from Alexan-

der’s conquests, or of the general establishment of cultural interaction along the
Silk Road™”.

The next occasion on which the tradition of »mensuration algebra« turns
up in familiar sources is at its encounter with the numerical al-jabr practice, and
when al-Khwiérizmi draws upon its cut-and-paste technique in order to
demonstrate the correctness the al-jabr-calculations. These geometrical proofs
were already discussed above and need not be taken up again. Only one
observation should be added: When teaching the addition and subtraction of
binomials involving roots, al-Khwarizmi’s standard exemplification of the root—
i.e., we must presume, the first square root which his reader is expected to
recognize as not reducible to a number—is V200, the diagonal of our familiar
10x10-square. Unless this concurrence is purely accidental (which is not very
likely—cf. also note 13 on the possibility to distinguish chronological strata in
the mensuration tradition by means of changing approximations to this length),
the practice from which al-Khwarizmi borrowed his proofs thus appears to have
been fairly well-known.

»Mensuration algebra« did not disappear as an independent tradition after
al-Khwarizmi's integration of its methods with al-jabr. As we have seen, at least
three to four different versions will have been around in the Islamic world in
the twelfth and thirteenth century. But as we have also seen, it had lost its raison-
d'étre as a separate mathematical tradition. In this as in other fields, Islamic
mathematics initiated an integration of theoretical and practitioners’ mathematics
which was, in the Modern epoch, to transform the latter enterprise into applied
[theoreticall mathematics. Gherardo, as a faithful translator, would still render
Abi Bakr's sharp distinction between {(geometrical) standard method and
{numerical) al-jabr. Leonardo the mathematician, however, did not see the point,

* See [Heyrup 1990c), where further references to work by earlier authors (not least Wilbur Knorr}
on this question are given.

¥ Since the second-degree problems which turn up in the first century (CE) Chinese Nine Chapters
on Arithmetic (ed., trans. [Vogel 1968:91f]) are related to the »new« Seleucid problems (and the dress

of one of them, the leaning reed, an obviously borrowing), conquest can hardly be the only factor
involved.
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or saw no point in doing so.

VI. The end of a tradition

However much the tradition of »mensuration algebra« had become
superfluous from a theoretical point of view, it did not die easily in Christian
Europe once it had been adopted. Thus, in the geometrical part of his Summa
de arithmetica, Luca Pacioli tells that

even though rather much has been said about the rule of algebra in the part on
arithmetic: none the less, something must be said about it here.*”

What needs to be said turns out to be precisely what Leonardo tells in his Pratica
geometrie. The treatment is so close to Leonardo that misprints in Pacioli’s lettering
of diagrams can be corrected from Leonardo’s text (this was how I stumbled
upon the affinity between the texts). But there are certain puzzling exceptions
to his faithfulness: Thus Leonardo, as we remember, did not speak about »the
four sides and the area« but about »the area and its four sides« making up 140.
Pacioli, however, returns to the original pattern. Since this pattern was as foreign
to Renaissance algebra as to Old Babylonian »algebra«, Pacioli can not be
expected to have reinvented the ancestral formula on his own: it must have been
around. As it has sometimes been suspected, Italian Late Medieval algebra,
however much it was indebted to Leonardo, must have received impulses from
the Islamic world through supplementary channels*.

The last appearance of the set of problems once belonging to the tradition
of »mensuration algebra« is in Pedro Nunez Libro de algebra en arithmetica y
geometria from 1567 (at least the last which I know about—but my reading of

* (Pacioli 1523:11fol. 157).

© Another suggestive deviation from Leonardo is Pacioli’s version of Aba Bakr's N° 38 (above, p.
15): It is more correct than the Gherardo-translation, which had been repeated so faithfully by
Leonardo. Pacioli {[il], 19", indeed, finds the completing square 4 as »half the number of sides
squared«. Since the Gherardo/Leonardo-text is meaningless as it stands, it is highly unlikely that
Pacioli could have used this version and just improved it. If he had done so {e.g., supported by an
al-jabr-analysis), he could have produced a fully correct solution: instead, his explanation still
presupposes tacitly that the excess and half the number of sides coincide.

We may infer that Pacioli’s source for the pattern »sides and area« is thus not likely to have
been the Gherardo-version of the Liber mensurationum.
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Renaissance sources is far from complete). Part III, Chapter 7 has the heading
"About the praciice of algebra in geometrical cases or examples, and firstly about
squares”. It is obvious that Nunez has profited much from Pacioli, as also told
in his concluding address to the reader (fol. 323*). In our now customary
abbreviations, the examples about squares are the following;:

1. s=3Q?

2. RQ=og?

3. s=3:4d7

4. d=6:s?

5 d+s=6:d735?

6. ds=10:47s?

7. ds=34d7s?

8. s5{d-s) =15: 57 d?

9. d{d-s) = 14: 57 d?
10, s+ =90: 57 Q?
11, 4+Q=12: Q7 s?
12, s+d+Q = 37: 57 d? Q7
13, Qs =10:s7 (7

14, dQ=12:s7Q?

These translations are misleading in so far as they conceal the real format of the
examples. This format follows that of the Euclidean Data {and of Jordanus de
Nemore's De numeris datis)—-e.g., N° 11 tells that »if the diameter and the area
of the square together are known, then each is known separately«. Only
afterwards the numerical example is introduced. In this respect, the text is thus
developing toward theory. It has also dropped the opaque solutions by un-
explained numerical algorithms (the rudiments of naive cut-and-paste proce-
dures), and starts directly with the algebraic solution.

But the themes are traditional. Nunez, when advertising the capabilities of
algebra, feels the need to demonstrate that this wonderful technigue is able to
resolve both the traditional problems and even more complex problems of the
same kind (like N° 12). He only presents one example for each problem type,
and thus drops »the four sides«. For the last time, however, »the side« appears
before the area in N° 10, betraying the Bronze Age descent—and for the last time
{before Vidte changed the terms in which the problem of homogeneity was
discussed) it is explained that what is added to the area is another area, »a root«
being the side provided with a »projection 1« (cf. also Nunez’ fol. 67.

* [Nunez 1567:227"H].
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Within a generation, Vidte was to show the capability of algebra to elucidate
much more complex problems. If algebra was still in need of commerecials, much
more impressive applications than artificial mensuration geometry were now
at hand. After somewhat more than three thousand years, »the area and the four
sides«, as the totality of »mensuration algebra«, could leave the world so quietly
that nobody noticed its death, and nobody remembered that it had ever existed.
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