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What follows is an outline of the prehistory of algebra that differs
fundamentally from those found in general histories of mathematics. It
builds on recent reexaminations of a large number of sources which have
revealed connections and dissimilarities not noticed so far'. Part of the
story can be read out rather directly from the sources; part of it, however,
only follows from combination of evidence of many kinds.

A presentation of the final outcome of the analysis which were
supported point by point by the documentary evidence might easily become
obscure, or at best present itself as a methodological exercise’.Instead I
have chosen to present first the synthetic picture which arises, and to
introduce and discuss the details of the sources only afterwards.

1. Subscientific mathematics

First of all, however, 1 shall have to present a concept of general validity
for the understanding of the pre-Modern world: “subscientific” knowledge,
in particular “subscientific” mathematics.

Subscientific mathematics was a mathematical practitioners’, whence
a specialists’ possession, and thus not to be regarded simply as “popular”
or “folk” mathematics - to do so would be to repeat the contempt of the
scholars of the epoch for everything not scholarly or aristocratic as

' With many interruptions, 1 have been engaged in this reexamination since 1982, at first
working on Old Babylonian material, later also on sources from the Islamic Middle Ages.
The reconstruction which is set forth in the following dawned on me in 1989 as a possibility
and was presented briefly as a hypothesis in [Heyrup 1991a: note 69] (earlier publications
of mine refer to a direct connection between the Old Babylonian schoo!l tradition and the
medieval mensuration texts, which closer analysis made implausible). Only work on Leonardo
Fibonacci and Luca Pacioli in 1992 put me on the irace of evidence that allowed confirmation
and elaboration of this hypothesis.

*This kind of exposition can be found in {Hayrup 1993].



indistinct populus and thereby to blind oneself. But the specialists who
carried it were lay, did not belong to any school tradition, nor to any
scientific or philosophical environment. They were accountants, surveyors,
architects, and the like’. And they were taught as apprentices by other
practitioners from the field, not by professional teachers of any kind.

It may seem near at hand but is indeed misleading to regard the
subscientific category as nothing but another name for “applied mathemat-
ics”. It is misleading for two reasons. Firstly, the concept “applied
mathematics” presupposes that it is the mathematics of theoreticians which
is transferred and applied to practical problems. This is how we are
accustomed to understand the relation between the different kinds of
mathematics in our own world, and if we are willing to take into account
that the transfer process may involve considerable reshaping (not so much
of results as of structure and justifications) it is grossly a true picture. The
practitioners of the pre-Modermn world, however, had their own mathematics.
Results obtained by scientific mathematicians might be adopted, as was
the Archimedean approximation to x in certain early medieval traditions
(by way perhaps of the Heronian attempt to make real applied mathemat-
ics); but the pace was extremely slow, and the process uncertain and
unsystematic.

Secondly, subscientific mathematics itself contained a “pure” level. This
kind of mathematics is well known by historians of mathematics as
“recreational mathematics”, but its nature and social appurtenance is veiled
by this misnomer and by the nature of our sources for this kind of
mathematics.

The main function of the “recreational” problems within the practical
professions was to allow the display of professional valour. Their format
is that of the riddle, and as other riddles in the oral culture (we may think
of the riddle of the sphinx, or the function of riddles in so many folk tales)
they were meant as challenges. But the challenge regarded professional
competence, not general shrewdness. At times implicitly, at times explicitly
their question is an injunction: “If you are worth anything as a calculator,

*1 discuss the concept in depth in [Heyrup 1990a], including however traditions like that
of the Old Babylonian scribes as a particular, “scholasticized” subtype. For reasons that are
in part reflected in the present paper, I now regard this as an unhappy conceptual conflation.
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tell me ...”.

Much of what mathematical practitioners would do in their daily
activity was pretty trivial; how to find the area of a rectangular field can
be learned by any bungler. Ability to solve such problems would not prove
the worth of anybody. The riddles, for this reason, have to deal with
something more complex than what was known from daily use - that is,
with problems of no use, problems that are pure as far as content is
concerned (if meant to be relevant for professional esteem, on the other hand,
the form could only be that of practical problems, i.e., only be applied).

Generally our sources for pre-Renaissance mathematics are either
theoretical treatises or schoolbooks (the latter category embraces for instance
the Egyptian and Babylonian mathematical texts). Sources for the real uses
of mathematics (in particular the use by non-scholars who might be il- or
semiliterates) are extremely rare — and when they are found, the numbers
and drawings they contain rarely allow us to conclude much about the
techniques that were used.

The subscientific traditions only become visible in four kinds of sources.
(i) Their material was sometimes adopted into literate traditions (in the
following we shall meet several examples), and sometimes the subscientific
core can be extricated. {ii) Occasionally, scientific mathematicians undertook
a critique of what was done incorrectly or incompletely by the practi-
tioners’. (iii) Literates might sometimes create problem collections where
the “recreational problems” really served as such®. (iv) In societies with
widespread literacy, finally, handbooks might be written (by practitioners
or by writers close to their environment) for other practitioners®.

Handbooks of the latter type may (as a rule, do) describe techniques
of real use. But sources of types i-iii tend naturally to disregard what seems
trivial and - for this very reason - to inform us only about the complex,

* For instance by Ab Kamil, who found the complete set of solutions to the indeterminate
problem of the “hundred fowls” [ed. Suter 1910).

* Typical examples are the monastic problem collections of the Late Middle Ages - see [Folkerts
1971] - and the arithmetical epigrams of the Anthologia grazca XIV. Even the Propositiones ad
acuendos fuvenes (see below) belongs to the genre.

¢ Typical examples are the Misnat ha-middot, Savasorda‘s Liber embadorum, the libbri d’abbaco
of the Italian Late Middle Ages, and even a printed book like [Rudolff 1540}.



“pure” or “recreational” level of subscientific mathematics. This is the
reason that we are much better informed about the “pure” than about the
practical aspect of subscientific mathematics; but the use which is made
of the problems in these sources also hides their original function and make
them appear as mathematical entertainments. Usually their eristic character
is only visible in sources of type iv.

Another characteristic is visible in sources of all types. Not only are
the problems “applied in form”, i.e., apparently concerned with affairs of
everyday, and “pure in content”, i.e., actually concerned with questions
that would never present themselves in real life; they also invariably carry
some striking or absurd feature - one hundred monetary units buy exactly
one hundred animals, a camel transporting grain will eat exactly all the
grain unless a clever trick is applied’, etc. This has to do with the oral
setting of these as well as other riddles: a riddle is more easily remembered
and a better challenge if it is striking (once again, the riddle of the Sphinx
may serve as a paradigm, with its combination of four, two and three legs
with the most significant moments of the day).

All this has little to do with algebra proper. As we shall see, however,
the whole prehistory of algebra is strongly involved with subscientific
traditions and in particular with recreational problems. One may even
assert that algebra emerges precisely in the process where proto-algebraic
techniques are disentangled from the “recreational” setting.

"Since the example will serve later, 1 quote the problem in full:

A paterfamilias had a distance from one house of his to another of 30 leagues, and a camel

which was to carry from one of the houses to the other 90 measures of grain in three turns.

For each league, the camel would always eat 1 measure. Tell me, whoever is worth anything,

how many measures were left.

The problem is N° 52 {version B) in the Carolingian collection Propositiones ad acuendos iuvenes
([ed. Folkerts 1978: 74] - emphasis added). As everywhere in the following where nothing
else is stated, the translation is mine.

The solution teld in the text is that the camel makes an intermediate stop after twenty
leagues, returns to take another load, repeats the intermediate stop and return, and finally
carries the remaining load in one turn. As it is easily seen, the solution is not optimal {two
intermediate stops, after 10 and after another 15 leagues, saves extra 5 measures); but such
things are not asked for when problems serve as riddles.
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IL. The story

Subscientific beginnings

Already in the later third millennium B.C., Mesopotamian surveyors
appear to have known and used the rule®

C(R-r} = O(R)}2c=(R,AH+0() , cremenesinnes s .

and to have known that the square on the bisecting
transversal of a trapezium is the average between the
squares of the parallel sides. A very simple geometri-
cal argument can be given for this, based on a kind
of area geometry which we shall meet below (I leave
to the reader to reconstruct it from Figure 1). But there
is no evidence that any other proto-algebraic knowledge was present.
Shortly after the turn of the millennium, however, Akkadian-speaking
surveyors in Middle Iraq knew the trick of the quadratic completion, and
used it in a number of recreational riddles more or less as the intermediate
stop of the camel’. If Q designates the area of a square; s the corresponding
side (QQ; and s, i = 1, 2, when two squares are involved); and ,s “all four”
sides of the square, the following problems circulated in the environment:
s+Q =110 and s+ = 140; probably also problems with differences (area
minus side(s), and side(s) minus area) and questions about the diagonal
when the side is given, and vice versa. For two squares, Q;+Q; =@, 5;25; =

Figure 1.

® [Whiting 1984: 65f). Here and in the following, £)(s) siands for the (geometric) square with
side 5, and eo{lw) for the rectangle with length ! and width w.

® Everything which is said about these surveyors, and about their knowledge and techniques,
builds on reconstruction from indirect evidence (discussion of which follows in chapter HD.
They may not have been scribes, perhaps they were even illiterate (however, not innumerate);
they may also have been taught as scribes, but then the problems and techniques in question
belonged to the oral lore of their profession. Not only as far as the absence of written sources
is concerned but also from a cultural point of view, the environment was functionalily non-
literate.

th



B and Q,-Q, = 0, 5;x5, = B'°. Concerning rectangles (area A, length {, width
w, diagonal d): A = o, ltw = §; A+(lzw) = o, lsw=P; A=a,d = f.

‘ The problems were solved by geometrical cut-and-paste
procedures — the first two steps of Figure 2 show the
solution of the problem s+(Q = 110 (in distorted propor-
tions): The side is understood as provided with a width
1, and thus as a rectangle ==(1,5) naturally located along
the square. This rectangle is bisected, and its outer half
moved around so as to yield a gnonom of area 110. What
is lacking if this gnomon is to be completed as a square
is the black square D(%%). When it is added, the total area
becomes 110%, from which the side of the completed
square is found as 10%. When we remove the rectangle
=2(Y4,5) that was attached to the lower side of the original
square, we see that the side of this square must be 10%4-1 =
10. If the problem is translated into the equation x*+x = 110
and solved by quadratic completion, the two solutions run
completely parallel; moreover, just as our modern algebraic
procedure is “analytical” by treating x as if it were a known number, so
is the way the geometrical solution deal with its “unknowns”. We may
characterize the problem and its solution as “quasi-algebraic”

The same diagram shows the solution of the rectangle problem A =
@, l-w = B, with the only difference that in this case the rectangle which
is removed below has to be brought back to its original location so as to

restore the original rectangle. Even the square problem (Q-s =90 is solved
like this.

Figure 2.

* Most likely, such problems referred to a standard rectangle with fixed length and width,
just as the problems dealing with a square took its side to be 10. The sources, however, tell
us nothing with certainty, even though some suggest ! = 8, w = 6,d =10. Similarly, two-square
problems probably operated with standard squares. o and § should thus not be read as
numbers which might be varied, only as numbers which cannot be identified.

This may seem strange Lo us, but fits well with what else we know about “recreational
matheimatics”: The problem of the “hundred fowls” carries this name because it almost
invariably deals with 100 monetary units and 100 animals (mostly fowls); and for 2500 years,
all problems about repeated doublings had 30 repetitions; then the chess-board variant with
its 64 doublings entered the scene (see [Hoyrup 1987: 287(}), since when these two version
coexisted for another 500 years at least.
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The problem ,s+Q = 140 was solved in a slightly ;

different manner (see Figure 3: each of the four sides ——
is regarded as a rectangle =2(1,s), located once again
where they belong “naturally”; the area 140 is hence
a cross-shaped configuration. Presumably it was
[ ]

completed by a square [I(1) in each corner, yielding
a completed square of area 144 (but possibly one Figure 3.

fourth of the configuration was regarded alone — our

indirect sources disagree on this point).

gl e W Problems of the type A =a, l+w = B (and 5-Q =

B L) o or s-Q = B, if they were present} were solved

rectangle corresponding to the excess (3 in the follow-
ing) of the length over the average (p) of length and
width is cut off and moved so as to create a gnomon
of known area (that of the rectangle). Since also the
Figure 4. area of the completed square is known (viz O(%,), even

the side of the completing square {and thus the width
of the rectangle which was moved) is known.

The problems A+(lxw) = &, Isw = were reduced
to the types A = a, Isw = B by a geometric “change
of variable” — Figure 5 shows how it was done in the
case A+(l-w) = o, l+w = B: as usually, the segment l+w
is thought of as provided with a width 1; similarly for
! and w. The geometrical aggregate of A+(l-w) and l+w Figure 5.
is thus a rectangle of known area (viz o+p), while its
width is w+2 and its length I. Even the sum of its sides is thus known (viz
p+2).

The final problem type concerning a single rectangle of whose presence
we can be fairly certain was A = o, d = B. Even in this case, the problem
was reduced to the type A = o, l-w = B, but apparently by means of a
synthetic rather than an analytical argument — see Figure 6, where the
rectangle is present in four copies: LF, FH, HJ, JL, each of which are bisected
by the diagonal. If, from the square on the diagonal that results, twice the
area (four times the semi-area) is removed, we are left with the square on




the difference between the length and the width, from
/ \ which this difference can itself be found'. We may
. \| observe that the diagram is related to a familiar
" “maive” proof of the Pythagorean theorem (also known
yd from Chinese sources), and that the solution of the
problem presupposes knowledge of this principle.
Figure 6. Problems Q,+Q, = o, 5,5, =  appear to have been
solved by means of a variant of Figure 6 - see
Figure 7. It is deduced without difficulty that twice the sum of the areas
(e.g., AN+MC+PB+DQ) exceeds the square on the sum of the sides by the
square on their difference. Actually, the surveyors will rather have operated
with the average p (AR, the semi-sum) of the a 2R
sides and their deviation & from this average (ER, E
the semi-difference), as suggested by the broken |
line. We may notice (but probably should not L

[

______ 7 I R
make too much of the observation) that with this p ,3- &
addition to the diagram, all the transformations E

of Figure 2 and Figure 4 are incorporated. In both '

cases, the unknown rectangle is represented (say) g d
by AP, the gnomon into which it is transformed Figure 7.

by ARUMVTA, the completing square by MS and
the completed square by AN.

Sources do not allow us to determine how problems Q,-Q, = o, 5,5, =
p were solved. They do tell, however, that the smaller square was thought
of as concentrically embedded in the larger one — see Figure 8 — and we
may imagine that the band between the two squares was noficed to be
dissectible into four gnomons {(full lines), each of which equals =a(p,8), or
directly into the four rectangles (broken lines) (but the same rule can also
be verified on Figure 7, cf. below).

So far, everything looks as perfect mathematics, though probably
“naive”, that is, built on what can immediately be “seen” to be true, and
not on explicit proofs. But there are unmistakeable traces in the sources

" Possibly, the reduction to A = a, [+w = f was also in use. In this case, twice the area is joined
to the square on the diagonal, which gives us the square ABCD on the sum of the length
and the width.



of one suspicious feature: the square problem d-s = 14,
with assumed solution s = 10, d = 14. Since our written
sources have eliminated this “error” (as it had to be
from their mathematical point of view), we can say no
more about the specific topic, only that it tells us not
to think of the whole cluster of problems in terms of
Figure 8. mathematical theory, however much the problems
resemble algebra in their use of analytical procedures.

The scribe school

As already told, we have no direct sources for all this. Oldest among
the indirect sources are the mathematical texts from the Old Babylonian
scribe school. Around 1800 B.C., the Mesopotamian scribe school adapted
itself to the situation that Akkadian had become the dominating language
and Sumerian had died as a spoken language. The classical literature was
now preserved in bilingual versions, new epics were written in Akkadian,
and wholly new literary genres arose in Akkadian. One is the omen
literature, the other, the one which regards us here, is a new kind of
mathematics.

The sexagesimal place value number system (introduced in all
probability during the “neo-Sumerian” twenty-first century B.C. as a tool
for for intermediate calculations) was taken over from the preceding school
tradition, together with the extensive use of tables (for multiplication, of
reciprocals, and of technical coefficients). But the quasi-algebraic problems
of the surveyors were adopted together with the cut-and-paste technique
used to solve them, and second-degree “algebra” occupies about half of
the corpus.

The Old Babylonian texts provide us with the evidence for the
geometrical technique. This cannot to be seen, it is true, in the traditional
translations and commentaries of the text editions (MKT, TMB, MCT, TMS,
and scattered publications of single texts), all of which have been based
on the assumption that the original geometrical vocabulary has to be read
as a set of metaphors for arithmetical operations. It only follows from an
in-depth analysis of the structure of the vocabulary, which reveals, for
instance, that two operations traditionally identified as “addition” are kept



strictly apart - “aggregating 2 and b”, a symmetric and truly arithmetical
operation that allows the addition of all entities provided they possess a
measuring number (be it mice and elephants or lines and areas); and
“joining d to C”, a concrete and asymmetric operation where C stays in
place and may be said to conserve its identity while absorbing d and thus
expanding its size. Similarly, “subtractions” are two (“comparing” and
“removing”), while “multiplication” splits up into four different oper-
ations'.

But the Old Babylonian texts do not repeat exactly what had been done
before the subject became a school discipline. Even the terminological
distinction between different additions may have been the outcome of the
kind of critical reflection that also expelled the problem d-s = 4 from honest
mathematical company. The first adoption into the school seems to have
taken place in the northern E$nunna region, which also produced the
earliest law code written in Akkadian. The mathematical texts from
E3nunna exhibit several archaic features - e.g., an introductory riddle-like
phrase “If somebody has asked you”. An important text from E$nunna
[ed. Goetze 1951] also joins sides to area, thus showing that it regards the
sides as possessing a standard width 1, as currently done by subscientific
surveyors until the Renaissance®. Later texts take care to aggregate in this
case, showing thereby that they really regarded the lines as lines and not
as rectangles. In order to make possible the solution shown in Figure 2
they therefore provide the side explicitly with a “wasitum 1”'*. The step
looks like a close parallel to Euclid’s definition of the line as “a length
without width”, which may have been meant (when first introduced,

2 The over-all analysis of the vocabulary, with full reference to the texts that underlie the
argument, is [Hoyrup 1990], while [Heyrup 1993bl is a more complete analysis of the
subtractive operations and their terminology. The texts do not contain the drawings whose
making they refer to; these will have been made in some other medium, probably sand or
a dustboard.

¥ This way to look at things astonishes everybody with some mathematical school training,
but is in fact what underlies the metrology used in thirteenth-century Pisa when land was
bought and sold (Pratica geometrie {ed. Boncompagni 1862: 3f]). Luca Pacioli [1523: {iI], 6*-7']
informs us similarly about fifteenth-century Florence.

“From wasiim, “to go out”. The wmsitum is hence something which “goes/sticks out”,
protrudes or “projects” ~ further on to be translated “projection”.
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fore Euclid’s times) to bar the same “mistake”".

ns went far beyond conceptual clarification. In agreement
:nt of recreational mathematics to the striking, all problems
1e confidence be ascribed to the early surveyors deal with
ith an arbitrary multiple of the area; with the side or with
ot just “the side taken four times”). The scribe school
ically, replacing the affection for the striking with search
systematic progress (nothing could be more alien to a
). As an example we may list the surviving problems from
xclusively with one or more squares - a tablet of the type
ists the problems but also tells the procedure’®:

ks = 457

-5 = 14730

Y0+ Ys = 20°

Q45 = 4°46°40°

rs+ s = 55°

s =357

Q+7s = 6°15°

+Q, = 217407, 5,+s5, = 50 (reconstructed)

+Q, = 21407, 5, = 5,+10°

+Q, = 21°15", 5, = 5~ Y5,

+(Q, = 28°15", 5, = 5,+ %3,

+(;, = 21407, =2(5,,5,) = 10°

+0, =287207, 5, = Vs,

" was also the basis of fourth-century Athenian metrology is seen in
‘e three- and five-foot dynameis refer to areas equal to three respectively
‘the usual reading as 3 and 5 square feet is anachronistic). Moreover, the
errors that are widespread among Athenians in Laws 819e-820a is
f we assume that this thinking was not just a silent presupposition for
| the normal way te think about areas and lines. Without this interpreta-
icult to see any difference between the allegedly different errors - cf.

:ribed in the generalized degree-minute-second system, where *, ', etc.
md °, ', etc. increasing order of sexagesimal magnitude; 4'46°40" thus
-40-60". In the original, no such marking of the order of magnitude
1 was a pure floating-point notation, and on the tablet the number is

13901 (ed. {MKT I, 1-5), translation and analysis in [Heyrup 1992
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4. Q+Q, = 25257, s, = %545

15, QrQrQurQ = 2757, (548080 = (. b h)s,

6. Q-%s=5

17 Q+Q+(, = 10°12°45", 5, = Y5y, 5; = Yos,

18, O+, = 23207, 5, = 5,+10°, 5, = 5,+10°

19. Q+Q,+0(s-s,) = 237207, s,+s, = 50°

20.  [missing; Q;+Q,+O(s;-s,) = 23°207, 5;~s, = 107 ?]

21.  [missing]

22, [missing]

23. s+Q =41407

24, Q0@ = 29107, 5, = %5457, 5, = %5,+27307.
Several observations with bearing on our topic can be made on the basis
of this list. Already if one examines the solutions, N° 23 is the sole problem
dealing with a single square' to have conserved the side 10 - even if 10
has been moved to the order of minutes. (N° 23, moreover, is quite
untypical in other respects too, to which we shall return.) Instead, the
standard square has the side 30" (or 30).

More decisive, however, is the whole sequence of problems. We start
again with the sum of side and area, mentioning however the area before
the side in the statement, while the surveyors had told the side first. This
apparently insignificant detail can be interpreted as a reflection of the
changed status of the problems'™: when a riddle is told, one starts with
the entity that is immediately known, which for a practising surveyor is
of course the side; next comes the derived entity, that is, the area”. When

¥ Problems about several squares are submitted to other constraints: ratios and relative
differences should be 4, 7, 11, 13, 17, or 19, and %, %, ¥, etc.; absolute differences should
be 5 or 10 [Heyrup 1993a). These constraints — which expand a system whose roots are already
visible in Sumerian mathematical texts from the mid-third millennium, rather than continuing
the habits of the surveyors — explain that N® 13, 15, and 18 have 10 as the side of their smallest
square.

" EBvidently, this interpretation requires that no other constraints are present, e.g. from
grammatical structures; as a consequence it does not apply in subtractive statements.
' The equally subscientific al-jabr tradition, to which we shall return, mentions the “possession”
{census in the Medieval translations, normally interpreted as x) before the “root” (x in the
same interpretation). But here the “possession” is really to be thought of as an unknown
amount of money, and the “root” as its square root (y for “possession” and Yy for “root”
would thus be a more adequate translation); the same psychological “law” thus applies.
In first-degree problems, where we have not been conditioned otherwise by the habits
of schaol mathematics, our awn psychology agrees so fully with the law that we do not notice
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the riddle becomes a mathematical problem, on the other hand, the
tendency is to shape the statement in agreement with the solution - and
here (see Figure 2), the square area is in place first, and the side can only
be joined to it when it has been provided with a “projection”.

The next problem (side removed from area) is likely also to be a
borrowing from the traditional corpus of riddles. Then, however, comes
a sequence of problems with “unnatural” coefficients, several of them even
non-normalized. As we remember, the riddles invariably dealt with the
area, which guaranteed that the problems were normalized; and with the
or all four sides.

Non-normalized problems cannot be solved by
cut-and-paste methods alone, and thus called for the
introduction of a new technique. As an example we
may follow the solution of N°3 - see Figure 9: From
the area [I(s) one third (grey, to the left) is removed,
leaving a rectangle ==(s,%s); to the right, a “projec-
tion 1” is situated, ¥, of which together with the side Figure 9.
holds a (hatched) rectangle ea('/,5). In order to
obtain a normalized situation (square with attached rectangle), the vertical
scale is reduced with the same factor as the width of the square, i.e., with
a factor %,. This leaves us with a familiar situation: a square [}{(o) with an
attached rectangle c2(c,',), where ¢ = %s - and the rest goes as in
Figure 2.

After a number of variations on this pattern come, as N* 8 and 9, two
of the inherited two-square problems (the two which reduce trivially to
the first degree are not included here but found in the equally Old
Babylonian tablet TMS V); the actual steps of the solutions (a halving of
the sum of the areas) suggest that they made use of the rule

its effect: we, no less than Ahmes the copyist of the Rhind Mathematical Papyrus, would
find it most awkward if the jug had told that its ninth, the third of its third, its third, and
the jug itself three times went into the hekat-measure (cf. {Chace et ai (eds) 1929: problem
35)); and we, no less than Alcuin the presumed editor of the Propositiones ad acuetidos iuvenes,
would find it stylistically impossible if the man who encounters a group of (36) people had
totd that the haif of their half, together with their half, and twice their number and himself,
would have made up 100 persons (cf. [Folkerts {(ed.) 1978: 45f}).

13



D(p+8) = O(p-8)+4co(u,d),
which is easily verified on the sub-diagram AFNKA of Figure 7 (u = AL,
& = EL), and from which the average area is seen to be C(p)+0(9).

Then, again, the tablet goes on with variations, now on the two-square
theme: in N* 10 and 11 the relative difference between the sides is given,
in N° 13 their ratio, and in N° 14 the ratio with excess (to use the idiom
of Euclid’s Data). Of particular interest is N° 12, where the area held by
the two sides is given. By means of the diagram in Figure 7, this problem
might have been reduced to the case Q,+Q, = @, 5;+s, = B, and we might
have stayed at the level of naive geometry. Instead, the text calculates
[e2(s,,5,)), which is £3((3,,Q,). The problem is thus reduced to one of the
type l+w = o, =a(lw) = B, where Q, =1, Q, = w.

This is one of the great steps in the history of mathematics, one of the
very greatest, and whoever feels a chill when faced with intellectual
progress should feel it here. What we are confronted with is the earliest
documented instance of representation. The surveyors’ problems, and the
preceding problems contained in the present tablet, all manipulated the
very entities which were spoken of in the statements. Here, however, a
length is taken to represent something different from itself, viz an area. If
any single step demarcates the invention of algebra, this is the one — and
since other (slightly later) Old Babylonian texts use lengths and widths
to represent pure numbers, prices or complex arithmetical expressions, the
step is real, is no mere accident.

Next follow a number of problems dealing with three and even four
squares (N™ 15, 17, 18, 24), alternating with other types: N° 16 belongs
naturally between N° 2 and N° 3 and may have been forgotten at first
during copying. N° 19 is, like N° 12, a more genuine extrapolation from
N° 8 (we may guess that N° 20 will have been the analogous extension
of N° 9).

Too little remains of N™ 21 and 22 to allow even guessing at their
content. N° 23, however, is an immense surprise (so much so, indeed, that
Neugebauer believed it to rest on a scribal mistake that happened to make
mathematical sense [MKT 1II, 14]). We have already noticed the aberrant
side of 107, but this is only one of several anomalies. The statement itself
is unusual, first by pointing out explicitly (this is at least the plausible
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interpretation of the introductory phrase) that it deals with a field, second
by mentioning the sides before the area, third by referring to the four sides
and not to the side taken four times (the pattern of N* 7). The terminology,
moreover, deviates from what is found elsewhere in the tablet, imitating
apparently the idiom of practical surveying. In contrast to other problems
of the tablet (with the possible exception of N° 22), the solution also
indicates the unit. Finally, the procedure is not the standard procedure
used everywhere else (in this and all other tablets) to solve problems “area
plus sides equal number” (“x*+ox = p), i.e., the procedure of Figure 2;
instead, the method shown in Figure 3 (with quadripartition) is employed,
which is clearly geared to the presence of exactly four sides and awkward
in use in other cases (as we shall see, al-Khwarizmi does use it for the
general problem, but the outcome only confirms the clumsiness).

The message, in its times, will have been unmistakeable: this is not an
ordinary mathematical problem - it is a riddle, and indeed one of the
traditional surveyors’ riddles. It has, if we regard its location within the
tablet, the character of a “last lesson before Christmas”. What had once
functioned as a challenge had become a piece of truly recreational
mathematics; whatever eristic function remained in Old Babylonian
mathematics (and there was much, cf. for example [Hayrup 1994]) was
now bound up with mathematically more advanced topics. At the same
time, the problem had been somewhat adapted to current tastes (as it has
happened regularly when other elements of oral culture — folktales etc. -
were adopted by literate environments): the side remains 10, but its order
of magnitude is adjusted to scribe school habits. The solution by means
of quadripartition is also likely to be an innovation (but sources give no
certainty), made perhaps because it is more elegant to make only one
quadratic completion when it has to be told in terms of the “projection”.

The features which characterize the present tablet as a piece of school
mathematics ~ stringency, systematic progress, etc. - recur in other parts
of the Old Babylonian corpus. Another tablet of early date containing one
of the traditional problems is AO 8862 (ed. [MKT I, 108-111], translation
and discussion [Hoyrup 1990; 309-320]). The first problem is of the type

callw)+(-w) =0, Hw=p (0=33,p=27),

and is dealt with as in Figure 5. Its references to surveying practice are
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obvious: after telling that he has laid out a field, the speaker states that
“I went around it”, on which occasion the excess of length over width is
joined (without any reference to a “projection” ~ the standard width 1 is
presupposed), after which he “returns”. No doubt that we are quite close
to the surveyors’ “recreational problems”. The second problem can be
translated

callw)+ i+ Yw) =15, w =7,

and is reduced by the subtraction of ¥ (l+w) into =a(/,w)-Yw =11°30", and
thus into ca(l-',,w) = 11°30°, (- )+w = 6°50". This reduction is close in
spirit to the one of N° 1, but the problem itself is clearly of a more
sophisticated type than the original surveyors’ problems, even though the
speaker still “goes around” and “returns”. Even the third problem,

(] w)+ea(l-w,l+w) = 1°13°20, +w = 140,

might have been solved in analogous fashion; yet even though “going

around” and “returning” still refer us to the wonderland of recreational

surveying, the text takes care to demonstrate a different method. Once

again, scholastization results, firstly, in extension of the range of problem

types dealt with (and again, the introduction of fractional coefficients is

part of the game); secondly, it leads to the application of new methods

(in the present case, a variant of Figure 7 appears to be used).
Particularly illuminating are the so-called “series texts”, canonized

sequences of statements which occupy a whole series of tablets (whence

their name). One tablet belonging as number 4 to such a series is YBC

4714%, which contains the following problems:

Q+Q, = 21740, 5,45, = 50

Q+Q4Q40, = 1730, spbsy+5,+5, = 2720

Qi+ Q-+ Qe+ Q+ Qs+, = 17°52°55, 5,45,+8,+5,+55+5s = ¥'15

Q+0Q,+Q, = 30°50, 5, = Y5415, 5, = Yp5,+5

QrrQ+Q; = 78S (or Qu+Q,+Qs+s, 45,45, = 17°9°46), {L}

Qi+t Qpts +spbs; = 27°50, (L)

Q+Q,+Q, = 1717730, (L)

Qr+Q+Q+Q, = 272320, (L}

S A ol ol e

®Ed. [MKT 1, 487-492), translation and analysis in [Heyrup 1992: 105-140]. The other tablets
of the series are lost.
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9. Q+QQ:+ Qs +s,+si4s, = 7], (L)

10.  Q+Q+Qu+Q, = 1715750, (L}

11, Q+Q/Q4Q, U+s+s+sy+s,] = [7], {L)

12, QrQ+QQ, = 1736715, (L)

13, Q+Q+Q, = 27475, 5 = 1°20, {L}

4. Q+Q+Q; = 27475, 5, = 45, {L)

15, Q+Q+Q, = 27475, 5, = 40, (L}

16. Q0+, = 27475, (L)

17. Q,+Q,+Q, = 27475, {L}

18, Q+Q+Q, = 27475, (L)

19. Q+Q+Q, = 27475, (L)

20.  [too damaged for reconstruction]

21. Q1+Q2+Q3+.Ql = 52°30, S = S]-+‘/’S;

22, QQ Qi Qs +s 4548, = 54°20, 5., = 5+ s,
23, QuQQu+0Q, = 5230, 5,,; = s+ Y,

24, QHQAQQks s 84S, = 5420, 5, = S+ hss
25. Q+Q Q5+ Q, = 52730, 5,,; = 5.+ 1555

26. Q1+Q2+Q3+Q4+SI+52+53+34 = 54"20, S, = 5t 1/533
27, Q+Q+Qu+Q, = 5230, 5, = it Y- Yhs,

28, Q+QtQurQurstsptsgts, = 5420, 5, = 5+ s,
29.  (Q+Q, = 48'45, ca(sysy) = 22°30

30.  Q,Q, = c2(25 nindan,s,, {L}

31.  Q-Q; = =2(25 nindan,s;), (L}

32.  (-Q, = =2(25 nindan,s,), (L}

33, Q,-Q, = £(25 nindan,s,), {L}

34. QI_QZ = ca(25 n.indarl,sz), (Ll

35, 2~ = =2(25 nindan,s,), {L)

36. QI—QZ = E3(25 nindan,sz)r {L}

37. -0, = =2(25 nindan,s,), (L}

38. Q-Q, = ca(25 nindan,s,), (L}

39. -0, = £2(25 nindan,s,), {L)

Here, {L} stands for a changing set of linear equations involving the sides
of the squares; there are always precisely as many equations as needed,
and often they are tediously (and trivially) complex.

Visible in the list of problems is an attempt at pluridimensional
organization. The sequence N* 21-28, for instance, is constructed as a
Cartesian product around the twin variation of the difference between sides
and the alternation between the sum of the areas alone and the sum of
areas and sides. This organization in Cartesian products goes back to the
very earliest phase of the Mesopotamian school and Mesopotamian literacy,
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where it characterizes the so-called “profession list”, and other series texts
contain it in fuller form; a striking example is the sequence C 38-C 53 of
YBC 4668”, which is constructed as a four-dimensional Cartesian product:
in an equation that can be translated as p+Yj3(p-q) = A, the numerator 1
alternates with 2, the denominator 19 with 7, + with —, and the first p with
q.

This sequence is also interesting in another respect. p is not the length
of a rectangle but the length multiplied by the ratio between length and
width, p = ¥,1, while g = *}-w. Since p-g = l w, the given area, p and
g are easily found by means of the usual cut-and-paste technique combined
with an adequate change of scale; but in order to find ! and w from this
a number of arithmetical operations are needed (Y, is the cube root of
and ! the square root of [4,1-[-w)). A text like this thus shows how far
beyond the direct connection to (artificial) mensurational computation the
“algebra” of the school tradition had moved within the two centuries that
separate the earliest ESnunna texts from the abrupt end of the Old
Babylonian period in 1600 B.C., when a Hittite army sacked Babylon and
opened the way to a Kassite conquest of the country.

The scribe school did not survive this change. From now on, scribes
were taught as apprentices within a “scribal family”. Advanced mathemat-
ics (among which everything “algebraic”) disappears from the archaeologi-
cal horizon for more than a millennium; when at least a few second-degree
problems turn up again in the Late Babylonian period?, they are clearly
connected to a surveyors environment once again (areas, for instance, are
now given in seed measures, which makes it impossible to regard them
as arithmetical products). Other evidence too shows that the old surveyors’
tradition, however much adopted by the Old Babylonian scribe school,
had not been swallowed, and that it survived the collapse of the school
and the disappearance of school “algebra”.

% Ed. [MKT 1, 431-432}.
Z1n tablets from around 400 B.C. {dating by . Oelsner, private communication).
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Greece

We do not know how widespread was this descendant of the surveyors’
tradition, but it will have been known at least in Mesopotamia and the
Syrian region, where Greek calculators will have met it. We do not know
exactly when the encounter took place first, but oblique references in Plato’s
works show us that it happened no later than the fifth century B.C. The
use of the term dijnamis by calculators as well as certain geometers also
strongly suggests that geometers of the generation of Theodoros and
Hippocrates of Chios knew of the tradition and were inspired by it*. What
they knew, however, is not at all clear, not least because nothing survives
from their hands beyond a possibly unaltered Hippocratean fragment on
lunes.

Somebody, however, must have known rather much before 300 B.C.
This is evident from Euclid’s Elements I, propositions 1-10, which, in
symbolic translation, tell the following:

1. cx(a,prg+.+t) = cafa,p) + calag) +.+ co{a,t).
O(a) = cafa,p) + calaa-p).
calaa+p) = O} + cala,p).
Oia+b) = O(a) + OB + 2=a(ab).
cale,b) + O %) = O(*Y,).
cx(aa+p) + OF4) = Ola+74).
Ele+p) + Ola) = 2cala+p,a) + O(p); or, alternatively,
O + O(b) = 2ca(ab) + Dla-b).

8. 4ca(a,p) + Oa-p) = Da+p).

9. D)+ O) = 2[0(*%) + Q%)

10. DOla) + Dla+p) = 2[0U7,) + THa+PL)).

Proposition 6 coincides with proposition 5 if only b = a+p, we see.
Proposition 5 corresponds, however, to the situation where the sum of two
segments is known (as in proposition 9, a and b result from the splitting
of a line into unequal segments), and where they are therefore drawn in
continuation of each other in the proof; proposition 6, to the contrary, is
adjusted to a situation where one segment exceeds the other by a given
segment p, and the proof thus draws them in superposition. The same

N U s WN

P The problem of the calculators’ and the geometers’ dynamis, of its probable Babylonian
affinities, and of its fate in Greek later mathematics, is discussed in [Heyrup 1990b).
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relation holds between propositions 9 and 10, while propositions 4 and
7 are similarly but not identically correlated.

It is an old suggestion that this “geometrical algebra” is inspired by
the Babylonian discipline, and is indeed a translation of the results of this
supposedly purely numerical technique into geometrical language (a
translation necessitated by the discovery of incommensurability).

Closer analysis shows, however, that the sequence of propositions has
an odd relation to the total corpus of Babylonian “algebraic” texts.
Everything is indeed connected to the small group of original riddles, and
has the character of quasi-Kantian “critiques” of the naive methods we
already know: proofs that what is currently done is indeed correct. Apart
from N 9 and 10, whose proofs are clearly Greek (presupposing among
other things the Greek concept of the quantified angle), all proofs fall into
two sections. A first part constructs the diagram and proves that its parts
are really squares, rectangles, etc., and that what is supposed to be equal
is really so. When this is done, the second part performs the usual cut-and-
paste operations — no longer “naive”, however, because of the first part
of the proof.

If we look at the single propositions, proposition 1 turns out to be a
justification of the geometrical addition of rectangles which have one side
in common, whereas propositions 2 and 3 concern the special cases where
sides are subtracted from or added to square areas. Proposition 7 is the
rule which on p. 5 was traced to the later third millennium, and proposition
4 is its natural additive companion piece; later evidence, furthermore, shows
them to be related to the two parallel solutions of the problem A = o, d =
B (cf. p. 7). Proposition 6 explains the solution of all problems Q+as = B
(including “the four sides and the area”) and A = o, I-w = f§, while
proposition 5 has a similar relation to rectangular problems A = a, Hw =
B and to as-Q = B. In both cases, Euclid’s diagrams coincide with those
that can be reconstructed from the Old Babylonian procedure descriptions,
and which were shown in Figures 2 and 4. Proposition 8, which serves
nowhere else in the Elements, was probably used to solve problems Q;-Q, =
o, s;15, = B (cf. p. 8); as suggested by the Old Babylonian solution, it may
also have functioned as a kind of lemma in the solution of the problems
Q+(Q; = a, s;xs, = B (cf. p. 14; Euclid’s diagram coincides with the section
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AFNKA of Figure 7), which in full are justified by propositions 9 and 10
(even they are not used further on).

Euclid is not our only witness. in Diophantos’ Arithmetica 1 we find
a few problems of the second degree (evidently in numerical, not in
geometrical formulation) — and all of them belong to what was identified
as the original stock of riddles: A = o, I,xl, = f§ (propositions 27 and 30);
0,20, = 0, s;+s, = p (propositions 28 and 29).

Diophantos’s use of the subscientific inspiration is not too different in
style from what the Old Babylonian school had done. He takes over some
problems (as he does from other subscientific traditions - a whole sequence
of problems from his Book I are indeed stripped versions of cherished
“recreational problems”), but expands in depth and width (much more
radically but perhaps less systematically than the scribe school). The
Euclidean relation to the material, however, is rather different; it does not
even solve problems, instead it proves that the rules and procedures which
underlie the traditional solutions are authentic. This corresponds to the
generally “critical” style of early Greek philosophy (“critical” again in a
quasi-Kantian sense) - the attitude that allows us to distinguish the
“scientific” literate approach from the “scholasticized” style of the Old
Babylonian scribe school. It is not totally alien to the Babylonian style -
one example is the probable elimination of the less than authentic idea that
the diagonal of the standard square be 14, another the introduction of the
“projection” and the concomitant distinction between real lines and
rectangles with width 1. But it is not what dominates; the difference, though
not absolute, is genuine.

Al-Khwarizmi

The influence of the anonymous tradition was not restricted to
inspiration of Old Babylonian “algebra” and Greek “geometrical algebra”.
It was also important in the shaping of “real” {i.e., our) algebra.

It did not provide the stem, it is true. The earliest treatise about the
subject (al-jabr wa’l-muqabalah) which we possess was written by al-
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Kwirizmi in the early ninth century®, but the preface leaves no doubt
that he writes about a preexisting technique.

This technique, we know from a slightly later treatise written by Thabit
ibn Qurrah [ed. Luckey 1941], was the possession of the group of “al-jabr
people” or “followers of al-jabr”. They will have been reckoners of some
kind, and al-jabr itself a subscientific tradition. Combining the evidence
offered by al-Khwarizmi and by Thabit, one may deduct that the technique
was purely numerical and “rhetorical”. It possessed two levels: one of
practical use, representing the unknown in first-degree problems by a
“thing” (Say’; res in the Latin translations, cosa in the Italian abacus
treatises); and another, useless but “brilliant” according to al-Khwarizmi
(i.e., the “recreational” level used to demonstrate professional valour),
dealing with second-degree problems. The former, characterized as “regula
recta” by Leonardo Fibonacci (Liber abaci {ed. Boncompagni 1857: 191, 203
and passim]) and identical with the first-degree arithmds-algebra of Greek
calculators, may not even have belonged to al-jabr proper; the latter, the
core of al-jabr and probably the genuine sense of the term, would reduce
complex second-degree problems to simple standard cases (“possession
and roots made equal to number”, etc., cf. note 19} by means of rhetorical
techniques, and solve these by means of standard algorithms deprived of
argument: “halve the number of roots, multiply it by itself, add the number,
take the square root, subtract half the number of roots; this is the root, and
its square is the possession” in the case »possession and roots made equal
to number (for which al-Khwarizmi and his followers for some 700 years
give the example “a possession and 10 of its roots equal 39”. We do not
know where this tradition originated. In principle it may of course descend
from the surveyors’ riddles or from Old Babylonian “algebra”, but in this
case it has undergone a radical transformation, and no positive evidence

# Anocther treatise on the topic written by ibn Turk may possibly (but need not) be slightly
earlier, but only a fragment has survived - see [Sayih 1962].

Two Arabic editions of al- Khwarizm1's treatise exist ((Rosen 1831]; [Mu3arrafah & Ahmad
1939]). Both of are made from the same manuscript, which {through comparison with Gerard
of Cremona’s twelfth-century Latin translation of the first part) turns out to have been revised
on at least three occasions (see [Hoyrup 1991]). Even the madern translations (English [Rosen
1831], Russian {Rozenfeld 1983} are made from the same manuscript. As far as it goes,
Gerard’s Latin translation is thus the best source for the original wording.
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supports the assumption. Terminological features suggest a connection to
India, but the mathematical technique excludes close bonds with Indian
high-level mathematics as represented for instance by Aryabhata and
Brahmagupta. It is even uncertain whether (and, given Leonardo’s separate
reference to the regula recta long before he comes to al-jabr, not too plausible
that) the rhetorical techniques of the “thing” and the techniques of
“possessions” and “roots” have common origins.

Al-Khwarizmi’s undertaking was not merely to write a brief compen-
dium on the “most useful and on the brilliant” aspects of the technique -
this was what his employer, the Caliph al-Ma"miin had asked for according
to the preface - but also to transform it into a “scientific” subject. In this
context, rules deprived of proofs were unacceptable. Proofs, however, could
be borrowed from another subscientific tradition: the “recreational”
tradition of the surveyors, which - as we shall see - was still alive. For
the case “possession and 10 roots equal 39", al-Khwarizmi presents us with
two different proofs. The first is based on the configuration of Figure 3
(without quadripartition): the possession is represented by a square O(s),
and the 10 roots are distributed as four rectangles c2(2'4,5) along its edges.
This gives a solution s = V[39+4-2%4?]-2-2%, which is proved to be
equivalent with the solution provided by the standard algorithm (s =
V[39+5?]-5); only afterwards (and according to certain traces in the text
only in a revised version of the treatise, cf. [Hoyrup 1991: 15]) another proof
based on the configuration of Figure 2 is presented, which gives us the
solution of the standard algorithm directly.

The other two cases are “Possession and numbers made equal to roots”
and “Roots and number made equal to possession”. Even they are provided
with geometrical demonstrations of a similar kind. In all these demonstra-
tions, al-Khwarizmi uses letters to identify points and surfaces, obviously
inspired by the Greek model though not always in full agreement with
the Greek usage. In some of them, moreover, there is a tainting of
“critique”. Allin all, however, the style is clearly “naive”, and in particular
the characteristic structure of the first demonstration (also more “naive”
than the others in its formulations) leaves no doubt that al-Khwarizmi
borrowed his technique from the subscientific tradition.

Probably for this very reason, Thabit wrote his treatise on the Rectifica-
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tion of the Cases of al-Jabr, in which geometrical proofs with direct reference
to Elements 116 for the first and the third case and Elements 11.5 for the
second case — without even mentioning the existence of al-Khwarizmi's
demonstrations, of whose existence he can hardly have been unaware®,
but which he may not have regarded as real proofs. Abf Kamil, in his work
on the subject (c. 900 C.E.), merges the two approaches, not only presenting
geometrical proofs of the algorithms but also geometrical formulations of
the problems that al-Khwiarizmi had stated arithmetically, reduced to
fundamental cases, and finally solved by the standard algorithms. From
then on nobody appears to have remembered the separate origins of al-jabr
itself and the idea of geometric proofs.

Abi Kamil still sees the “possession” as a basic unknown - he even
shows how to find the “possession” directly, without recourse to the “root”,
and solves problems dealing with the possession and the square on the
possession’®. Gradually, however, interaction with the geometric demon-
strations made the term appear as a frozen metaphor for the second power
of the basic unknown; in the same process, what had once been “root” in
the sense of “square root of the possession” came to be seen as “the root
of the equation”, i.e., the solution. A further reason for this identification
of the “root” with the fundamental unknown will have been the many
problems (present already in al-Khwarizmi’s treatise) where the “thing”
occurs while a problem is reduced to one of the standard cases, after which
its second power is identified with the “possession” and the “thing” itself
with the “root”.

This development was gradual, and may only have reached completion
when the Arabic discipline was translated into Latin and the terminology
thus came to be seen as purely technical. But then the sources leave no
doubt that it had really happened. if we regard Leonardo Fibonacci’s Pratica

* Thabit was connected, as had been al-Khwarizmi a generation before, to the Abbasid Court,
and (at least through his protectors, the banii Miisa), to the very same “library withacademy”,
the “House of Wisdom".

*1In the latter case, Levey [1966: 90] “repairs” the text in order to make it agree with the
interpretation of the “possession” as a square, replacing “possession” by “root”, reading
“possession multiplied by itself” as “the square of the square” and replacing it with “the
square of the root”; but see the Latin translation [ed. Sesiano 1993: 329f, 331, 337, 363].
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geomelrie, the census, the Latin translation of “possession”, is no longer
explained to be represented by a square, as in al-Khwarizmi's work; it is
a geometrical square. In a passage [ed. Boncompagni 1862: 56] which is
obviously based on the section of Gerard of Cremona’s translation of al-
Khwarizmi's work where number is told to fall into three classes, roots,
possessions, and simple numbers without any reference to either [ed. Hughes
1986: 233], Leonardo tells the three natures of numbers and their fractions
to be roots of squares; squares; and simple numbers. What had originally
been nothing but a complement, used to transform a subscientific technique
into mathematics, had conquered the discipline from within. For the third
time, the anonymous surveyors’ lore had imprinted a literate mathematical
tradition decisively.

II1. The evidence

So far this story was largely presented as a scenario, a postulate. But
the sources are there. However, in order to make them speak about a
tradition which almost by definition has left no sources itself, they have
to be used in combination. The purpose of this combination is double. First,
it must show what is shared between the Old Babylonian, the Greek and
the Medieval Islamic tradition. Secondly, it should reveal features that are
not shared but should have been if direct transfer from one literate tradition
to the other had taken place.

Liber mensurationum

The pivotal source is a work which was not even mentioned so far:
a Liber mensurationum, written by one Abii Bakr, probably in the early ninth
century C.E. (or, alternatively, closely dependent even in its terminology
on writings from this epoch - ¢f. [Heyrup 1986: 462, 474]). The Arabic
original appears so far to be lost, but a Latin translation [ed. Busard 1968)
is known which was made in the twelfth century by Gerard of Cremona,



an extremely conscientious translator”.

The treatise deals, one for one, with a variety of geometrical figures:
squares, rectangles, rhombs, isosceles trapezia, asymmetric trapezia with
two acute angles at the base, right trapezia, asymmetric trapezia with one
obtuse angle at the base, triangles of various kinds, circles and circular
sections, and various volumes. Each figure is represented by a standard
example, squares thus by [3(10) {not used exclusively, however), rectangles
by ==(6,8), rhombs by one possessing side 10 and diagonals 12 and 16, etc.

Beginning with the chapters on trapezia, the main topic corresponds
to what we would expect from the title, viz real geometrical computation.
The earlier chapters contain only little of this ~ the chapter on squares thus
only the computation of (1) the area and (2} the diagonal from the side.
It goes on with a sequence of mostly quasi-algebraic problems with a very
familiar look:

3 s+ = 110: 5?7
4. 5+() =140:57
5. (-s=90:s?
6 Q-5 =60:52
7 &= yS'Q: su?
B, =02
9. ;-0 =3 5.7 (Both solutions are given)
10. 4 =200; 5?7
1. d =200, @?
12, s+Q=60:57?
13. (-3s = 18: 5?
4. s5=%Q:s?
15, Q/d =7%:s7?
16. d-s=4:5?
17.  d-s = 5 (no question, refers to the previous case).

18.  d = s5,+4: 5? (no reference is made to N° 16).
19. Q/d=7Y%gs4d

Already in this list we notice the repeated presence of “the four sides” of

71 have analyzed the treatise in question in various publications; see, e.g., [Hayrup 1993],

#The text is either corrupt or intentionally enigmatic (as is indeed N° 50 - the eristic style
of subscientific thought has no been completely left behind).
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the square, as well as the precedence of the sides over the area®”. N 16
and 18 point to the idea that the diagonal of the square is 14, while N° 19
presupposes the approximation 14" — no doubt a later stage® (in both
cases, however, Aba Bakr gives a mathematically correct solution).

Solutions of two types occur; one type, not identified by name but
obviously the solution traditionally — whence “naturally” - belonging with
these problems, is given for every problem; the other, indicated for some
of the problems as a possible alternative, is “according to al-jabr”. The first
turns out to follow the same pattern as the Old Babylonian texts; the second
comes very close to what we know from al-Khwarizmi, but details of the
terminology shows that Abli Bakr makes use of a more archaic treatise
(evidently not by necessity an older treatise, but in any case not significant-
ly younger ~ cf. also {Busard 1968: 71]).

The sections on the basic method remind of the Old Babylonian texis
not only through their mathematical method but also in “rhetorical
structure”. The problem is stated in the first person singular, past tense,
with the single exception that excesses of (e.g.) a length over a width are
told in the present tense, third person singular, i.e. as timeless facts, not
as something “I” have brought about. After a reference to the method
comes a prescription, shifting between the imperative and the second
person singular, present tense. At times the statement is quoted as the
reason for a particular step, in which case the quotation is preceded by
“because he has said”; and at times an intermediate results has to be
remembered, in which case the number is followed by the relative clause
“which you should commit to memory” (the Babylonian version is “which
your head should retain”.

But there is one partial divergence from this agreement. With a few
significant exceptions, the Old Babylonian problems never refer explicitly

® The recurrence of precisely “the four sides and the area” of a square, with this characteristic
order of the members and the distinctive value 10 of the side (all to be found even in Luca
Pacioli's Summa de arithmetica from 1494} is indeed the strongest single argument for continuity.
¥ga does in fact also N° 15: In N 19, as in general in Arabic, %, is spoken of as }; of 4.
Indubitably, N° 15 has arisen from a copying error. Similarly, N° 16 is a slightly distorted
version of N° 18 (the “subtraction by comparison” of N° 18 is the traditional formulation and
the “removal” of N° 16 and its sequel N° 17 a reflection of waning understanding of the
original mode of thought).
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to the “he” who is quoted: they start directly by the statement, with the
implication that it is the master who poses the problem. Only some early
E3nunna texts begin “If somebody has asked you thus:” —~ and exactly this
is the invariable beginning of the problems of the Liber mensurationum.

If we compare the total list of quasi-algebraic problems in Abqi Bakr's
treatise with the corpus of Old Babylonian texts we observe other signifi-
cant similarities and discrepancies. Firstly, all “coefficients” in the Liber
mensurationum are “natural”: the area , the side or the sides, etc. Secondly,
there is no single instance of representation (not even, say, of an area
represented by a line, as in BM 13901 N° 12) - except, of course, in the al-
jabr-solutions, where it is made very clear that the “possession” represents
the area, etc. The basic method manipulates precisely those entities which
define the problem. Finally, the bizarre structure known from AO 8862
N° 1 {cf. p. 15 and Figure 5) recurs repeatedly, in versions with “the two”
and with “the four” sides (the length and the width, or two lengths and
two widths, respectively).

This partial overlap, together with the suggestive discrepancies, fits
the scenario presented in chapter II - but it does not exclude alternative
scenarios, in particular not the possibility that the Liber mensurationum
represent an impoverished descendant of Old Babylonian school “algebra”.
In order to eliminate this hypothesis we have to take into account the
character of the problems that constitute the overlap, and the dating of
the Old Babylonian texts where they occur. All their distinctive character-
istics show that they belong, as riddles carried by a specialists’ profession,
within a subscientific tradition. Even this tradition could, in principle, have
arisen by dilution of the school tradition. If this was what happened,
however, the school problems which show particular subscientific
affinities - the introductory phrase of the E3nunna texts, the characteristic
problem types - would be late; instead, they are invariably to be found
in the few texts to which stratigraphy or palaeography ascribe with
certainty an early date. The subscientific material is connected with the
beginning, not with the dissolution of the school tradition (which, instead,
is characterized by rather messy anthology texts).

That the subscientic tradition which inspired the scribe school was
Akkadian (at least the branch the school masters knew of) follows from
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a number of concurrent observations. Firstly, of course, it was adopted
when the scribe school was Akkadianized. More significant, however, are
two other points. Firstly, the method of quadratic completion, the very trick
that underlies the whole development of second-degree “algebra”, was
designated “the Akkadian fmethod]”?. Secondly, the choice of 10 as the
standard size (obliquely reflected in the 10" of BM 13901 N° 23) belongs
with users of a decimal number system - which in the context of early
second millennium Mesopotamia means Akkadians (the alternative, the
Amorite nomads, are unlikely candidates)™.

Euclid

Once we are so far, the material from Elements II (and Diophantos’
Arithmetica I} can be taken into account. The Liber mensurationum contains
no problems dealing with two squares. If we scrutinize the solutions of
the first two two-square problems of BM 13901 (N* 8 and 9), however,
and compare them with the other two- and multi-square problems, the
outcome is striking (cf. p. 11): All of these follow the general pattern we
would choose by routine — N° 14, for instance, the pattern of

P+(#x+5) = 257257,
and N° 18 that of
P+x+107 P+ (x+2-107P = 237207 .

N> 8 and 9, to the contrary, are solved by a method that cannot be
generalized (as is N° 23), and which points to Elements 11.8-10.
Propositions 1-7, on their part, are closely connected to the set of
problems which we have already been able to ascribe to the early sur-
veyors' tradition. We may hence conclude that the whole group of

¥ This is told in the Susa text TMS IX, see [Hoyrup 1990: 326] - in particular note 143, which
explains why the interpretation of the original text edition, widely accepted in the secondary
literature, is impossible.

% The relation between the sides 10and 10" is a further argument that the subscientific tradition
cannot descend from the school. 107, as we have seen, is a unique choice in the Old Babylonian
corpus; it is highly unlikely that this particular problem, with its strong though fictitious smell
of practical surveying, should have been constructed around the anomalous side in question
and then, by accident, have allowed normalization as 10 when surveyors, hypothetically, saved
a small part of the knowledge of the school from oblivion.
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Euclidean propositions is connected (as are their Diophantine cognates),
not directly to the Old Babylonian school discipline as traditionally claimed
by those who consider it as a geometric reinterpretation of algebraic
knowledge, but to the “naive” riddles of the surveyors.

Further developments

This certainly does not exhaust the sources for the survival of the
surveyors’ tradition and its connections to the literate traditions. Analysis
of Savasorda’s Liber embadorum, of Leonardo Fibonacci's Pratica geometrie,
and of the geometrical part of Luca Pacioli's Summa de arithmetica, shows
that these authors draw, directly or indirectly, on at least three distinct
works or traditions with roots in the surveyors’ tradition (beyond Gerard's
version of the Liber mensurationum, which is used by Leonardo), some of
them already integrated to some extent with Euclidean methods™.
Similarly, Aba Bakr's treatise integrates the material with al-jabr. This final
phase is thus characterized by interactions going in all directions between
the surveyors’ tradition as adopted by the literate mathematical culture,
and the traditions which had once been inspired by it.

Nor does the above exhaust what can be told about the development
of the surveyors’ tradition itself. A whole new group of problems, dealing
with rectangles and their diagonals, appears to have been adopted (whether
from elsewhere or by fresh development cannot be decided) at some
moment between 500 B.C. and 200 B.C. They are found for the first time
in a Seleucid clay tablet (BM 34 568, [ed. MKT IIl, 14-17}), which looks
like a list precisely of new problems and methods: the only “classical”
problem dealing with a rectangular diagonal (A = o, d = B) is indeed
omitted. All these problems recur in the Liber mensurationum, and again
in Leonardo’s Pratica geometrie and in Pacioli’s Summa™. Their general
impact on the development of algebraic thinking, however, appears to be
negligible.

¥ Space does not allow presentation of the evidence - but see {Heyrup 1993].
¥ Once more, space only allows a reference to the fuller discussion in [Hayrup 1993].
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IV. Algebras?

If the surveyors’ riddles have been so influential in the development
of algebra (or algebras), wouldn't it be justified to regard this technique
itself as an early form of algebra?

We may choose the easy way and answer by a definition. Even
definitions, however, may turn out to be inadequate, and before we settle
for one some general considerations will be useful.

“Algebra” nowadays designates a complex, not a single technique or
a simple concept. The technique for solving equations is understood as
algebra —but so is the theory of the solvability of equations, and the theory
of groups etc. Algebra is in fact a collective name for a plurality of algebraic
ways of thought, evidently related either logically or historically with each
other, but certainly neither coinciding nor sharply to be distinguished from
other ways of thought. The algebraic ways of thought may be said to
constitute today a kind of Wittgensteinian natural family. Today only: if we
go back in time, the various components of the family do not belong
together. Thus Elements X, which nobody would otherwise identify as a
piece of algebra, comes close to modern group theory in its classification
of irrational magnitudes and determination of the relation between the
classes.

Michael Mahoney [1971: 372] proposes that we distinguish between
“algebra” and a more general “algebraic approach”, and takes the following
three characteristics to delimit modern algebra: (i) the use of a symbolism
which allows us to extract “the structure of a problem from its non-essential
content”, and on which we may operate directly; (ii} the search for
“relationships (usually combinatory operations) that characterize or define
that structure or link it to other structures”; (iii} abstraction and absence
of “any ontological commitments”. To this we may add, with Viete, that
(iv) algebra, if at all to be characterized as such, should be analytic; in fact,
without this analytic character, Mahoney’s criteria give no sense.

Most of what we have looked at - the surveyors' riddles, Old Babylon-
ian school “algebra”, al-jabr — was analytic; as far as Elements 11 is con-
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cerned, the synthetic presentation refers implicitly to an underlying
analysis. None of it, on the other hand, fuifils Mahoney’s three criteria to
the letter, but the shortcomings in this respect differ from case to case.

The surveyors' riddles fail on all accounts. A technique that operates
directly with the entities that define its problems is eo ipso ontologically
committed, and does nothing to extract the structure of problem from “non-
essential content”; the predilection for a few fixed configurations (e.g, the
10x10-square) underscores the point. The lack of systematic variation even
of coefficients (not to speak of problem types) discloses a corresponding
lack of interest in what defines or characterizes the structures in question.

Elements 11 is also ontologically committed to geometry — only later in
the work, when investigating “magnitudes” in general (in particular in
book V, the theory of proportions) is Euclid leaving ontology behind. But
the heart of the “critical” undertaking is the question why the techniques
work, and thus implicitly an attempt to separate the essential structure
from non-essentials (however much this separation is hampered by the
ontological allegiance - the more general theory of the “application of
areas” in book VI, however, can be seen as a further effort to eliminate
non-essentials).

The “critical” approach of Elements I is a symptom, first of all, of the
“scientific” character of Greek mathematics, and thus not so much of
“algebraization”®. Babylonian school “algebra” - “critical” only to a
modest extent — followed a different path. Most of the texts deal with
geometrical entities, it is true, which might be taken as an expression of
ontological commitment. Modern school teaching of algebra is no different,
however: its x’s and y's mostly stand for pure numbers (scarcely more
abstract than the ideal geometrical plane). Geometry and numbers thus
make up the basic conceptualizations of Old Babylonian “algebra” and
modern school algebra, respectively; but in both cases, the basic entities
may represent entities of different ontological character. By using geometry
as representation, the Babylonian technique shows itself to be functionally

* The parallel aspect of Mahoney’s criteria shows, correspondingly, thal modern algebra, and
indeed algebra since Vidte, resulted when “scientific’ mathematics took possession of the
algebraic technique of the maestri d’abbaco and Rechenmeister.
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abstract, functionally devoid of ontological commitment™,

The systematic variation of problems, a distinctive characteristic of the
Old Babylonian school, was certainly not meant as a search for underlying
structures; to some extent it reflects an interest in probing the tools of the
profession, but its main purpose was probably that of training (not least,
training the use of the sexagesimal number system). None the less — the
surviving texts leave no doubt about this — it led to at least intuitive insight
into formal structures and relationships.

In many respects, the case of al-jabr is similar. Even here, critique and
the understanding of formal structures and relationships were not primary
aims but still the outcome at least at the intuitive level. Al-jabr, even more
explicitly than the Old Babylonian technique, was used (from the beginning
of the tradition as we know it) for representation, and its “possessions” and
“roots” were certainly functional abstracts. The question of the basic
conceptualization, however, is more complex. Fundamentally, the “pos-
session” is an amount of money; yet already in al-Khwarizmi's treatise it
has come to be primarily a number. Later authors, moreover, under the
impact of the geometrical demonstrations, tended to use this geometry as
their basic conceptualization.

All three literate traditions thus agree with some of the criteria which
characterize the modern algebraic mode of thought (“algebra” fout court)
but not with all. Whether they are algebras can thus only de decided by
fiat, by definition. Since the Euclidean approach is primarily related to
modern algebraic though by being critical, i.e., in so far as it shares the
general character of Greek mathematics, it seems reasonable ot to regard
it as algebra; the uses to which Apollonios puts the technique of application
of areas — uses which induced Zeuthen [1886] to characterize it as
“geometric algebra” - should rather make us see it as a substitute for algebra.

On the other hand, since Modern (and ultimately modern) algebra arose
when the critical approach was imposed upon the Renaissance descendant
of al-jabr (which was not significantly different from the discipline of al-

* Fifty years’ misreading of the geometrical texts as dealing with nothing but numbers and
arithmetical operations shows (it may be added) that the ontological commitment to geometry
cannot be strong; the structural features of the text corpus that exclude the numerical
interpretation are obviously not too conspicuous.
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Khwarizmi and Aba Kamil), it seems sensible to regard al-jabr as a pre-
Modern, pre-critical algebra (if we do not, Cardano’s Ars magna is no book
about algebra). Finally, since the Old Babylonian technique agreed with
our criteria grossly to the same extent as did al-jabr, even this will have
to be accepted as a pre-critical algebra.

The surveyors’ tradition of riddles about measurable lines and areas,
itself no algebra according to any reasonable delimitation, was thus the
parent of one algebra (the Old Babylonian version), an important ingredient
in the transformation of the subscientific al-jabr technique into another
algebra, and finally the inspiration for the first critical investigation of
algebraic patterns of thought and indeed for the creation of a substitute
for algebra. Quite an impressive score for a tradition whose very existence
all its literate legatees and debtors leave unmentioned.
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