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Abstract

Italian fourteenth- and fifteenth-century abbacus algebra presents us with a number of
deviations from what we would consider normal (or proper) mathematical behaviour:
the invention of completely false algebraic rules for the solution of cubic and quartic
equations, and of rules that pretend to be generally valid but in fact only hold in very
special cases; and (in modern terms) an attempt to expand the multiplicative semi-group
of non-negative algebraic powers into a complete group by treating roots as negative
powers. In both cases, the authors of the fallacies must have known they were cheating.
Certain abbacus writers seem to have discovered, however, that something was wrong,
and devised alternative approaches to the cubics and quartics, and developed safeguards
against the latter misconception.

The paper analyses both phenomena, and correlates them with the general norm
system of abbacus mathematics as this can be extracted from the more elementary level
of the abbacus treatises.
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Kreuger, Enron and abbacus algebra: three scandals

There may still be Swedes who consider Ivar Kreuger a businessman of
genius (at least when I was young there were). After his suicide in 1932 and the
opening of his books the rest of the world, in so far as it remembers him and
his attempt to create a world monopoly of matches, tends to agree that he was
a crook blown up into heroic wide-screen format. That he succeeded as a star
for so long – and that the Enron directors did so seven decades later[1] –
depended on the construction of a scheme so complex that nobody was able to
look through it.

The history of abbacus mathematics presents us with a similar episode, and
some members of the tribe of historians of mathematics wave a patriotism that
recalls that of certain Swedes – a phenomenon which illuminates particular
features of the mathematical endeavour, just as Kreuger and Enron illuminate
particular aspects of the market economy. But before that story can be told, the
notion of “abbacus mathematics” should itself be explained.

Abbacus mathematics (Italian abbaco) is known from Italy (primarily from
the region between the Genova-Milan-Venice arc to the north and Umbria to
the south) from the late thirteenth to the mid-sixteenth century (but with an
aftermath which makes much of its contents familiar to anybody who learned
arithmetic in junior secondary school in the 1950s, as I did). Its social base was
the “abbacus school”, a school frequented by merchant and artisan youth (but
also sons of the aristocracy) for two years around age 11–13. In smaller cities,
the abbacus masters were often employees of the city, in large cities like Florence
and Venice they were run on a completely private basis.[2]

It has been commonly assumed that the abbacus school and its mathematics
descended, at most with minor secondary contributions, from Leonardo Fibonacci,
his Liber abbaci and his Pratica de geometria. Thus, according to Elisabetta Ulivi
[2002b: 10], the libri d’abbaco “were written in the vernaculars of the various
regions, often in Tuscan vernacular, taking as their models the two important

1 I abstain from referring to corresponding Danish affairs, not because they do not exist
(they do, and mostly have as protagonists leading members of the major, “liberal”
government party, reduced to ex-members only after they have been discovered or
convicted) but because readers may not know about them. Those who are curious and
read Danish may find information on specific cases at http://da.wikipedia.org/wiki/
Klaus_Risk%C3%A6r_Pedersen and http://da.wikipedia.org/wiki/Peter_Brixtofte.
2 A convenient survey of the topic is [Ulivi 2002a].
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works of Leonardo Pisano, the Liber abaci and the Practica geometriae” – while,
as Warren Van Egmond’s sees it [1980: 7], all abbacus writings “can be regarded
as [...] direct descendants of Leonardo’s book”.

On close analysis of the texts involved – early Italian abbacus books, texts
of a similar kind from the Ibero-Provençal area, and the Liber abbaci – this turns
out to be a mistake, due to what at another occasion I called “the syndrom of
the Great Book”: the “conviction that every intellectual current has to descend
from a Great Book that is known to us” [Høyrup 2003: 11]. Instead, as argued in
[Høyrup 2005b], the beginning of abbacus mathematics must be traced to an
environment which precedes the Liber abbaci; which was known to Fibonacci;
which (if it had not fully reached Italy in his days) he may have encountered
in Provençal area; but which is likely to have spanned both sides of the maritime
and the religious divide of the Mediterranean world. The beginning of abbacus
algebra, taking place in the early fourteenth century, seems to be inspired by
borrowings from an environment located in the Provençal-Catalan area, with
a Catalan rather than a Provençal barycentre. This is argued in [Høyrup 2006],
on which I draw for the following outline of the events. The precise location
of the area is unimportant for what follows; it is more important that the
inspiration did not come directly from Arabic “scientific” algebra as represented
for instance by the treatises of al-Khwārizmı̄, Abū Kāmil and al-Karajı̄.

The “scandal” belongs precisely within the field of algebra. The earliest extant
treatment of the subject (and plausibly the earliest treatment at all in Italian
vernacular) is found in Jacopo da Firenze’s Tractatus algorismi, written in
Montpellier in 1307.[3] In what in my transcription of the manuscript is labelled
chapters 16–17 – the algebra section proper – rules are given for the following
cases

(1) αt = n
(2) αC = n

(3) αC = βt
(4) αC+βt = n

(5) βt = αC+n
(6) αC = βt+n

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––
(7) αK = n
(8) αK = βt

(12) αK = βC+γt
(13) αCC = n

(17) αCC+βK = γC
(18) βK = αCC+γC

3 [Høyrup 2000a] is an edition of the algebraic chapter with mathematical commentary,
[Høyrup 1999] is a preliminary transcription of the complete Vatican manuscript (Vat.
lat. 4826); the other two extant manuscripts of the treatise (Milan, Trivulziana MS 90,
Florence, Riccardiana MS 2236), of which [Høyrup 2007a] is a semi-critical edition,
represent a redaction from which the algebra chapter is eliminated. Both are also included
in my forthcoming Jacopo da Firenze’s ‘Tractatus Algorismi´ and Early Italian Abbacus Culture
[2007b].
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(9) αK = βC
(10) αK+βC = γt
(11) βC = αK+γt

(14) αCC = βt
(15) αCC = βC
(16) αCC = βK

(19) αCC = βK+γC
(20) αCC+βC = n

Here, t stands for thing (cosa), C for censo, n for number (numero), K for cube (cubo),
CC for censo di censo. Censo is the product of thing with thing, cubo the product
of censo with thing, and censo di censo the product of censo with censo.[4]

For the first six cases, one or more illustrating examples are given, for the
rest only rules. All twenty rules are valid, since all the cubic and quartic cases
(7)–(20) are either homogeneous, biquadratic or reducible to one of the cases
(1)–(6) through division. No mathematical scandal so far.

But scandal was not far away, neither in time nor in space. In 1328, and still
in Montpellier, a certain Paolo Gherardi wrote a Libro di ragioni, another abbacus
book containing an algebra section.[5] Gherardi repeats most of Jacopo’s rules
and examples – dropping however those of the fourth degree, offering only one
example for each case, changing the numerical parameters in some cases, and
replacing two of the examples by entirely different ones.

The important innovations are two. Firstly, Gherardi introduces four new
cases, one of which (G1) is rather trivial and the other three (G2–G4) not
resolvable by means of techniques known at the time:

4 These terms come from Arabic algebra, which is the evident basis for all abbacus algebra.
Cosa translates šay , censo comes from Latin census, a translation of māl, “possession” or
“amount of money”. Originally, Arabic al-jabr was centred around riddles dealing with
a possession and its (square) root, for instance “a possession and ten of its roots equal
39 dinars”. Al-Khwārizmı̄, in his presentation of the topic (which may be the earliest
presentation at all in a systematic written treatise) still remembers this: when he has found
the root, he multiplies it by itself in order to find also the possession. But already in his
treatise these riddles with their solutions serve as representation of second-degree
problems, in which the fundamental unknown is a šay , whose second power is identified
with a māl (whence the šay becomes its root).

Almost all abbacus algebras do as Jacopo: the “roots” are replaced by “things” in
the formulation of the rules, and the number is a number, not (as in the Latin translations
of al-Khwārizmı̄) a quantity of dragmas. This is one of several reasons that abbacus algebra
(in particular Jacopo’s algebra) can be seen not to descend from the “learned” level of
Arabic algebra but from a type which has disappeared from the sources – probably from
a practice which was integrated with the teaching of commercial arithmetic, just as abbacus
algebra itself.
5 An edition of this chapter, with translation and mathematical commentary, is [Van
Egmond 1978]. The whole treatise is found (without translation and mathematical
commentary) in [Arrighi 1987].
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(G1) αK = √n
(G2) αK = βt+n

(G3) αK = βC+n
(G4) αK = γt+βC+n

For the latter three, Gherardi gives rules modelled after those for the second
degree – for (G2) and (G3) those which hold if K is replaced by C, for (G4) the
rule for the equation

aC = βt+(γ+n)
Finally, Gherardi offers illustrative examples for those higher-degree cases where
Jacopo had given none – all of a kind that is easily constructed, whereas some
of those proposed by Jacopo are so intricate that a modern reader does not
immediately see that they lead to second-degree equations. For instance, Jacopo’s
illustration of case (6) runs as follows (the translation is mine, as all translations
in the following where no translator is identified):

Somebody has 40 fiorini of gold and changed them to venetiani. And then from those
venetiani he grasped 60 and changed them back into fiorini at one venetiano more per
fiorino than he changed them at first for me. And when he has changed thus, he found
that the venetiani which remained with him when he detracted 60, and the fiorini he
got for the 60 venetiani, joined together made 100. I want to know how much was
worth the fiorino in venetiani.

Gherardi’s examples for the third-degree cases all follow the model used in
Jacopo’s illustration for case (3):

Find me 2 numbers that are in the same proportion as is 4 of 9. And when one is
multiplied against the other, it makes as much as when they are joined together. I
want to know which are these numbers.

Such illustrations are of course easily constructed for any given polynomial
equation and look more complex than the equation itself without really being
so – for instance Gherardi’s illustration [ed. Arrighi 1987: 106] of the case (G4)
“cubes are equal to things and censi and number”:

Find me three numbers which are in proportion as 2 to 3 and as 3 to 4, and that the
first multiplied by itself and then by the [same] number makes as much as when
the second is multiplied by itself and the third number is added above, and then
12 are added above.

As we shall see, Gherardi did not invent all of this, he copied it from an earlier
source. We may ask why he did not discover that he was filling his treatise with
nonsense. The answer is that all the wrong solutions contain irreducible radicals,
and that Gherardi made no attempt to find the approximate value of the
solutions. This was no idiosyncrasy. Even Jacopo, when finding a correct
irrational solution to one of his examples, leaves things there. Being satisfied
with exactly expressed but irrational solutions remained the habit of abbacus

- 4 -



algebra. In contrast, abbacus geometry always approximated the square roots that
turned up in applications of the “Pythagorean rule” (as it must be called in a
context where it was always presented as a rule without proof).[6] This difference
already tells us that algebra and geometry served different purposes: geometry
(as a whole, not necessarily each single problem) had to lead to results that were
applicable in practice, and which could thus be compared to the reading of a
yard stick. Abbacus algebra, at least beyond the first degree, must in some sense
(which we shall get closer at below) have been a purely theoretical discipline
without intended practical application.

Almost honest business

If Gherardi does not represent the beginning of false solutions, nor is he their
end. In 1344, Master Dardi da Pisa (as unknown as Jacopo and Gherardi) wrote
a treatise Aliabraa argibra, the earliest extant European-vernacular treatise
dedicated to algebra alone.[7] After presenting the arithmetic of roots and
binomials and giving geometric demonstrations for the correctness of the rules
(the latter are very rare in abbacus algebra, and in particular not present in any
of the earlier treatises) Dardi deals with 194 “regular” cases and 4 whose rules
are told only to hold under special conditions (which are not analyzed).[8] The
huge number of regular cases (all with the exception of two lapses solved

correctly) is reached because of ample use of radicals – for instance in these ways:

αt+β√K = γC
αCC = n+

3
m

αt+β√C = γC
αCC+n+ = βC

3
m

For a generation which has come to see no difference between rational and

6 This role of square roots and their approximation was so important for geometry that
the topic was mostly taught in the geometry chapter of abbacus treatises (when these
were ordered in separate chapters and geometry was actually covered). In the Latin
algorisms, in contrast, root extraction (not approximation) was one of the arithmetical
“species”; they contain no geometry.
7 The extant complete manuscripts are younger. One is from c. 1395 (Vatican, Chigi M.VIII
170), one from 1429 (Arizona State University Library, Tempe), and one from c. 1470
(Siena, Biblioteca Comunale, I.VII.17). Apart from lost sheets and some reordering of the
material in the last manuscript, there are no major differences between the three. Of a
fourth manuscript from c. 1495 (Florence, Biblioteca Mediceo-Laurenziana, Ash. 1199)
I have only seen the extract in [Libri 1838: III, 349–356], but to judge from this it appears
to be very close to the Siena manuscript.
8 [Van Egmond 1983] lists all the cases in symbolic transcription.

- 5 -



irrational numbers, to see all the “cossic numbers” (as thing, censo etc. were to
be called when abbacus algebra reached Germany under the name of Coss) as
powers of the same unknown and to express everything in symbols and not in
words, these are trivial extensions – and by reducing many of the cases to other
cases that are dealt with previously, Dardi shows that he understood things in
the same way without having access to our tools (tools without which the
extensions are often not trivial).

All of these cases are illustrated by one or more examples. All are pure-
number problems, with a few exceptions either about a single number, about
two numbers with sum 10, or about numbers in given proportion.

Then there are the four “irregular” cases, cases governed by non-general
rules. It is clear from Dardi’s words that he knows these rules to be valid only
when the equations to which they correspond have particular properties – but
he states that “by some accident the said rules may appear in some computation”.

The cases in question are these:

γt+βC+αK = n
δt+γC+βK+αCC = n

αt+γC+αCC = n+βK
δt+αCC = n+γC+βK

All four are provided with examples, the former two of which reveal how the
rules have been found. We may look at the first example – a capital grows in
three years with composite interest from 100 £[9] to 150 £ (Jacopo has the same
problem, only with two years; it illustrates his case (4)). If the value of the capital
after 1 year – or, even simpler, the value of 1 £ after one year – had been taken
as the thing, we would have been led to a homogeneous equation,

t3 = 1500000 respectively t3 = 11/2 .
Instead, Dardi takes the monthly interest of 1 ß expressed in δ as his thing. The
yearly interest of 1 £ is therefore 1/20 £ thing. The same choice is made by Jacopo,
and in the present case it leads to the equation

100+15t+3/4C+1/80K = 150 .
The rule used to solve it is

t = ,
3

(
γ/α
β/α

)3 n
α

–
γ/α
β/α

– or rather, since the rule first tells to divide by [the coefficient of] the cubes and
afterwards speaks only of the resulting coefficients,

9 £ stands for lira/lira. 1 £ = 20 ß (soldi), 1 ß = 12 δ (denari). Whoever is familiar with the
traditional British pound-shilling-penny system will recognize it.
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t = ,
3

(
γ́
β´

)3 n´ –
γ́
β´

where β´ = β/α, etc. At first view, this may seem an astonishingly good guess
(since it works), but it requires nothing beyond some training in the arithmetic
of polynomials and awareness that a different position for the thing leads to a
homogeneous equation:

For simplicity, let us consider the homogeneous equation
(t+φ)3 = µ

(in the actual problem, φ = 20, µ = 12000). Performing the multiplication we get
φ3+3φ2t+3φC+K = µ or 3φ2t+3φC+K = µ–φ3 ,

which should correspond to
γ́ t+β´C+K = n´ .

Therefore, φ = γ́ /β´, n´ = µ–φ3, µ = φ3+n´ = (γ́ /β´)3+n´. Now, the solution obtained
from the homogeneous equation is

t = –φ ,
3

µ
that is,

t = ,
3

(
γ́
β´

)3 n´ –
γ́
β´

exactly Dardi’s rule. Whoever invented the rule must have done so from a
numerical example, but following the numerical steps precisely and seeing from
which operations the coefficients arise it would not be too difficult to see that
the 20 of our example results, in the words of the rule, “when [the coefficient
of] the things [is]/are divided by [the coefficient of] the censi”; similarly for the
rest of the rule – and similarly for the remaining three irregular rules.

The inventor of Gherardi’s rules may have been a pure bluffer – for imitating
the rules for the second case it was not even necessary to know how these were
derived, all that was needed was to know the rules themselves. In contrast, the
rules for Dardi’s irregular cases, guesses though they are in a certain sense, can
only have been guessed by someone who understood polynomial operations
quite well.

The irregular rules turn up in many later manuscripts, mostly without the
warning about their restricted validity. One of these, an anonymous Libro di conti
e mercatanzie [ed. Gregori & Grugnetti 1998] from c. 1395, is related to Gherardi’s
Libro di ragioni in a way which shows them to build on common sources (also
shared with an equally anonymous Trattato dell’Alcibra amuchabile from c. 1365
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[ed. Simi 1994].[10] Quite apart from the internal evidence (the use of a business
dress when all other examples are in pure numbers, and the reservations
expressed by Dardi himself), this is strong evidence that these rules were
borrowed by Dardi and thus that they antedate 1344, just as the false rules in
Gherardi’s Libro di ragioni must have been borrowed by Gherardi from a source
shared with the Trattato dell’Alcibra amuchabile. We may conclude that the presence
of regular higher-degree cases in Jacopo’s algebra created a fashion or a need
to do even better – a need which was then fulfilled, first by the invention of false
rules that could not be controlled,[11] and then by the construction of irregular
rules that worked if tested on the proposed example.[12] We shall discuss this
process below, but for the moment only observe that false solutions survived
for long. Luca Pacioli, after having made the check proposed in note 11, pointed
out in his Summa de Arithmetica [1494: 150r] that so far no rule had been found
for the solution of cases where, as he says, the three algebraic powers that are
present are not “equidistant”. On that background, del Ferro’s genuine solution
of the cubic equation and Cardano’s publication of a corresponding proof can
be seen not only to be mathematically impressing but to deliver what others were
known by then to have promised in vain for two centuries. But Pacioli’s book
did not kill off the fraud completely – in 1555, the Portuguese Bento Fernandes
still included them in his Tratado da arte de arismetica [Silva 2006: 16, 30–33].

Aiming high – and failing honestly

If we are to learn from the abbacus masters about what mathematics is it
does not serve to consider solely such aspects of their activity as correspond to
what we routinely expect from a mathematician. So, we shall go on with another
anomaly.

It is found in yet another Vatican manuscript, Vat. Lat. 10488 (fol. 29v–
30v):[13]

10 For this, see [Høyrup 2006: 18–25].
11 That is, unless one constructed alternative examples with (most conveniently from) a
known integer solution; and that seems not to have been a widespread idea.

12 This test was easy: in the example that was analyzed above, t = –20. Since this
3

12000

is the yearly interest, the yearly growth factor of the capital is 1+1/20t = . After
3

3/2
three years the capital is thus multiplied by 3/a, just as required.
13 I use the most recent of the two discordant foliations.
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Algebra
¶ These are some computations collected from a book made by the hand of Giovanni

di Davizzo dell’abbaco from Florence written the 15th of September 1339, and this
is 1424.

¶[1] Know that to multiply number by cube makes cube
and number by censo makes censo
and number by thing makes thing

¶[2] And plus times plus makes plus
and less times less makes plus
and plus times less makes less
and less times plus makes less.

¶[3] And know that a thing times a thing makes 1 censo
and censo times censo makes censo of censo
and thing times censo makes cube
and cube times cube makes cube of cube
and censo times cube makes censo of cube

¶[4] And know that dividing number by thing gives number
and dividing number by censo gives root
and dividing thing by censo gives number
and dividing number by cube gives cube root
and dividing thing by cube gives root
and dividing censo by cube gives number
and dividing number by censo of censo gives root of root
and dividing thing by censo of censo gives cube root
and dividing censo by censo of censo gives root
and dividing cube by censo of censo gives number
and dividing number by cube of cube gives cube root of cube root
and dividing thing by cube of cube gives root of cube root
and dividing censo by cube of cube gives root of root
and dividing cube by cube of cube gives cube root
and dividing censo of censo by cube of cube gives root
and dividing censo of cube by cube gives number———— censo[14]

and dividing number by censo of censo of censo of censo gives root of root of root
of root

and dividing number by cube of cube of cube of cube gives cube root of cube root
of cube root of cube root.

14 From later versions it can be seen that this line was originally
“and dividing censo of cube by cube of cube gives number”

Somewhere in the process, this had become
“and dividing censo of cube by cube gives number”

Noticing the error, somebody – presumably the writer of the manuscript, since the
correction is made there – discovered that this was wrong, and stated a correct result
(but of a division Giovanni had not intended).
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¶[5] If you want to multiply root by root, multiply root of 9 times root of 9, say, 9 times
9 makes 81, and it will make the root of 81, and it is done.

To divide root of 40 by root of 8, divide 40 by 8, it gives 5, and root of 5 let it be.
To divide root of 25 by root of 9, divide 25 by 9, it gives root of 27/9, done.
If you want to multiply 7 less root of 6 by itself, do 7 times 7, it makes 49, join 6

with 〈49, it makes〉 55, and 7 times 6 makes 42, then multiply 7 times 42, it makes
294, and multiply then 4 times 294, it makes 1176, I say that 55 less root of 1176
will it make when 7 less root of 6 is multiplied by itself.

¶[6] If you want to detract root of 8 from root of 18, do 8 times 18, it makes 144, its root
is 12, and say, 8 and 18 makes 26, detract 24 from 26, and root of 2 will remain,
done.

It you want to join root of 8 with root of 18, do 8 times 18, it makes 144, its root is
12, and say, 12 and 12 makes 24, and say, 8 and 18 makes 26, and join 24 and
26, it makes 50, and root of 50 will the number be.

If you want to multiply 5 and root of 4 times 5 less root of 4, do thus and say, 5 times
5 makes 25, and say, 5 times root of 4, do thus, bring 5 to root, it makes 25, and
do root of 25 times root of 4, it makes root of 100, and make 5 times less root
of 4, it makes less root of 100, 25 still remains, now detract 4 from 25, 21 remains,
and 21 they make.

If you want to multiply 7 and root of 9 times 7 and root of 9, do 7 times 7, it makes
49, put (above) this 9, you have 58, and 9 times 49 makes 441, multiply by 4,
it makes 1764, you have that it will make 58 and root of 1764, which is 42, done.

If you want to divide 35 by root of 4 and by root of 9, do thus, from 4 to 9 there
is 5, multiply 5 times 5, it makes 25, and say, bring 35 to root, it makes 1225,
now say, 4 times 1225 makes 4900, divide by 25, it makes 196, and do 9 times
1225, it makes 11025, divide by 25, it gives 441. We have that dividing 35 by
root of 4 and by root of 9 gives root of 441 less root of 196, and it is done.

This is followed by 19 rules for solving reduced equations of the first, second,
third and fourth degree: Jacopo’s 20 cases, with two omissions, and a new false
case which cannot be read because somebody discovered that it did not work
and glued a paper slip over it (this slip has been removed or fallen off, but the
glue has made the paper as dark as the ink).

First of all we should know that Giovanni’s composition of the “cossic
numbers” is multiplicative and not made by nesting: cube of cube stands for t3 t3,
not for (t3)3. This corresponds to what we find with Diophantos and in Arabic
algebra.[15] Once we know this we see that the first and third paragraphs

15 In the present case κυβοκυβος respectively kāb kāb. None of these involve the genitive
– in the case of the Arabic because a possibly spoken genitive ending -in was not written

(but presumably a genitive would also ask for the article, kāb al-kāb). At least in writing
none of them therefore suggests nesting, as does the genitive used in the Italian and Latin
translations. In the short run this caused a problem to the abbacus writers; for instance,
it probably caused Dardi’s two lapses, cf. [Van Egmond 1983: 417]. In the longer run,
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present what we might call the multiplicative semi-group of non-negative
algebraic powers through examples; the interrupting second paragraph gives
the “sign rules”. So far, everything goes well; from the correction made in the
Vatican manuscript at a later point (see note 14) it is also clear that the author
of this manuscript understood it well, and was able to perform divisions within
the semi-group to the extent they can be performed.

But Giovanni does not stop here. Skipping the divisions that correspond to
multiplications within the semi-group (which he may have considered unproble-
matic) he jumps to those that have no such solution. Obviously what he does
is wrong, and he should have discovered that if he had been a bit careful. Indeed,
if “dividing number by thing gives number”, then, since the quotient multiplied
by the divisor gives the dividend (any abbacus algebraist would know that, it
is often told explicitly in the texts), number multiplied by thing should give
number. But “number by thing makes thing”, Giovanni knows it well and states
it in paragraph [2].

However, the nonsense conceals a system. If, in this paragraph, we read “root”
as t–2, “cube root” as t–3, if we compose these “roots” multiplicatively, and if we
finally interpret “number” when occurring as a result as t–1 – then everything is
perfect, and the semi-group is extended into a group.

We shall return to the implications of Giovanni’s undertaking as a whole.
At this point we may try to trace how he thought. The background appears to
be an intuitive and only implicit arithmetization of the series of algebraic powers.
Multiplying by censo, so more or less he may have reasoned, we take two steps
“upwards”; multiplying by cube we take three steps. Multiplying cube by censo
we get censo of cube (this is stated). Dividing censo of cube by censo we therefore
get cube, two steps “downwards”. Dividing instead by cube we have to take
three step downwards. Now multiplying the thing by itself we get a censo, and
taking the root of the censo we return to the thing; similarly, the cube root of
a cube is a thing. Therefore “root” must be some kind of opposite of the censo,
and cube root some kind of opposite of cube. Taking two steps upwards from
number (number by censo) gives us censo, taking two steps downwards (number
divided by censo) therefore root; taking three steps downward must give us cube

however, the linguistic trouble was probably what drove the trend toward an interpreta-
tion through nesting (common in the later fifteenth century, and practised for instance
by Pacioli). Since the creation of new names for the fifth and seventh power (etc.) then
caused new confusion, this may have been one of the driving forces behind the
introduction of numerical exponents (first in Chuquet and Bombelli).
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root.
This explains everything except those rules where the result is “number” –

for instance “dividing censo by cube”. Here the idea must more or less have been
that “root” is a “second root”, just as censo is a second (being thing times thing,
and corresponding to two steps in multiplication and division); correspondingly,
the cube root is a “third root”. Therefore, the result of censo divided by cube
must be a “first root”, which Giovanni then identifies with number (probably
because it seemed to him that “thing” was an impossible choice, being the result
of the division of cube by censo). If we take care that this is only the meaning
of “number” when it results from a division, everything becomes correct – but
like Hogarth’s false-famous perspective drawing only locally correct, and absurd
as soon as one tries to move back and forth through the whole network of
possible operations.

Even Giovanni’s fallacies were borrowed faithfully. As we have seen, his
text was copied in 1424 by somebody who understood it well enough to repair
a copying error correctly. Later Giovanni’s system turns up in Piero della
Francesca’s Trattato d’abaco (earlier than c. 1480 ) [ed. Arrighi 1970: 84f] with some
change of the order and without the mistake discussed in note 14, and almost
identically in Giovanni Guiducci’s Libro d’arismetricha from c. 1465 – see [Giusti
1993: 205]. Finally, Giovanni’s first 15 rules turn up in exactly the same order
in Bento Fernandes’ Tratado da arte de arismetica from 1555 [Silva 2006: 14] (which
thus stops just before the corrupted line, which may be no accident). Piero, like
Fernandes, also repeats the false algebraic rules, apparently without suspecting
that something is rotten. Evidently Piero, claiming to write about “certain abbacus
things that are necessary for merchants” [ed. Arrighi 1970: 39], could do so
because neither he nor any merchant had the least operatory need for it.

A better intuition

Intuitions like those which can be read out of Giovanni’s system can be found
in other abbacus writings, and they often worked better. One which is also made
much more explicit gives a proof for the sign rule “less times less makes plus”.
The earliest known occurrence is in Dardi’s Aliabraa argibra:[16]

Now I want to demonstrate by number how less times less makes plus, so that every
times you have in a construction to multiply less times less you see with certainty
that it makes plus, of which I shall give you an obvious example. 8 times 8 makes
64, and this 8 is 2 less than 10, and to multiply by the other 8, which is still 2 less

16 I translate from the Vatican manuscript, Chigi M.VIII.170, fol. 5v.
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than 10, it should similarly make 64. This is the proof. Multiply 10 by 10, it makes
100, and 10 times 2 less makes 20 less, and the other 10 times 2 less makes 40 less,
which 40 less detract from 100, and there remains 60. Now it is left for the completion
of the multiplication to multiply 2 less times 2 less, it amounts to 4 plus, which 4
plus join above 60, it amounts to 64. And if 2 less times two less had been 4 less,
this 4 less should have been detracted from 60, and 56 would remain, and thus it
would appear that 10 less 2 times 10 less two had been 56, which is not true. And
so also if 2 less times 2 less had been nothing, then the multiplication of 10 less 2
times 10 less 2 would come to be 60, which is still false. Hence less times less by
necessity comes to be plus.

The passage is followed by a diagram:

The reason this must be characterized at least in part as an intuition and not
as a genuine piece of analysis is the final part: instead of finding that the
contribution of less 2 by less 2 must be the lacking 64–60 = 4, Dardi expects (from
similarity) that it must be either an additive or a subtractive contribution of 4,
or possible nothing at all, and then eliminates the second and the last possibility,
leaving only the first one.

Luca Pacioli repeats the argument in his Summa [1494: 113r], now with the
diagram in the margin, and with an explicit reference to the cross-multiplication;
he finds the very concept to be absurda and an abuse but none the less necessary –
Pacioli, indeed, thinks in terms of negative numbers, not merely subtractive
contributions to an equation as does Dardi.[17] Apart from that the only innova-
tion is that the alternative to the alternative is now (–2) (–2) = –2, not (–2) (–2) =
0.

An alternative to the false solutions

Some abbacus authors thus had better intuitions than others. Similarly, some
of them understood better than others that the false solutions to the higher-degree
equations were false and even devised alternatives.

One such alternative is described in yet another anonymous manuscript from
the outgoing fourteenth century (Florence, Biblioteca Nazionale, Fond. princ.
II.V.152). After the presentation of the “22 rules of algebra” (Jacopo’s 20 rules,

17 Pacioli indeed explains that a number of this kind is “less than zero and in consequence
a debt”.
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and the two biquadratics that are absent from his list), the author goes on to
explain [ed. Franci & Pancanti 1988: 98] that other rules can be made for certain
other cases. He continues:[18]

Wanting to treat of this it is needed first to show how there are other roots than those
one normally speaks about, that is, there are other roots than square roots and cube
roots, and among these there is one which is called cube root with addition of some
number, and about this I intend to show something.

The concept is then explained through several examples, starting with “the cube
root of 44 with addition of 5”. This root is 4, because 43 = 44+5 4; in general,
expressed in symbols, the cube root of n with addition α – say, √c(α,n) – is t if

K = n+at .
(We recognize the normalized version of equation (G2). Evidently, this allows
us to give a name to the solution of the above equation; but if we follow Pascal’s
advice about how one should understand definitions, this name is just an
abbreviation of “the solution to the equation K = n+αt”, which makes the whole
thing rather circular.

However, several further observations must be added to this. Firstly, as long
as irrational square and cube roots were not approximated in abbacus algebra,
expressing the solution to the equation C = 3 as “root of 3” was just as circular.
Secondly, the trick is also used in much more recent mathematics – elliptic
functions could be said to suffer from the same defect. What makes square roots
and elliptic functions mathematically interesting (beyond the possibility of
numerical approximation) is the network of relations they allow us to establish.

What can we say about our author and his “cube root with addition” in this
respect? Firstly, that he must have been aware of the objection just discussed.
He does not find it worthwhile to discuss a single problem of the type which
is immediately solved by his particular root; instead he explains that it is of
limited use, since for many numbers this root cannot be expressed. What he does
beyond that is to establish a (limited) network of relations: he gives (correct)
rules for reducing equations of the types K+βC = m, K = βC+m and βC = K+m
to the form K = n+αt, and in the ensuing example he then makes use of the cube
root with addition.[19] He also shows in the examples that solutions may exist

18 See also [Franci 1985].
19 He does not show that α can be eliminated and thus that a single table of √c(1,n) is all
that is needed. The reason could be that tables did not enter his mind, but it could also
be that the transformation was too difficult. It asks indeed for a substitution z = t/√α,
which gives the equation
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even if the number term turns out to be “a debt”, that is, negative. In order to
find this reduction rule, the author[20] must have performed manipulations
similar to those behind Dardi’s first irregular rule.[21] The author must have
been an adroit mathematician.[22]

Luca Pacioli may have heard about the solutions of particular higher cases
by means of these specious roots, but in that case he does not seem to have
appreciated them. In any case he goes on, after the statement that cases where
the three algebraic powers that are present are not “equidistant” had not been
solved so far, to admit that certain particular cases can be solved a tastoni, “feeling
one’s way”. There is another trace in Pacioli’s text of these solutions by special
roots, which he may not have recognized as such. Our anonymous author, as
we remember, refers to “other roots than those one normally speaks about” in
the plural, but only mentions one. In particular he does not speak about the radice
pronica which is referred to by several other authors. Pacioli [1494: 155v] explains

z3 = +z .
n

α α
This is more difficult to find and explain without symbolic algebra than the additive
substitutions needed for the transformation which is explained (finding the transformation
factor to be √α asks for manipulation of several powers of two variables at a time,
something which was so far beyond the horizon of abbacus algebra that even Bombelli
when creating his new formalism happened to exclude it (cf. below, p. 23). Vive Descartes!
20 Or the one from whom he borrows – a reservation which must always be made for
the abbacus authors when they seem to be original; I shall not repeat it but ask the reader
to keep it in mind.
21 This is not fully explicit, but obvious from the detailed appearance of the rule. If, for
convenience, we reformulate the first equation as

t3+3at2 = n
completion gives

(t+a)3 = n+a3+3a2t = n+a3+3a2(t+a)–3a2 a ,
which is exactly what the rule tells, in this order and without contraction of any kind
of the expression n+a3+3a2(t+a)–3a2 a. Similarly for the other two cases.
22 Indeed more than that, he was also more honest than many colleagues. He not only
avoids the false rules, when dealing with the problem type to which Dardi applies his
second irregular rule the present author [ed. Franci & Pancanti 1985: 76] takes the thing
to be the value of the capital after one year, thus showing that the problem is fundamental-
ly homogeneous. Further, when presenting [ed. Franci & Pancanti 1985: 3–6] the arithmetic
of the algebraic powers he accompanies the rules by numerical examples that show how
things really work. If Giovanni di Davizzo had done that, his marvellous construction
would have collapsed immediately.
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that by “pronic root”

one normally understands a number multiplied by itself and above its square add
the root of the said number; of this sum that number is called the pronic root. As
9 multiplied by itself makes 81, and above 81 add the root of 9, which is 3, makes
84, the pronic root is said by practitioners to be 9.

This does not seem very useful, and does not seem even loosely related to the
notion of “pronic numbers”, numbers of the type n (n+1) (also known as oblong
numbers). However, in Pierpaolo Muscharello’s Algorismus from 1478 [ed.
Chiarini et al 1972: 163] we read that

Pronic root is as if you say, 9 times 9 makes 81. And now take the root of 9, which
is 3, and this 3 is added above 81: it makes 84, so that the pronic root of 84 is said
to be 3.

This makes better sense – according to Muscharello, n is the pronic root of n4+n =
n3 (n+1). Moreover, as we see, this pronic root can be used to “solve” equations
of the type CC+αt = n. It therefore seems plausible that the cube root with
addition was not the only attack at higher-degree equations made by abbacus
authors before Pacioli’s time.[23]

Some general characteristics of abbacus mathematics

Before we discuss the implications of the material presented so far – which
after all represents only a small although prestigious corner of abbacus mathemat-
ics,[24] far too difficult to be taught to the young students of the standard two-

23 Benedetto da Firenze [ed. Pieraccini 1983: 26] also mentions the pronic root in his
discussion of Biagio il Vecchio’s solution of the problem CC+t = 18, which he points out
to be valid only for this particular parameter. It is not clear, however, whether the pronic
root to which he refers is 4 (as Pacioli would have it), 2 (in agreement with Muscharello),

or perhaps Biagio’s solution , which is 4 (not 2, as claimed by Pieraccini18 (½)4 – (½)2

in her preface [1983: vi]). The coincidence of Biagio’s formula with Pacioli’s interpretation
depends on the specific parameter 18, it should be noted.
24 An expression of the prestige of algebra is found in Pacioli’s words when he comes
to the presentation of the rules for the algebraic cases [1494: 144r],

“having come with the help of God to the much desired place, that is, to the mother
of all the cases called popularly “the rule of the thing”, or the Great art, that is, a
theoretical practice also called Algebra and almucabala in the Arabic tongue ...”.

The words “theoretical practice” (pratica speculativa) confirm what was derived from
internal evidence on p. 5, that algebra was “a purely theoretical discipline without
intended practical application”. We shall still need to ascribe a more precise meaning
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year course.
Some of the orderly abbacus treatises start by presenting the Hindu-Arabic

numerals and their use (in multiplication tables, in the algorithms for numerical
computation, and/or in particular divisions); others start directly by the rule
of three.[25] In both cases they show how things are or are to be done, without
giving arguments for this. In particular in the case of the rule of three, this is
noteworthy. We may look at the way the presentation is done in Jacopo’s
Tractatus algorismi (I translate from the Vatican manuscript, fol. 17r):

If some computation should be given to us in which three things were proposed,
then we should always multiply the thing that we want to know against that which
is not similar, and divide in the other thing, that is, in the other that remains.

Then follows the first example (tornesi and parigini are coins minted in Tours
and Paris, respectively):

VII tornesi are worth VIIII parigini. Say me, how much will 20 tornesi be worth. Do
thus, the thing that you want to know is that which 20 tornesi will be worth. And
the not similar (thing) is that which VII tornesi are worth, that is, they are worth 9
parigini. And therefore we should multiply 9 parigini times 20, they make 180 parigini,
and divide in 7, which is the third thing. Divide 180, from which results 25 and 5/7.
And 25 parigini and 5/7 will 20 tornesi be worth.

We notice that the intermediate product has no concrete interpretation (apart
from the awkward and intuitively unattractive “as many times p parigini as there
are tornesi in 20 tornesi). If instead the division had been performed first, it would
have been easy to explain 9/7 to be the worth of 1 tornese in parigini, for which
reason 20 tornesi must be worth 20 (9/7) parigini. Alternatively, one might have
explained that 20 tornesi must be worth 20/7 times as much as 7 tornesi, and
hence (20/7) 9. These methods are not totally absent from the abbacus record,
but they are uncommon.[26]

In a somewhat similar vein, the Pythagorean rule is always presented as a
naked rule, and the perimeter of the circle is simply stated to be 31/7 times the
diameter.

to this.
25 Still other treatises are less ordered problem collections. Finally, some of the “abbacus
books” are not treatises at all in any proper sense but private notebooks.
26 In contrast, the latter method is so common in Arabic treatises belonging to the same
genre that it has a specific name, namely “by nisba” (“relation”, specifically “ratio”); thus,
for instance, al-Karajı̄ in the Kāfı̄ [ed., trans. Hochheim 1878: II, 17], who states that he
prefers it over the (rule-of-three) solution by “multiplication and division”.
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This does not mean that the abbacus treatises contain nothing but isolated
rules. Firstly, dressed problems have to be analyzed in such a way that they can
be reduced to the application of a standard rule, which means that abbacus
mathematics is argued though not as thoroughly so as philosophers or modern
mathematicians might prefer; secondly, the rules may also serve in more
theoretical contexts. For instance, when Dardi wants to show how to divide 8
by 3+√4,[27] he first makes the calculation (3+√4) (3–√4) = 5 and concludes that
5 divided by 3+√4 gives 3–√4. What, he next asks, will result if 8 is divided
similarly, finding the answer by means of the rule of three (5, 3–√4 and 8 being
the three numbers involved).[28]

Even though abbacus mathematics does not in any way attempt to construct
an axiomatic structure, these rules offered without proof but serving to justify
other procedures function as axioms or postulates.[29] But this is not the sole
expression of the norm that mathematics should be not only argued but also
consistent.[30] Firstly, when different ways to solve a problem are presented,
the identity of the outcomes may be followed by an explanation like the one
Jacopo gives after having found the circular area first according to the normal
“Arabic” formula (1–1/2

1/7)diameter2 and next as (diameter×perimeter)/4 [ed.
Høyrup 2007b: 352f]:

27 Vatican manuscript, Chigi M.VIII.170, fol. 12v.
28 Similarly, the Istratti di ragioni [ed. Arrighi 1964: 26] from c. 1440, plausibly extracts
from Paolo dell’Abbaco who wrote a century before, teaches how to divide 4/5 by 1/3

by means of the rule of three.
29 A rather explicit and very simple instance of this function is found in Jacopo’s Tractatus
algorismi 15.2 [ed. Høyrup 2007b: 285] when the circle is treated:

Always do, that when you know its circumference around, that is, its measure, and
you want to know how much is its straight in middle, then divide its circumference
by 3 and 1/7. And that which results from it, so much will its diameter be, that is,
the straight in middle. And similarly when you know the straight in middle of a
circumference and you want to know in how much it goes around, then multiply
the straight in middle by 3 and 1/7, and as much as it makes, in so much does the
said round go around. And if you should want to know for which cause you divide
and multiply by 3 and 1/7, then I say to you that the reason is that every round of
whatever measure it might be is around {...} 3 times and 1/7 as much as is its diameter,
that is, the straight in middle. And for this cause you have to multiply and divide
as I have said to you above.

30 There are indeed good reasons to maintain that being reasoned is an “institutional
imperative” [Merton 1942] for any institutionalized and cognitively autonomous teaching
of mathematics – see [Høyrup 2005a: 109–112].
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And you see that it becomes as the one above, which we make without knowing
the circulation around, which is also braccia 44, and they become the same. And
therefore I have made this beside that, so that you understand well one as well as
the other, and that one as well as the other is a valid rule. And they go well.

Secondly, solutions to problems are regularly followed by numerical proofs (in
the sense of “verifications”). At times these control directly that the application
of the rule actually gives what is asked for; at times, however, only a more
indirect control is possible, which means that the proof shows the compatibility
of two approaches. In one such case, the Milan-Florence redaction of Jacopo’s
Tractatus observes [ed. Høyrup 2007b: 454] that “Thus we have made the alloy
well, since we have found again the said 700 δ. It would have been a pity if we
had found more or less”.[31]

At times, the computations lead to approximate results – not only when the
roots of non-square numbers are found but also, for instance, when discounting
of a debt is computed by means of an iterative procedure or in application of
welsche Praktik (a kind of combined division-cum-multiplication by stepwise
emptying used in practical trade). In such cases I do not remember ever to have
seen a proof. Consistency was apparently meant to be exact, and once approxima-
tions were made exactness could no longer be expected[32] – approximation,
so to speak, was a one-way street leading away from the world of consistency
toward measurement and business.

All in all (and many more arguments could be given from the texts), the
following norms or expectations[33] can be seen to have regulated abbacus

31 In modern elementary arithmetic we are accustomed to the need for rounding called
forth by the use of decimal fractions, for which reason checks of many practical
calculations will not be exact however correct the calculations. Since abbacus mathematics
operated with genuine fractions it did not encounter that problem, and exactness was
therefore possible.
32 In particular, I have never seen an analogue of the reversal of the approximate
determination of a diagonal in the Old Babylonian text BM 96957+VAT 6598 # xxv [ed.
Robson 1999: 259], made by reversal of the approximation formula.
33 “Norms or expectations”: indeed, expectations concerning the object of the activity of
abbacus masters (“mathematics”) are involved along with norms for the way these masters
should act. It might be better to speak of an “ideology”, since an ideology is exactly to
be characterized as an inextricable unity of descriptive and prescriptive (supposed)
knowledge. Cf. [Høyrup 2000b: 342].
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mathematics:[34]

– it should, in so far as authors and users could do it respectively follow it, be
argued;

– it should be consistent;
– and it should be exact, unless some real-world application asked for

approximation.

False rules revisited

How do these norms agree with the invention of the false algebraic rules?
At the surface of things, not at all. Those of Gherardi can never have been argued
in a pertinent way. Dardi’s irregular rules were certainly derived from arguments,
but arguments which could never be told publicly because they would show
how restricted their validity was, while only Dardi and those who copied them
from him reveal at all that their validity was restricted. They were never tested
by the inventors (or if they were the inventors did not betray themselves by
telling the negative outcome), so the consistency they fulfil is merely that of
superficial similarity.

The display of wrong results is thus not to be understood (as is the sweeping
unacknowledged copying from the writings of predecessors) as “what was
generally done and accepted at the time/within the environment”. Instead it
should be understood as a parallel of scientific fraud nowadays, which also exists,
in spite of its conflict with what is expected from its perpetrators, and in the
likeness of the economic fraud of Kreuger and the managers of Enron and
Parmalat.

The background is also the same. Abbacus masters were in liberal profession,
and had to impress municipal authorities or the fathers of prospective students
if they wanted to earn their living. That could at best be done by solving
problems that were too difficult for competitors; the prestige of algebraic problem
solving (see note 24) made it an adequate instrument in that fight for prestige,
and the inability of the judges to distinguish gilt lead from gold made it profitable
to choose the easy way of fraud.

However, the fraud could only succeed because of the existence of those very
norms which it violated. The general predilection for exactness barred control

34 It may seem somewhat circular to read norms from a text corpus and then (as we shall
do) apply them in the understanding of the same corpus. However, the norms are read
out of one part of the corpus (the scattered casual remarks, the basic level), and we shall
discuss their impact on other parts of the corpus, in particular the algebra.
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of the approximate validity of the false solutions, and faith was instilled by the
expectation that abbacus authors had arguments for their mathematical claims
even if their public – whether municipal councillors or fathers, perhaps even
less brash competitors – felt themselves to be unable to follow these.[35] In the
same way, Enron could generate faith by being the client of prestigious
accountant firms like Arthur Andersen and PriceWaterhouseCooper,[36] and
by being apparently successful operators on a market supposed to be transparent
by nature even though common citizens cannot look through it.[37]

Norm systems, indeed, are double-edged. They keep together a social system
and regulate the behaviour of most members of the system; but they also allow
those who hide behind them without complying with them to be far more
successful than they could have been without the trust of others in the system
and its effectiveness – beyond regulation, norm systems provide expectations,
namely regarding the behaviour of others. No Tartuffe without religion and
reverence for it!

Understanding Giovanni, and understanding more through Giovanni

Giovanni di Davizzo apparently did non know that his marvellous complete
group had “no existence, if not that on the paper”, in Georg Cantor’s vicious
words [1895: 501] about Veronese’s transfinite numbers. In so far he may have
profited from the cover of the norm system without actually knowing that he
disobeyed it. This is not very illuminating, scientific mistakes are made, and if
nobody discovers them to be mistakes their authors may earn degrees, positions
and prestige from them in good faith.

But there is something more to say about what Giovanni did. His expansion
of the semi-group may be seen as a search for consistency – but then not only
for consistency as a condition that had to be obeyed but as something which
should be actively created. Since his scheme was taken over by others, a fair

35 More or less in the same vein, readers of the present pages probably suppose that I
have really consulted the unpublished manuscripts I quote and to which they have no
access (I promise I have!).
36 See, for instance, [McNamee 2002].
37 This is one aspect of what Robert Merton [1973: 439–459] baptized the “Matthew effect”.
Similarly, because Cyril Burt was already famous when he started making his glaring
statistical fabrications, for decades nobody noticed their character (admittedly, it also
played a role that his “conclusions” – the intellectual superiority of the better classes –
were politically convenient). Cf. [Kamin 1977, passim].
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number of abbacus writers seem to have shared the norm that mathematical
knowledge ought to expand – since the scheme was completely useless for
practical as well as mathematically-theoretical purposes, they can have adopted
it for no other reason. This norm agrees well with a passage in the introduction
to Jacopo’s Tractatus [ed. Høyrup 2007b: 195] (copied more often than any other
introduction by other abbacus authors and thus likely to correspond to prevailing
moods):

... by mind and good and subtle intelligence men make many investigations and
compose many treatises which were not made by other people, and know to make
many artifices and written arguments which for us bring to greater perfection things
that were made by the first men.

This wish for expansion of the art throws further light on the creation of the
false solutions: whereas being able to solve (or give pretended solutions) to
complicated algebraic problems gave prestige, prestige (probably more prestige)
was specifically conferred to those who expanded the reach of existing algebraic
knowledge. This is also the reason that many historians of mathematics tend
spontaneously to see the fraud as praiseworthy because of the cognitive ambition
it reveals, as pointing toward the breakthroughs of del Ferro, Tartaglia and
Cardano. However, we should rather reverse this verdict. Those who committed
the fraud consciously had no ambition to expand knowledge, just as modern
scientific swindlers they were parasites on the cognitive ambition of others. They
gained their prestige because of an existing norm system but in fact, in so far
as they succeeded in having their fraud accepted as good knowledge (and the
abbacus frauds went undetected much longer than the Piltdown fabrication) they
undermined the creation of genuine new knowledge.

The power of the norm system

Some palaeontologists doubted the Piltdown man from the very beginning,
and in the end this notorious potpourri of man and ape was exposed. The
invention of the “cube root with addition” shows us that not all abbacus authors
believed in the Gherardi solution to equation (G2). Similarly, the reductions of
other equation types in the anonymous treatise in which we find this peculiar
“root” explained shows that the norm for expanding the art consistently could
lead to genuinely extensions of mathematical insight – extensions which, when
combined with the breakthrough of del Ferro etc., led to the solution of all cubics
and quartics in the sixteenth century.

A similar argument could be made (now in contrast to Giovanni’s “group”)
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around the way the same text (like Pacioli in his Summa) correlates the algebraic
powers with powers of a number (see note 22). This led directly toward the
arithmetization of the sequence of such powers – for instance, Bombelli’s
arithmetical notation for powers, in which n corresponds to our xn.

Not to be contrasted with any fraud or fallacy is the use of purely formal
algebraic operations – another consequence of the faith in the consistency and
expandability of mathematics.

In the above-mentioned Trattato dell’Alcibra amuchabile from c. 1365 it is stated

in direct words [ed. Simi 1994: 41f] that the addition is to be100

a thing

100

a thing plus 5

performed “in the mode of a fraction”, explained with the parallel . It is24

4

24

6

thus taken for granted that operations with algebraic expressions could be
handled exactly as numbers, and thus that for instance the notation for fractions
was a mere form that could be filled out by any contents, numerical as well as
algebraic.[38] This formal use of the fraction notation could not be used by Dardi,
since he had already chosen to use the same notation for multiples of ç (censo)
and c (cosa/“thing”), writing the “denominator” below the “numerator” with

a stroke in between – for instance, for “10 things”.[39] Nor was the usage10

c

broadly accepted at first (nor understood by all those who copied material where
it was used[40]). In the longer run, however, mathematical writers got ac-
customed to it, and when Viète makes use of it in his In artem analyticen isagoge

38 We take note that formal operations could be made without abbreviations, even though
the introduction of standard abbreviations was a prerequisite for maturation of the
technique. Even though letter abbreviations had been used by both scholastic philosophers
and Jordanus de Nemore, the true precursors of later mathematical symbols are the
standard abbreviations of abbacus algebra.
39 This notation had to remain unproductive because Dardi did not see the fraction as
a symbol for an arithmetical operation but linked it instead to something like the medieval
denominatio for ratios, or (more likely) saw /3 simply as an abbreviation for the (ordinal
form of the) number 3. But it lived on for at least a century and a half alongside the
formal operations, being still used in a German algebra from 1481 [Vogel 1981: 10].
40 In the Libro di conti e mercatanzie from c. 1395 (see p. 7), 100 divided by a thing plus

5 is thus stated [ed. Gregori & Grugnetti 1998: 103] to be “ and 5”, but afterwards1

1 thing

the operations – copied from elsewhere – are performed correctly. The same treatise, it
should be noted, solves the problem C = α+√β by taking the root of α and √β separately,
claiming the solution to be t = √α+√√β [ed. Gregori & Grugnetti 1998: 115f].
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[ed. van Schooten 1646: 7f], all he feels the need to explain is his geometrical

interpretation – for instance, that is “the latitude which B cube makes whenB cubus

A plano

applied to A plane”. When coming to the arithmetic of such fractions he just
prescribes the customary operations for numerical fractions without mentioning
this parallel as an argument – he appears simply to see no difference.

The norm system which governed the practice of abbacus mathematics was
not identical with that of Greek-inspired Humanist and university mathematics,
and could not be already because the practices they governed were different
in spite of similarities. For instance, a request for exactness could not mean the
same in numerical computation and in geometry made exclusively by ruler and
compass.[41] But the two systems were sufficiently similar to one another to
allow a merger, not only of the two types of mathematical knowledge but also
of the two norm sets. We may remember that both Maurolico and Clavius in
their voluminous production also wrote on abbacus matters although from the
Humanist perspective, and that Clavius’s stance on the matter of exactness was
more tolerant than that of, for example, Viète and the classicist Kepler, at least
for a while.[42] Without the partial merger of norms for what constituted
legitimate practice, seventeenth-century scientific mathematics would hardly have
been able to integrate the tools created by abbacus algebra – and without the
heritage from abbacus algebra, it would have remained restricted to the
possibility of finding something more (perhaps brilliant, but not very much more)
of the same kind with respect to the Greek heritage, just as had been the case
for medieval Islamic theoretical geometry. The total transformation of the
mathematical enterprise taking place from Descartes to (say) Bernoulli would
not have been possible.

41 On the conflicts around the concept of exactness in the latter context, see [Bos 1993].
The conflict can also be seen when Viète – as much a Humanist mathematician as there
ever was – insists on a meaningful geometric interpretation of the algebraic powers.
42 See [Bos 1993: 33–35] for a convenient confrontation, and [Bos 2001: 159–166] for the
details of Clavius’s “idealizations of practical methods”.

- 24 -



References

Arrighi, Gino (ed.), 1964. Paolo Dell’Abaco, Trattato d’aritmetica. Pisa: Domus Galilæana.
Arrighi, Gino (ed.), 1970. Piero della Francesca, Trattato d’abaco. Dal codice ashburnhamia-

no 280 (359*–291*) della Biblioteca Medicea Laurenziana di Firenze. A cura e con
introduzione di Gino Arrighi. (Testimonianze di storia della scienza, 6). Pisa: Domus
Galilæana.

Arrighi, Gino (ed.), 1987. Paolo Gherardi, Opera mathematica: Libro di ragioni – Liber habaci.
Codici Magliabechiani Classe XI, nn. 87 e 88 (sec. XIV) della Biblioteca Nazionale
di Firenze. Lucca: Pacini-Fazzi.

Bos, Henk J. M., 1993. “On the Interpretation of Exactness”, pp. 23–44 in J. Czermak (ed.),
Philosophie der Mathematik. Akten des 15. Internationalen Wittgenstein-Symposiums,
Kirchberg am Wechsel, 1992, 1. (Schriftenreihe der Wittgenstein-Gesellschaft, 20/I).
Wien: Hölder-Pichler-Tempsky.

Bos, Henk J. M., 2001. Redefining Geometrical Exactness: Descartes’ transformation of the Early
Modern Concept of Construction. New York etc.: Springer.

Cantor, Georg, 1895. “Beiträge zur Begründung der transfiniten Mengenlehre”. (Erster
Artikel). Mathematische Annalen 46, 481–512.

Chiarini, Giorgio, et al (eds), 1972. [Pierpaolo Muscharello], Algorismus. Trattato di aritmetica
pratica e mercantile del secolo XV. 2 vols. Verona: Banca Commerciale Italiana.

Franci, Raffaella, & Marisa Pancanti (eds), 1988. Anonimo (sec. XIV), Il trattato d’algibra
dal manoscritto Fond. Prin. II. V. 152 della Biblioteca Nazionale di Firenze. (Quaderni
del Centro Studi della Matematica Medioevale, 18). Siena: Servizio Editoriale
dell’Università di Siena.

Franci, Raffaella, 1985. “Contributi alla risoluzione dell’equazione di 3o grado nel XIV
secolo”, pp. 221–228 in Menso Folkerts & Uta Lindgren (eds), 1985. Mathemata:
Festschrift für Helmuth Gericke. (Boethius: Texte und Abhandlungen zur Geschichte
der exakten Wissenschaften, 12). Stuttgart: Steiner

Giusti, Enrico, 1993. “Fonti medievali dell’Algebra di Piero della Francesca”. Bollettino di
Storia delle Scienze matematiche 13, 199–250.

Gregori, Silvano, & Lucia Grugnetti (eds), 1998. Anonimo (sec. XV), Libro di conti e
mercatanzie. Parma: Università degli Studi di Parma, Facoltà di Scienze Matematiche,
Fisiche e Naturali, Dipartimento di Matematica.

Hochheim, Adolph (ed., trans.), 1878. Kâfî fîl Hisâb (Genügendes über Arithmetik) des Abu
Bekr Muhammed ben Alhusein Alkarkhi. I-III. Halle: Louis Nebert, 1878.

Høyrup, Jens, 1999. “VAT. LAT. 4826: Jacopo da Firenze, Tractatus algorismi. Preliminary
transcription of the manuscript, with occasional commentaries. Filosofi og Videnskabs-
teori på Roskilde Universitetscenter. 3. Række: Preprints og Reprints 1999 Nr. 3.

Høyrup, Jens (ed., trans.), 2000a. “Jacobus de Florentia, Tractatus algorismi (1307), the
Chapter on Algebra (Vat. Lat. 4826, fols 36v–45v)”. Centaurus 42, 21–69.

Høyrup, Jens, 2000b. Human Sciences: Reappraising the Humanities through History and
Philosophy. Albany, New York: State University of New York Press.

Høyrup, Jens, 2003. “Practitioners – School Teachers – ‘Mathematicians’: the Divisions
of Pre-Modern Mathematics and Its Actors”. Contribution to the conference “Writing
and Rewriting the History of Science 1900–2000”, Les Treilles, 5–11 September 2003.
Mimeo. http://www.akira.ruc.dk/~jensh/publications/2003{K}04_LesTreilles

- 25 -



Høyrup, Jens, 2005a. “Tertium non datur: On Reasoning Styles in Early Mathematics”, pp.
91–121 in Paolo Mancosu et al (eds), Visualization, Explanation and Reasoning Styles
in Mathematics. Dordrecht: Springer.

Høyrup, Jens, 2005b. “Leonardo Fibonacci and Abbaco Culture: a Proposal to Invert the
Roles”. Revue d’Histoire des Mathématiques 11, 23–56.

Høyrup, Jens, 2006. “Jacopo da Firenze and the Beginning of Italian Vernacular Algebra”.
Historia Mathematica 33, 4–42. DOI: 10.1016/j.hm.2005.03.001.

Høyrup, Jens, 2007a. “Jacopo da Firenze, Tractatus algorismi. An Edition of the Manuscript
Milan, Trivulziana MS 90, Collated with Florence, Riccardiana MS 2236”. Filosofi og
Videnskabsteori på Roskilde Universitetscenter. 3. Række: Preprints og Reprints 2007 Nr. 2.

Høyrup, Jens, 2007b. Jacopo da Firenze’s ‘Tractatus Algorismi´ and Early Italian Abbacus
Culture. Basel etc.: Birkhäuser.

Kamin, Leon J., 1977. The Science and Politics of I.Q. Harmondsworth, Middlesex: Penguin.
Libri, Guillaume, 1838. Histoire des mathématiques en Italie. 4 vols. Paris, 1838–1841.
McNamee, Mike, with Heather Timmons, edited by Douglas Harbrecht, 2002. “PwC:

Sharing the Hot Seat with Andersen?” Business Week online, February 15, 2002. http://
business.week.com/bwdaily/dnflash/feb2002/nf20020215_2956.htm.

Merton, Robert K., 1942. “A Note on Science and Democracy”. Journal of Legal and Political
Sociology 1, 115–126.

Merton, Robert K., 1973. The Sociology of Science. Theoretical and Empirical Studies. Ed.
Norman W. Storer. Chicago & London: University of Chicago Press.

Pacioli, Luca, 1494. Summa de Arithmetica Geometria Proportioni et Proportionalita. Venezia:
Paganino de Paganini.

Robson, Eleanor, 1999. Mesopotamian Mathematics 2100–1600 BC. Technical Constants in
Bureaucracy and Education. (Oxford Editions of Cuneiform Texts, 14). Oxford:
Clarendon Press.

Silva, Maria do Céu, 2006. “The Algebraic Contents of Bento Fernandes’ Tratado da arte
de arismetica (1555)”. Preprint, Centro de Matematica da Universidade do Porto, April
27, 2006.

Simi, Annalisa (ed.), 1994. Anonimo (sec. XIV), Trattato dell’alcibra amuchabile dal Codice
Ricc. 2263 della Biblioteca Riccardiana di Firenze. (Quaderni del Centro Studi della
Matematica Medioevale, 22). Siena: Servizio Editoriale dell’ Università di Siena.

Ulivi, Elisabetta, 2002a. “Scuole e maestri d’abaco”, pp. 121–159 in Enrico Giusti (ed.),
Un ponte sul mediterraneo: Leonardo Pisano, la scienza araba e la rinascita della matematica
in Occidente. Firenze: Edizioni Polistampa.

Ulivi, Elisabetta, 2002b. “Benedetto da Firenze (1429–1479), un maestro d’abbaco del XV
secolo. Con documenti inediti e con un’Appendice su abacisti e scuole d’abaco a
Firenze nei secoli XIII–XVI”. Bollettino di Storia delle Scienze Matematiche 22:1, 3–243.

van Schooten, Frans (ed.), 1646. François Viète, Opera mathematica. Leiden: Elzevier, 1646.
Van Egmond, Warren, 1978. “The Earliest Vernacular Treatment of Algebra: The Libro

di ragioni of Paolo Gerardi (1328)”. Physis 20, 155–189.
Van Egmond, Warren, 1980. Practical Mathematics in the Italian Renaissance: A Catalog of

Italian Abbacus Manuscripts and Printed Books to 1600. (Istituto e Museo di Storia della
Scienza, Firenze. Monografia N. 4). Firenze: Istituto e Museo di Storia della Scienza.

Van Egmond, Warren, 1983. “The Algebra of Master Dardi of Pisa”. Historia Mathematica

- 26 -



10, 399–421.
Vogel, Kurt (ed.), 1981. Die erste deutsche Algebra aus dem Jahre 1481, nach einer Handschrift

aus C 80 Dresdensis herausgegeben und erläutert. (Bayerische Akademie der
Wissenschaften. mathematisch-naturwissenschaftliche Klasse. Abhandlungen. Neue
Folge, Heft 160). München: Verlag der Bayerischen Akademie der Wissenschaften.

- 27 -



ISSN 1902-293X (online)


	Abstract
	Contents
	Kreuger, Enron and abbacus algebra: three scandals
	Almost honest business
	Aiming high – and failing honestly
	A better intuition
	An alternative to the false solutions
	Some general characteristics of abbacus mathematics
	False rules revisited
	Understanding Giovanni, and understanding more through Giovanni
	References
	The power of the norm system



