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Abstract
From a sociological point of view, pre-Modern “non-theoretical geometry”
is not adequately described as merely “practical”. The “practical geometry”
we find in written treatises is mostly that of “scribal” environments, and
aims at calculating lengths, areas or volumes from already performed
measurements. As a rule it is not interested in geometrical construction, nor
in the making of measurements – the fields, broadly speaking, of master
builders/architects and surveyors.

The paper discusses two cases – one fairly well-established, another more
conjectural – where none the less “scribal” practical geometry does reveal
traces of (very simple) geometrical construction. Both of these concern the
“long run”, connecting Old Babylonian, classical ancient and late medieval
material. A final instance of weak communication between “scribal” and
“surveying” geometry is located in thirteenth-fourteenth33-century France.





In a customary dichotomy, geometry (like many other fields, mathematical as well
as non-mathematical) falls into “theoretical” and “practical”. In full agreement with
this, Stephen K. Victor [1979: ix] writes about his Ph.D.-project that

My first assumption, and that of most of the people I have spoken to about the topic,
was that “practical geometry” must relate somehow to architecture, surveying and city
planning, to those areas, in other words, where geometry plays a central role in the
exercise of other professions. The study of medieval buildings, fields and towns from
extant physical evidence was not a fruitful approach for me, and I have left it to those
better trained in the methods of archaeology and art history. Since I was working as
a historian of science, I chose to concentrate on the written tradition of treatises called
“practical geometry”.

The treatises he chose to work on – the Latin late-twelfth–century Artis cuiuslibet
consummatio and a vernacular (Picardian) Pratike de geometrie from the late thirteenth
century which is largely a translation of the former work – led him to a different
view,

namely that practical geometry has its greatest importance as a popularization of
mathematics. The treatises on practical geometry were a way of teaching some basic
principles to those who would not remain in school or university long enough to become
philosophers or theologians and would not necessarily exercise a mathematical profession,
but who might want, or even need, some mathematics in their everyday lives. The
sampling of arithmetic and astronomy in ACC and of commercial arithmetic and
metrology in the Pratike argues for the generally pedagogic, rather than scholastic,
purpose of the treatises. The development of a vernacular version of ACC is further
evidence that the practical geometries sought their homes outside of the universities,
perhaps in the bureaucratic and commercial milieus. Nonetheless, as the Introduction
shows, the formalized structures of university education had an influence even on the
non-scholastic tradition of practical geometry. As the tradition developed, the practical
geometries acquired an increasingly theoretical underpinning, to the point where they
are sometimes considered works on measurement rather than simply practical geometries.

Part of this conclusion depends critically on the choice of a Latin treatise and a
vernacular treatise which in the main was derived from it. Other features, however,
are shared not only with the Italian vernacular Pratiche di geometria and with
Fibonacci’s Pratica geometrie but also with most Arabic,[1] Sanskrit, Chinese, Greek,
Babylonian and ancient Egyptian writings on the subject-matter. They deal – not
at al or not much with measurement, as Victor states euphemistically, but rather with
how to calculate something on the basis of measurements that have already been
performed or which are presupposed to have been performed, either on pre-existing

1 An Arabic exception to this rule is Abū’l-Wafa ’s Book on What is Necessary for Artisans in
Geometrical Construction [ed., Russian trans. Krasnova 1966].
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objects or on configurations which are supposed to have been already constructed.[2]

In general terms, they belong within the “scribal” sphere, or in Victor’s words, the
“bureaucratic and commercial milieus”.

None the less, a few traces of constructional procedures hide within these texts.
I shall present two instances, one fairly certain and the other not much more than
suggestive.

Constructing the circular diameter

In Metrica I.xxx [ed. Schöne 1903: 74] Hero explains that “the ancients” – οι
αρχαιοι – in their formula for the area of a circular segment seem to have “followed
those who took the perimeter to encompass the triple (τριπλασιος ) of the diameter”,
whereas I.xxxi [ed. Schöne 1903: 74] states that “those who made more precise
investigations” must have followed the course according to which the perimeter
is the triple diameter and in addition 1/7 of the diameter.

Hero himself teaches (I.xxvi, ed. [Schöne 1903: 66]) to multiply the perimeter
by 22 (using the construction “22 επι”) and then to take the seventh, but in the
pseudo-Heronian Geometrica [ed. Heiberg 1912][3] – throughout using the “more
precise” variant – the diameter is invariably taken “thrice” or “tripled”, and this
triple calculated explicitly, after which a supplementary seventh is added. The terms
for tripling are invariably τρισσακις or τριπλασιον even when neighbouring
multiplications are επι n.[4]

The same terminological distinction between tripling and multiplication is found
already in Old Babylonian geometry (c. 1700 BCE). Here, the perimeter is always
found as the diameter “repeated until three” (ana 3 esēpum), or it is “tripled” (šalāšum)
the diameter, not by the normal multiplication (našûm, “to raise”) used, e.g., when
the area of the circle is found as 5´ (= 1/12) times the square on the perimeter.

The explanation for this linguistic puzzle is found in two texts from the
fourteenth and the fifteenth century (CE). One is Mathes Roriczer’s Geometria deutsch
from c. 1488 [ed., trans. Shelby 1977: 121]:

2 Actually, the genre studied by Victor – Latin practical geometries such as Geometria incerti
auctoris and Hugh of Saint Victor’s Practica – deals to some extent with mensuration, namely
the determination of (e.g.) inaccessible heights by means of equilateral right triangles. This
also had a slight (very slight!) impact on Italian abbacus geometries.

3 Definitely not Heronian, and actually a composite created by the modern editor from two
rather incompatible manuscript groups, respectively A+C and S+V, as Heiberg [1914: xxi]
points out.

4 Thus mss AC, 17.8, between 17.7 and 17.9, and ms. S, 17.6, after 17.6 [ed. Heiberg 1912: 336,
334].
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If anyone wishes to make a circular line straight, so that

Figure 1. Roriczers construct-
ion of the circular perimeter as
redrawn by Shelby [1977: 121].

the straight line and the circular are the same length, then
make three circles next to one another, and divide the
first circle into seven equal parts,

one of which is marked out in continuation of the three
circles – see Figure 1.[5]

The other is the old Icelandic manuscript A.M. 415
4to from the early fourteenth century, according to which (fol. 9v) “the measure
around the circle is three times longer as its width, and a seventh of the fourth
width”,[6] obviously a reference to a similar construction.

Roriczer was a Gothic master builder; what he tells is the way to find by means
of a drawing, without calculation, the perimeter corresponding to a given circular
diameter. The Icelandic text confirms that the method was widespread; there seems
to be little doubt that it offers the explanation why both the Greek and the Old
Babylonian text refer to a tripling, a material repetition, and not to a mere numerical
multiplication. This trick had thus been known for more than three thousand years
in the late Middle Ages, first as a simple tripling, after the acceptance of the
Archimedean improvement with an addition of a supplementary seventh – but still
a separate supplement, and still to be provided in physical space.

5 Shelby [1977: 182] observes “some resemblamce between [Roriczer’s procedure] and one
of the theorems in a brief Tractatus de quadratura circuli – traditionally attributed to Camnpanus
de Novara, but authorship and date uncertain”. The passage in question [ed., trans. Clagett
1964: 591] deals with how to “give a straight line equal to a circularly drawn line”, and runs
as follows:

Using mathematical knowledge and physical truth, a circle is divided into 22 equal parts,
and with one part subtracted, that is, the 22nd part, a third of the remainder, namely,
7, is the diameter of the circle. Therefore, let the diameter be tripled and let there be
added a seventh of the diameter, and let these parts be ordered in a straight line. We
shall have a straight line equal to a circular line, as is apparent in the figure.

This could well be an attempted “theoretical” explanation of Roriczer’s construction, but since
the diagram shows a circle divided into 22 parts (with a diameter prolonged indefinitely
toward the right) it could at least as well be a justification of the calculation found in the
Geometrica and writings of the same kind, like that fifteenth-century De inquisicione capacitatis
figurarum to which Shelby [1977: 6–65] refers in his introduction

6 “Ummǽling hrings hvers þrimr lutum lengri en bréidd hans ok sjaundungr of enni fiorðo
breidd” [ed. Beckman & Kålund 1914: 231f]. in [Menninger 1957: I, 91], which however gives
no reference. I am grateful to Peter Springborg for localizing a passage which is quoted
withour reference in [Menninger 1957: I, 91] and for providing me with a photocopy from
the microfilm in the Arnamagnean collection, Copenhagen.
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The regular octagon and the side-and-diagonal numbers

The other example is differently balanced, in the sense that the traces in the
calculational material are fewer but those in other sources more copious.

On trace is constituted by the Old Babylonian approximations to ration between
the diagonal and the side of a square. One, already quite good, is 1;25 = 17/12; the
other, excellent, is 1;24,51,10. The former may have been found by iteration of a
procedure also known from elsewhere in the Old Babylonian record, corresponding
to the formula

= n+n 2 d
d

2n

– actually, the text VAT 6598 contains what may be a failed attempt at such iteration
[Høyrup 2002: 271f]. The latter can be found by further iteration by us, but hardly
by the Babylonians: as pointed out by David Fowler and Eleanor Robson [1998],
the calculations have to pass through repeated divisions by very unpleasant
sexagesimally irregular numbers; if we try to approximate by regular divisors (in
agreement with what we know about Babylonian computational techniques), the
reconstruction no longer yields the approximation it should but either one which
is too rough or one which is even better.

Neugebauer and Sachs [1945: 43] propose a different way to the same
approximations, namely through alternating arithmetical and harmonic means.
Algebraically, this gives the same results – and computationally it runs into the same
problems.

A third possibility – also algebraically equivalent – is the use of the “side-and-
diagonal-number algorithm”,

s1 = d1 = 1 , sn+1 = sn+dn , dn+1 = 2sn+dn .
The value of 2s2–d2 oscillates between –1 (for odd n) and +1 (for even n). Since s and
d increase, the ratio d:s therefore converges toward √2.

The procedure is first described by Theon of Smyrna (Expositio I.XXXI, ed. [Dupuis
1892: 70–74], but according to his own statement in agreement with Pythagorean
traditions without any addition whatsoever (book II, the introduction). It is also
habitually assumed that Plato’s reference to “a hundred numbers determined by
the rational diameters of the pempad lacking one in each case” (Republic 546C, trans.
[Shorey 1930: II, 247]) shows him to be familiar with the same algorithm. Actually,
all it shows for certain is that he was familiar with the use of 7 as an (approximate)
value for the diagonal in a square with side 5.[7] In any case, another discussion

7 Heath [1926: I, 399] and others read the “lacking one” as a reference to the fact that 72 is
lacking 1 compared to the square on the true (irrational) diameter in the square with side
5, which corresponds to an essential feature of the sequence of approximations produced
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of the algorithm is found in Proclos’s commentary to the passage in question from
the Republic[8]. Finally, Proclos’s commentary to Elements I contains an oblique but
unmistakeable reference to the topic[9] and speaks of it as συνεγγυζ, “proximate”.

Though moderately to quite competent in ma-

Figure 2. The construction
of a regular octagon

according to De mensuris.

thematics, both Theon and Proclos have affinities to the
environment which took mathematics as a way to or a
kind of gnosis – in very loose terms, the
Neopythagorean-Platonizing ambience. As I have
discussed elsewhere [Høyrup 2001], this ambience, being
unable to follow mathematics at the Euclidean or
Archimedean level, borrowed its mathematics from the
practitioners’ level. Since no word about the algorithm
has reached us from the ancient Greek high-level
mathematicians, it seems reasonable to look for the roots
of the procedure in some practitioners’ environment.

The algorithm does not turn up as such in “mensuration” treatises, but the

Figure 3. A diagram showing why the
De mensuris construction works.

pseudo-Heronian De mensuris [ed. Heiberg 1914: 206] prescribes a construction of
a regular octagon (under the misleading
heading “mensuration of an octagon”) which
suggests the reasoning that may have led to
its invention. In a square ABCD, the corners
of the octagon FEHGJILK are found by
making AE = BF = BG = CH = ... = AO – see
Figure 2.

Figure 3 explains the correctness of the
construction; the very same argument shows
what we might call the “side-and-diagonal
rule”: namely that if s and d are the side and
diagonal of a square, so will s+d and 2s+d be.

The same construction is found in several
other sources: in Abū’l-Wafā ’s Book on What

by the algorithm. Actually, as pointed out to me by Marinus Taisbak (personal
communication), Plato’s point is rather that the number 48 (the number which is required)
is lacking one with regard to the “number on the rational diameter 7” (and 2 with regard
to that on the irrational diameter dynamei, as Plato goes on). This is indeed also Proclos’s
explanation, cf. Hultsch in [Kroll 1899: II, 407].

8 Ed. [Kroll 1899: II, 24f]; cf. discussion in [Vitrac 1990: 351f].

9 Ed. [Friedlein 1873: 42721–23], trans. [Morrow 1972: 339].
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is Necessary from Geometric Construction for the Artisan as problem VII.xxii [ed., Russian
trans. Krasnova 1966: 93]; in the Geometria incerti auctoris no. 55 [ed. Bubnov 1899:
360f]; in Roriczer’s fifteenth-century Geometria deutsch [ed. Shelby 1977: 119f]; and
in Serlio’s Primo libro di geometria [1584: C2r]. However, it is difficult to believe that
anyone would get the idea to draw this diagram if the construction was not known
already; and indeed, a much more intuitive diagram can be drawn, of which Figure 2
is simply a reduced version – namely the one shown in Figure 4. For symmetry
reasons it is intuitively obvious that the superposition of two identical squares of
which one is tilted 45° produces a regular octagon; but if we look at the diagram
we also observe that FR = RE = RP = KU; this length we may call s; then the
corresponding diagonal is d = PF = AF = AK = RU. Therefore, the semidiagonal PO
is s+d+s = 2s+d, thus equal to AE. Furthermore, since KF = FE = 2s, UP = s+d and
KP = 2s+d are, respectively, the side and diagonal of a square – that is, the argument
that shows the correctness of the De mensuris construction from this diagram also
leads to the side-and-diagonal rule.

This construction was employed in actual architecture at least in Classical
Antiquity: according to Hermann Kienast (personal communication) it can be seen
to have been used in the ground plan of the Athenian “Tower of the Winds” from
the first century BCE (outside the octagon itself, the point P is marked).[10] The
superimposed squares producing the regular octagon are also found as an illustration
to the determination of its area in Epaphroditus & Vitruvius Rufus [ed. Cantor 1875:
212, Fig. 40[11]]. Since the area is found from the octagonal number, this (as well
as any) geometrical construction is irrelevant to the calculation; it can only be there
because it was familiar. Finally, Roriczer’s Wimpergbüchlein [ed. Shelby 1977: 108f]
makes use of the configuration.[12]

The conclusions to be drawn from this are somewhat shaky. It appears that the
construction of the octagon, both by means of superimposed squares and via the

10 The construction described by Vitruvius in De architectura I.vi.6–7 [ed., trans. Granger 1970:
I, 58–61] is thus a (mistaken) reconstruction, explaining only how Vitruvius thought the
construction could be made.

11 The text is also in [Bubnov 1899: 539], but the diagram is omitted.

12 Cantor [1907: 108] refers to the superimposed squares as common in Pharaonic wall painting,
but this can hardly be considered as evidence, neither for use in actual architecture nor for
mathematical reasoning based on it. But at least is shows the idea to be near at hand.

The several apparently regular octagons in Villard de Honnecourt’s sketchbook [ed.
Hahnloser 1935: Taf. 18, 63] are not accompanied by verbal or geometric indications as to
how they were constructed. Only familiarity with Roriczer’s description allows us to surmise
that Villard’s specimens were made in the same way; they cannot count as independent
evidence.

- 6 -



simpler diagram of Figure 2, was known

Figure 4. The completed version of Figure 2.

in Classical Antiquity and by late
medieval Gothic masterbuilders; it is
near at hand to assume some kind of
continuity. In the absence of better
explanation it is also tempting to
presume that the side-and-diagonal
algorism was inspired by one or the
other of these constructions. Equally in
the absence of better explanations, it is
tempting to conjecture that the same
algorism was used by Old Babylonian
calculators, and that even they had come
to know it in this way (nothing neither
excluding nor guaranteeing that the
Classical knowledge of the algorism was due to independent discovery).

Concluding observations

Fairly broad reading of writings on practical “mensuration” from a variety of
pre-Modern cultures have thus permitted me to locate one rather certain instance
of inspiration from a (very simple) construction, and one more dubious case. Even
in this field it is confirmed that “practitioners’ knowledge” was not unspecified “folk”
but specialists’ knowledge, and that specialists belonged to distinct cultures with
little mutual communication.

As an illustration of the rarity of such communication I shall mention one
instance, albeit rather of communication between “scribes” and surveyors than
between “scribes” and constructors. In the introductory remarks I mentioned that
the vernacular Pratike de geometrie was largely a translation of the Latin Artis cuiuslibet
consummatio. However, on one point it is not (in fact on several points, but only this
one concerns us here). The Artis cuiuslibet consummatio I.15 [ed. Victor 1979: 158–160]
finds the area of an equilateral pentagon as the corresponding pentagonal number
(in agreement with the agrimensorial tradition, and in spite of Gerbert’s explanation
of the fallacy in the triangular case [ed. Bubnov 1899: 45], even though this
explanation is reported in chapter I.2 [ed. Victor 1979: 130]). In contrast, the Pratike
[ed. Victor 1979: 489] suggests to multiply each side by half the height (which must
be supposed to be measured, since no value is told) and to add the five partial areas
afterwards.

A very similar procedure is proposed in the treatise Geometrie due sunt partes
principales [ed. Hahn 1982:155], whose earliest manuscript also dates from the
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thirteenth century. Here, for any regular polygon, it is proposed to construct the
perpendicular bisector of each side, to see where they meet, and measure the
heights – etc. Finally, the Trattato di tutta l’arte dell’abacho, written in 1334 in Tuscan
language but in Montpellier and under obvious Provençal influence,[13] gives an
alternative “by geometry” to a corrupt version of the “arithmetical” computation
by means of the pentagonal number. This alternative looks as a mixture of the two
Latin prescriptions – which can only mean that all three texts shared a common
background, probably in French vernacular culture, where scribal “mensuration”
had contact with real mensuration.

I know of no evidence beyond these three passages for the character of this point
of contact, and it is much of an accident that I noticed them. Other evidence for
interaction between different geometrical cultures of the time may be hidden in odd
corners of manuscripts and wait for detection. On the other hand, the very possibility
of hiding shows that such contacts were exceptions: on the whole, the pre-Modern
geometrical cultures of scribal administrators, surveyors and master builders were
as isolated from each other as, say, dentists, air traffic controllers and public relation
experts nowadays.
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