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Peter Damerow und Wolf Wucherpfennig gewidmet,
auf Anlaß deren sechzigsten Geburtstage

Prolegomenon

In Physics IV.4, 212a5–6 [ed., trans. Hussey 1993: 28], Aristotle states that place
[τοπος] is “the limit of the surrounding body, at which it is in contact with that
[body] which is surrounded” – in 212a20 modified into “unchangeable limit of
what surrounds”. In IV.11, 219a8–9 time is explained to be “either change [κινησις ]
or some aspect of change” [ed., trans. Hussey 1993: 43] – a point made in almost
the same words in Metaphysics Λ, chapter 6, 1071b10. The Physics passage goes
on to argue that since (as just shown) it “is not change, it must be some aspect
of change”, and concludes in 220a3 that it is “the number of the motion” [ο της
φορας αριθµος].

Nobody who has gone beyond an introductory course in the history of
philosophy would get the idea that Aristotle thought so because he was unable
to grasp space and time in (our) quasi-Newtonian way, as receptacles within
which bodies are located but which themselves do not depend on the presence
of such bodies. Regarding space he even explains (Physics IV.1, 208b33–35) that
Hesiod thought “as most people do” that place “is prior to all things, since that,
without which no other thing is, but which itself is without the others, must be
first. (For place does not perish when the things in it cease to be)” – and in
Categories 6, 5a6–13 [ed., trans. Ackrill 1963: 13] he himself comes disturbingly
close to these “vulgar” opinions[1] about space and time:[2]

Time also and place are of this kind [continuous quantities]. For present time joins
on to both past time and future time. Place, again, is one of the continuous quantities.
For the parts of a body occupy some space, and they join together at a common
boundary. So the parts of the place occupied by the various parts of the body,
themselves join together at the same boundary at which the parts of the body do.

Aristotle did not reject the seemingly modern views of space and time
because they could not be thought in his times; after many pages of arguments
he rejects them in the Physics because he cannot make philosophical sense of
them. His solutions certainly do not coincide with those offered by Berkeley,

1 This is how such opinions were characterized by the schoolmen, who were no less
familiar with them – see [Grant 1981: 9].
2 I leave aside as immaterial for the present discussion the question whether Aristotle’s
thought had developed over time or a different agenda made him speak differently.
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Kant, Mach and Einstein, but on a general level the problems he tries to solve
belong to the same family as theirs.[3]

The preceding remarks had to do with the history of natural philosophy.
Within the history of mathematics, the problem of past conceptual structures
that differ from ours has now been discussed for well over a century,[4] but
here the discussion has turned around a different pivot: were historical concepts
really different and the historical actors unable to think or express themselves
in our terms, or is everything just a question of terminology and notations? In
the following I shall argue that this debate is unduly simplistic, and that more
attentive reading of pre-Modern sources reveals that early mathematical writers,
and not only Aristotle, might have other reasons that failing conceptual capacity
or inadequate terminology to think or express themselves in ways that differ
from ours. However, since mathematical writers tend to use their concepts or
at most to define them rather than analyzing them or explaining their raison-d’être,
we rarely have anything similar to Aristotle’s many pages discussing the
shortcomings of rival views to help us. We shall therefore start with some
reflections on how to approach a “mathematical mode of thought”.

Tools and mode of mathematical thought

A “mode of thought” is prima facie as intangible as a Zeitgeist. A concept is
less so, but needs to be distinguished from the word. Disregarding general
epistemological discussions we may start from the metaphor that a mathematical

3 Cf. Einstein’s introduction of the problem of time and contemporaneity in §1 of his
treatise “Zur Elektrodynamik bewegter Körper” [Einstein 1905/1913: 28]:

Wollen wir die Bewegung eines materiellen Punktes beschreiben, so geben wir
die Werte seiner Koordinaten in Funktion der Zeit. Es ist nun wohl im Auge zu
halten, daß eine derartige mathematische Beschreibung erst dann einen physikalischen
Sinn hat, wenn man sich vorher darüber klar geworden ist, was hier unter “Zeit”
verstanden wird. [...]. Wenn ich z. B. sage: “Jener Zug kommt hier um 7 Uhr an,”
so heißt dies etwa: “Das Zeigen des kleinen Zeigers meiner Uhr auf 7 und das
Ankommen des Zuges sind gleichzeitige Ereignisse.”

Up to this point, the main distinction between Aristotle’s reference to motion and
Einstein’s reflections on the meaning of time consists in the latter’s specification of the
kind of moving object he refers to. Serious divergence between the two only starts five
lines later, when the finite speed of light is taken into acount.
4 In the later nineteenth century, we have Rodet’s attack on Eisenlohr’s and Cantor’s use
of modern algebraic symbolism in their interpretation of the Rhind Mathematical Papyrus
(see below), and the Zeuthen-Cantor debate [Lützen & Purkert 1994] about the (il)legitim-
acy of the reading of the historical record as contemporary mathematics. In more recent
decades, the still cited standard example is the Unguru[1975]-Weil[1978]-Freudenthal[1977]-
debate, with van der Waerden [1976] in an intermediate position not too different from
Cantor’s. More examples are referred to in the following.
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concept is a tool. A mental tool, but a tool only by being a tool for operations –
the shared properties and conditions of the whole network of connected
mathematical concepts with participating operations characterizing the cor-
responding mode of thought.

This statement remains pretty abstract, but may be elucidated by an example.
If we want to know (or, perhaps better, decide) whether, for instance, late
medieval abbaco treatises operate with “negative numbers” it is not enough to
notice that they use the term meno; even the observation that they state the rule
that meno vie meno fa più does not suffice.[5] As it is made manifest by the general
adequacy of the translation “less” for meno, the rule might simply refer to a
notion of “subtractive” members of a polynomial. We should rather observe
whether “numbers meno” also occur as results, or the actual use is restricted to
expressions “a and less b” where b is not (or cannot, if roots are involved, easily
be seen to be) larger than a (a as well as b being “non-meno” numbers or roots);
further, whether the rule is used not only in multiplications of polynomials but
also when a polynomial involving members meno is subtracted from another
polynomial. If one of these conditions is not fulfilled, the notion of “less” is so
different from our conception of “negative numbers” that it is misleading rather
than illuminating to identify the two.

We could be more restrictive and refuse to speak of “negative” numbers
before we have replaced the idea of two categories of numbers – normal and
meno – by a single category divided “in the middle” by 0; but we may also decide
that the idea of two separate categories is simply another version of the concept.
In any case, the two concepts or two versions of the concept are linked to
different practices with appurtenant tools: the two categories to the practices of
accounting and rhetorical equation algebra,[6] the single category to the new
practices evolving around symbolic algebra, analytical geometry and analysis
infinitorum.[7]

5 An early published appearance is in the Trattato dell’alcibra amuchabile from c. 1365 [ed.
Simi 1994: 17]. The unpublished occurrence in the Aliabraa argibra (ms. Chigiana M VIII
170, fol. 5v) is linked to the example 10–2 times 10–2 and may go back to c. 1340.
6 We may of course remember Leonardo Fibonacci’s observation in the Flos, ed.
[Boncompagni 1862: 238] that a certain problem “is insolvable, unless it is conceded that
the first man has a debt”, and the similar passage in his Liber abbaci [ed. Boncompagni
1857: 256] (here, as everywhere in the following where no other translator is identified,
the translation is mine); but the real argument for the link is and remains the correspon-
dence between the sets of operations on possessions and debts or incomes and expenses,
booked in separate columns, and the treatment of numbers simply and meno.
7 Actually, the first explicit reference to the single category which I know about (though
for integers only) goes back to 1544, thus antedating symbolic algebra proper as well as
analytical geometry and analysis infinitorum. In the Arithmetica integra, Stifel [1544: 249r]
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We may further observe that the two-category version is not simply an
incomplete version of the single number line but in itself a mental tool which
enabled Cardano and Bombelli to accept the only slightly more “false” categories
of imaginary and complex numbers,[8] in a way which would have been barred
once the single-category understanding was established, and which was only
opened again by the invention of the geometric representation and the formal
operation with pairs of real numbers.

A similar example is offered by the discussion whether the ancient Greeks
possessed a notion of “general fractions” or merely one of repeated aliquot parts.
Does (Diophantos, Arithmetica II.8, ed. [Tannery 1893: I, 93]),[9] mean ?16

5
Obviously yes, in the sense that this is the correct solution; but if we read the
way such correct solutions are expressed in I.23 we see that appears as ν̄ κγων,50

23
“50 of 23rds”, and slightly later as “150 of the said part”. Obviously, what150

23
we would express as is thought of as p times the qth part; this is different fromp

q
the Pharaonic Egyptian canon, according to which each aliquot part should
appear only once in a number; but it is not for that reason by necessity identical
with our concept. In III.11, however, we also find that 30¼ times is , and41

77
that the “part denominated by” is .[10] It seems reasonable to assume that41

77

77

41

explains that the “fictitious numbers” are “below 0, that is, below nothing”. But it is also
explained that this fiction is introduced because of its “supreme utility in things
mathematical”, a claim that is illustrated by the transformation of the subtraction
(8+5)–(10+2) into (8–2)–(10–5) (both expressed in schemes, not by means of the parentheses
invented by Bombelli – but anyhow in an early form of symbolization if this is understood
as a representation that allows operation directly at the level of non-verbal representatives);
on the verso of the same folio, furthermore, we find explicitly the sequence –3, –2,

–1,0,1,2,3,4,5,6 counting the exponents of the geometrical progression , , ,1,2,4,8,16,1

8

1

4

1

2

32,64. This first beginning of the one-category view, like its later consolidation, is thus
linked to considerations of consistency derived from inner-mathematical practice.
8 The link is betrayed by the vocabularies they invent – for instance Bombelli’s più di meno

for + and meno di meno for – . We might speak of “Papageno tolerance” (“Es–a –a
gibt ja schwarze Vögel. Warum soll es nicht auch schwarze Menschen geben?”): the
existence of one irregular category, once habit has made it acceptable, opens the mind
to the acceptability of other aberrations of a similar kind even if they remain aberrations.
9 Reviel Netz [2002] has observed that Tannery uses the stenographic symbols much more
consistently in his edition than the manuscripts do, and that these latter do not use them
in the same place. No manuscript, moreover, goes back to Diophantos’s own epoch.
Though complicated fractions and reciprocals are less liable to variation in this respect
than the symbols and (“number” and “less”, respectively), we should not feel too
confident that the expressions appearing as shorthand symbols in the present argument
were all written in that way by Diophantos himself, though some similar expressions
certainly were. But the argument does not really hinge on the stenographic writings.
10 In more detail: ¼ is written δx in agreement with the explanation given in the
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Diophantos’s concept was richer in operational links than a mere heaping of
identical aliquot parts would suggest, and that he presupposes a similar richer
concept on the part of his reader; but since he does not tell how he operates,
we still cannot decide how similar his “practical concept” was to ours.[11] Only
in the late medieval abbaco treatises, where cross-multiplication and other
arithmetical operations are explained in detail, also when polynomial denomina-
tors are involved, can we be sure that the concept is really close to ours.[12]

Structures of mathematical operations grow out of operations with tools in
the proper sense: the manipulation of bamboo sticks on a counting board,
geometrical construction on a dust abacus or paper, routines for accounting or
for solving equations, etc. But they are never identical with the more or less
structured set of operations with these tools but always contain both (qua
abstractions) less and (qua intellectual elaborations) more: for instance, a
diminished expense results in an increased possession, which corresponds to
the rule that meno(meno α) is simply α – but no straightforward accounting
operation corresponds to the rule that meno via meno is più. Therefore it cannot
be excluded that mathematical conceptual structures that are fairly congruent
with something we know grow out of manipulations of tools which are quite
different from those from which we are now accustomed to see them evolve.
Identifying underlying tools that differ from ours does not prove that the
corresponding concepts were also fundamentally different.

This is exemplified by the Cardano-Bombelli and the post-Gauss notions of
imaginary and complex numbers. Another example (which goes both ways) is
this: A couple of years ago a “historically interested” mathematician (I shall leave
him anonymous and hence for copyright reasons not quote his words) claimed
in a discussion on a web-site that the Babylonians could hardly have failed to
recognize the particular character of irrational square roots because they will
have seen that the equally non-finishing sexagesimal reciprocals of irregular
numbers are periodical, and have to be so because of the finite number of
possible remainders. He forgot that the structure on which he himself was first

introduction (p. 6); the arithmós is found to be , and the number which was posited41

77

as arithmós× is then .77

41

11 A similar conclusion is reached by Jean Christianidis [2000], from analysis of the more
complex calculations of IV.36, in which fractions denominated by binomials are added
and multiplied. In this case, as pointed out by Christianidis, Diophantos does refer to
a general rule for the addition of fractions (µορια ).
12 Being unable to read the Indian texts I prefer nor to include the indubitably earlier
Indian fractions in this discussion.
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taught about irrational numbers – probably the decimal fractions and operations
with rational numbers – was not the one on which the Greeks developed their
notion of magnitudes that “could not be spoken” or “were not in ratio”. He failed
to notice that only the existence of a distinction between rational and irrational
magnitudes once developed in relation to a different set of operations makes
the distinction between periodical and non-periodical decimal fractions
interesting. He presupposed (without knowing to presuppose anything) that
the Babylonians divided by irregular numbers in a way that leaves successive
remainders (he may have been right, but that is a different question and so far
undecided); and he overlooked that the sources that elucidate the question –
the few listings of the reciprocals of irregular numbers – all stop before getting
to the point where periodicity shows up, with the sole exceptions of the
reciprocals of 59 (told to be 1 1 1) and of 1 1 (i.e., 61), told to be 59 59 (meaning
0;59,0,59) – hardly cases that invite to consider the total set of possible remain-
ders. All in all, the partial agreement between the ancient and the modern
concepts of irrationals (and between ancient and modern place value notations)
veiled that the underlying sets operations are different, and therefore invite
different further extensions. Leaving the anonymous mathematician aside we
may also note that the aim of Elements X is very hard to understand if one’s
concept of irrationals is based on decimal fractions, whereas the Greek concept
does not allow the formulation of the distinction between algebraic and
transcendent irrationals (not to speak of the theorems about the different decimal-
fraction convergence patterns of the two classes).

These hints and sketched arguments should suffice to illustrate, both the
fertility of the claim that mathematical concepts and conceptual structures are
formed in interaction with tools within a practice, and the dilemma presented
by the lack of clear one-to-one correspondences between practices and mathemat-
ical conceptual structures. If we leave out the epithet “mathematical”, this is of
course a well-established Hegelo-Marxist point of view.[13] They should also

13 But certainly older – see for instance this description of the relation between the changing
view of nature and general material conditions and corresponding economic practice from
Goethe’s Wahlverwandschaften (II.8; [Werke VIII, 149]), pronounced by the romanticist Gehilfe:

Menschen, die ihren Grund und Boden zu nutzen genötigt sind, führen schon wieder
Mauern um ihre Gärten auf, damit sie ihrer Erzeugnisse sicher seien. Daraus entsteht
nach und nach eine neue Ansicht der Dinge. Das nützliche erhält wieder der
Oberhand, und selbst der Vielbesitzende meint zuletzt auch, das alles nutzen zu
müssen.

No wonder that the same Gehilfe as echoed by Ottilie establishes the link between
Romanticist ideals and Alexander Humboldt who, in his “physics of the earth”, “uns
das Fremdeste, Seltsamste mit seiner Lokalität, mit aller Nachbarschaft, jedesmal in dem
eigensten Elemente zu schildern und darzustellen weiß”.
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suffice to show that “conceptual divergence” – differences between concepts that
cannot be reduced to more or less full development of the same ideal concept –
is something that must be taken into account.

The latter point can hardly be considered a historiographic revolution. As
mentioned above, attempts to trace the differences between foreign and familiar
conceptual worlds are certainly not new within the history of mathematics. The
linking of the divergence to different practices is less hackneyed[14] – the
prevailing tendency has been to find the inner logic of a certain conceptual world
and explain its character or limits from there (a somewhat circular argument).
Moreover, claims that the mathematical concepts of other cultures differ from
ours were mostly challenged by proponents of the view that mathematics is only
plural from the grammatico-etymological point of view, and that differences are
to be found at the level of notations, not thought (apart from that increasing
scope and sophistication of mathematical thought which nobody could and would
deny). We shall encounter more examples of both views below.

However, the fruitfulness of the notion of conceptual divergence is no proof
that it explains all differences between the ways ancient and more recent texts
speak about what from a Zeuthen-Weil point of view is basically the same
mathematics. Some examples will show that other factors have sometimes been
in play.

Egyptian discussions

The historiography of Egyptian mathematics is a classical ground for fighting
the battle about dissimilar concepts. The first skirmish, mentioned in passing
above, was between Eisenlohr [1877] and Cantor [1880] on one side and Rodet
[1881] on the other – the former two explaining the procedures of the chc-problems
in the Rhind Mathematical Papyrus by means of symbolic first-degree algebra,
the latter claiming that this betrayed the underlying thought of the Egyptian
calculator and proposing (with ample references to pre-modern counterparts)
the use of a single false position. This discussion went on for long – I shall only
mention Peet’s identification of Rodet’s reference magnitude or bloc extractif with
a common denominator [1923: 18] and Neugebauer’s arguments that this
modernizing view “misunderstands the inner unity of Egyptian computation
completely” [1934: 138ff, quotation p. 145].

Slightly later came discussions about the particular Egyptian way to express
fractional quantities – strikingly different from ours yet coherently developed
and hence apparently the best candidate for a way to think about numbers that

14 But see the articles in [Damerow & Lefèvre (eds) 1981].
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disagrees with our ways without being merely incomplete. As a typical
representative of the attempts to be loyal to the Egyptian pattern of thought we
may quote Gardiner’s Egyptian Grammar [1957: 196]:

For the Egyptian the number following the word r had ordinal meaning [...]. As being
the part which completed the row into one series of the number indicated, the
Egyptian r-fraction was necessarily a fraction with, as we should say, unity as the
numerator. To the Egyptian mind it would have seemed nonsense and self-contradic-
tory to write r-7 4 or the like for 4/7; in any series of seven, only one part could be
the seventh, namely that part which occupied the seventh place in the row of seven
equal parts laid out for inspection. Nor would it have helped matters from the
Egyptian point of view to have written r-7 (+) r-7 (+) r-7 (+) r-7,
a writing that would have likewise assumed that there could be more than one actual
“seventh”. Consequently, the Egyptian was reduced to expressing (e.g.) by4

7
(+) .1

2

1

14

Already Hultsch [1895: 9] had pointed out that what we regard as
fractions with a numerator greater than 1 was “nach Ägyptischer Anschauung
Vielheitstheilungen oder noch nicht zu Ende geführte Divisionen”. Evidently
the Egyptians knew how to express 4 as measured by 7, namely as a sum of
aliquot parts; paraphrasing Hultsch one might say that could well be thought,4

7
but as a problem, whose solution was 2̇ 14̇.[15]

Peet and others objected that this was a question of notation, not one of
conception; in Peet’s words [1923: 16], “the argument from what the [Egyptian]
was capable of expressing in symbols to what he was capable of conceiving is
a non sequitur, and the suggestion that his notation must surely have kept pace
with his conception will fall on deaf ears in the case of those acquainted with
the amazing conservatism of the Egyptian mind in every branch of life”.

More compelling than general appeals to the sypposedly familiar character
of the Egyptian mind (though scarcely ever noticed) were perhaps Vogel’s
objections. He pointed [1929: 43] at two telltale slips in RMP #81 (noted by Peet
[1923: 123] in the translation but not commented upon by him): in one place the
scribe writes 5̇ instead of 2̇ 8̇, thus betraying that (that is, probably, 5 times5

8
8̇) was somehow on his mind; in the following line, 4̇ 8̇ is replaced by 3, with
the implication that he was thinking of . Vogel and others also pointed out3

8
that the unhesitating doublings of aliquot parts with denominator 2n as ṅ implies
knowledge that 2ṅ 2ṅ = ṅ, and thus presupposes some concept of that entails2

p
= ṅ.2

2n
In [1975], Silberman pointed out that a late Old Kingdom use of the aliquot

15 In the manner of hieratic Egyptian I use a dot over a number to indicate the correspond-
ing “weak” number or aliquot part.
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part notation (in fact the only Old Kingdom instance of fractions beyond the
“natural fractions” 3̈, 3̇, 2̇, 4̇, “ ” and 6̇, as far as I am informed) registers a3

4
damage to a cup as being large 5̇ 5̇ finger.[16] All in all it seems legitimate to
conclude, not only that the Egyptians knew p:q as a problem, but also that they
were able, so to speak, to manipulate this problem (presumably in the form q̇ q̇
... q̇) as a representative of the solution, that is, as a number. But this observation
does not change the fact that Middle Kingdom scribes refused to use this kind
of number when writing down a result.

Babylonian mysteries

Discussions similar to those concerning the Egyptian “equations” and
“fractions” are almost non-existent in connection with Babylonian mathematics.
Discussions are certainly not – but they have concerned the question whether
Babylonian “algebra” was really an “algebra” or not, and if not, whether it was
a collection of empirical recipes or based on arguments hidden from view.[17]

I shall not pursue these topics, they are nor very relevant for the present
discussion.

Without being discussed, however, statements about the particular mathemat-
ical mode of thought of the Babylonians have certainly been made.[18] One
example is Vajman’s explanation [1961: 100] of the habit to subtract an entity
before it is added elsewhere, which he saw as an expression of a “concrete”
organization of thought: we cannot add something before it has been made
available.

In my [1990: 264] I cited Vajman’s observation and explained (away) the only
exception I had noticed by then. More recently, however, a fuller survey of texts
made me discover that the exceptions are numerous, and that there is a pattern
in their distribution.

Let me first present an example where the rule is followed: the problem of
the text YBC 6967 [MCT, 129]. It deals with two numbers igûm and igibûm that

16 Silberman explains this as an instance of scribal ignorance, but in the context of Middle
Kingdom mathematics the point is so fundamental that it would correspond to a modern
accountant ignorant of the place value system (as I have pointed out at an earlier occasion).

The text in question is published in [Posener-Kriéger & de Cenival (eds) 1868], with
fractions 4̇, 6̇ and 5̇ 5̇ on plates 23–25; translations can be found in [Posener-Kriéger 1976],
17 Until recently (and often today in much of the general literature), “Babylonian
mathematics” was conventionally understood as an undifferentiated whole. The following
regards only the mathematics of the Old Babylonian period (2000–1600 BCE), during which
the overwhelming majority of known texts were produced.
18 Outside the domain of mathematical thought, similar statements have also called forth
discussion. I shall restrict myself to mentioning [von Soden 1936] and [Larsen 1987].

9



belong together in the table of reciprocals (the

Figure 1. The procedure of
YBC 6967.

names means “the reciprocal” and “its recipro-
cal”; for short in the following, n and ñ), and
whose product is hence 1 or (in the actual case)
60; their difference is told to be 7. The product
is spoken of as a “surface”, which allows the
interpretation of the procedure which is shown
in the diagram. First, the excess of n over ñ is
bisected and moved around. This transforms the
rectangle into a gnomon, which can be com-
pleted into a square by being joined to the
smaller square (3½) which it encloses. The area
of the completed square is 72¼ and its sides,
both vertical and horizontal, hence 8½; from the
vertical side we now remove that part which
was moved around, leaving 8½–3½ = 5 as ñ;
putting the same piece back into its original place
and joining it to the horizontal side of the com-
pleted square gives us n = 8½+3½ = 12.

Rectangle problems where the sum of the
two sides is given together with the area do not
require that the same piece be removed and joined. Here, as in all cases where
there is no inner constraint (not least when independent variations of problems
are listed in sequence), the Old Babylonian texts let addition precede subtraction
exactly as we do. On the other hand, rectangle problems are not the only ones
where concrete meaningfulness requires subtraction to precede addition. As an
example I shall mention the first-degree problem VAT 8389 #1 [MKT I, 317f ],
in which a field of known area is divided into two partial fields. The rent per
area unit for each partial field is given together with the total area and the
difference between the rents paid from the partial fields.[19] At first the two
total rents are found under the assumption that the partial fields are equally
large. The amount by which these hypothetical rents differs is too small, and
the next step is to find how much must be transferred from one partial field to
the other in order to give the required difference; this piece is then really
transferred, first removed, then joined.

Other texts, also texts treating the same type of rectangle problem as YBC
6967, do not respect the principle. Often, after having found the side of the

19 Vajman’s primary example is a problem from the closely related text VAT 8391. As
a second example he refers to YBC 6967.
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completed square, they have the abbreviated formula “join and remove” – at
times expanded into “join to one, remove from the other” – and then state the
two resulting values. Moreover, it turns out that several of the texts that use
the short version of the formula belong to the oldest phase of Old Babylonian
“second-degree algebra”, being thus close to the adoption into the scribe school
of a set of mathematical riddles treating of the sides and areas of squares and
rectangles originally belonging to an environment of non-scribal surveyors; in
contrast, all those texts which respect concrete meaningfulness are younger.[20]

The use of the concretely absurd ellipsis thus cannot be explained as a result
of a century’s school routine in which once concretely meaningful operations
were worn down to their arithmetical essentials. Quite reversely, it turns out
to be the scribe school that invented concreteness, or made it a canonical rule –
or rather, that certain scribe schools did so: texts from other late text groups do
not respect the canon.

I just referred to Old Babylonian “algebra”, claiming in the same breath that
it deals with geometric problems. The ideas of a Babylonian “algebra” and of
geometry did non originally go together. Neugebauer claimed already in 1935
[MKT II: 63f ] that the “nonsensical” inhomogeneous additions of sides and areas
prove that the problems are numerical and the geometric appearance an external
dress; the same argument was advanced for instance by van der Waerden [1962:
71f ]. Neither drew any consequences of the fact that the texts regularly use two
different words for addition and distinguish between the situations where one
or the other should be used (though Neugebauer appears to have been fully
aware of it). One (wasābum, “joining”) is meant to be concretely meaningful; the
other (kamārum, in general interpretation “to heap”, “to accumulate”) can be used
to add together the measuring numbers of discordant entities – lengths and areas,
areas and volumes.

When dealing with problems in which, for instance, the “heap” of a square
area and the corresponding side is given, the texts may employ various devices
in order to make the sum concretely and not only numerically meaningful and
permit a geometrical procedure analogous to the one that was shown in Figure 1.
One major text (BM 13901, in [MKT III, 1–5]) refers to an entity called “wāsı̄tum

20 For brevity and in agreement with established tradition I use the term “algebra” about
the solution of problems about square or rectangular areas and sides. It is immaterial
for the present discussion whether and in which sense this usage is justified; if “algebra”
began with Emmy Noether, as maintained by some mathematicians, then of course there
was no “Babylonian algebra”.

For the relative dating of the Old Babylonian texts I refer to [Høyrup 2000a], for the
derivation of the “algebra” from a set of non-scribal mathematical riddles for instance
to [Høyrup 2001]. Both issues are also treated in [Høyrup 2002].
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1”, derived from a verb meaning “to protrude”, “to

Figure 2. The square
area and the side pro-
vided with a wası̄tum.

go out”. The side s is represented by a rectangle
(1,s), the other side of which is a line of length 1

protruding from the square – heavily drawn in
Figure 2.

A similar trick but a different word is used in

Figure 3. The
rectangle pro-

vided with
a “base”.

TMS IX #1,[21] in which the length
is added to a rectangular area, and
it is explained that this corresponds
to the joining of a “base 1”
(KI.GUB.GUB 1) to the width – see
Figure 3. A third trick, used in the
text YBC 4714 #30–39, consists in
introducing a “second” width of 25
in order give concrete meaning to
the statement that the difference
between the squares on the two
sides of a rectangle is equal to 25
times the smaller of these sides.

The texts that avoid to join sides
to areas, however, are relatively late;
those belonging to the earliest text groups express no scruple when “joining”
sides to areas, and thus make implicit use of a notion of “broad lines”, lines
which on their own possess a virtual breadth of one length unit. Broad lines turn
out to be widely spread in practical geometries, where the use of a fixed basic
unit of length can be presupposed (we still sell cloth according to the same
system).[22] They have always tended to disappear from more scholarly mathemat-
ics – as expressed by Plato (Laws VII, 819D–820B, ed. [Bury 1926: II, 104–10]),
the Greeks should be ashamed for being ignorant, not only of the problem of
incommensurability of magnitudes of the same kind but also of the fact that
lengths, surfaces and solids are neither exactly nor “moderately” [ηρεµα]
commensurate – that is, for example, that a surface of “3 feet” (viz in length,
tacitly 1 foot broad) has no common measure with a line of 5 feet.

The use of “heaping” of measuring numbers as a way to make sense of what
the Old Babylonian school masters no less than Neugebauer would consider
“nonsensical” joinings is thus another secondary development, a creation of the

21 Text edition in [TMS, 63] – but see the corrections and the reinterpretation in [Høyrup
1990: 320f; 2002: 89–95].
22 See the discussion in [Høyrup 1995].
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school; the non-scribal environment from which the problems were first taken
over had no use for it. The various devices by which “broad lines” are trans-
formed into rectangles whose lengths are the corresponding “Euclidean lines”
(i.e., “lengths without breadth”, in the words of a definition which is already
found in Aristotle’s Topica 143b11 [ed. Tredennick & Forster 1960: 591]) were also
inventions of the scribe school, and according to the vacillating verbal expression
of the same basic idea they were probably later still – “heaping” is in general
use throughout the later corpus and always spoken of in the same term.[23]

“Heaping” is certainly not the only term to be used without variation
throughout the Old Babylonian corpus or most of it (actually, even the text
groups and often those very texts that “join” lines to areas employ “heaping”
for certain other additions); most of the essential terminology is shared, which
is the main reason that the only consistent attempt made until recently to
distinguish between separate text groups [Goetze 1945] had to be based on
orthographic criteria. But closer inspection reveals a number of subtle differences,
of which I shall list some of the most significant:[24]

– In some text groups, the fact that (e.g.) 3 is the side of a square with area
9 is expressed in the phrase “9.e 3 íb.si8”, “alongside 9, 3 is equal”; others,
probably influenced by the use of tables of square roots, employ the Sumerian
verb íb.si8 as a noun (we may translate it “the equalside”), and state that
“3 is the equalside of 9”.

– In two (early) text groups, íb.si8 is replaced occasionally or consistently by
another conjugated form ba.si8 of the same verb; in one of them this term
is used as a verb, in the other as a noun. All other text groups use ba.si8

only when a cube or rectangular prism is referred to and in more generalized
functions.

– Some text groups (early as well as late) refer to “each” of the sides of a
square or to “all four” sides – according to various criteria groups that remain
close to that non-scribal geometrical practice which had once supplied the
riddles; others avoid this usage consistently.

– Text groups from the periphery of the ancient Sumerian area – regions that
had long been under the cultural influence of Sumer but had been subjected
only briefly to the “Neo-Sumerian” empire in the 21st century BCE – announce
the appearance of a numerical result by saying that “you see” the number.

23 Counting the Akkadian verb kamārum in syllabic writing and the two possible
logographic writings of the term (g̃ar.g̃ar and UL.GAR) as one.
24 I refer again to [Høyrup 2000a] and to the more matured discussion in [Høyrup 2002:
317–361].
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All groups from what had once been the Sumerian core area avoid the
phrase, with the exception of one very early group from Ur which sometimes
uses the Sumerian equivalent pàd; they do so not in ignorance of existence
of the expression – for instance, a question what to do “in order to see” the
value of a magnitude[25] shows that the idea was familiar – but apparently
as a consequence of deliberate choice. Some of the core groups state that
a result “comes up”, one group that the calculation “gives” it. In all groups
but this one, “giving” occurs exclusively in connection with numerical
calculations within the sexagesimal system. Nine (early) texts from Eshnunna
in the periphery, all of them found in the same room, use “seeing” in
problems linked to the riddle tradition and “coming up” in problems
belonging with traditional scribal computation, and couples the two terms
consistently to different ways to ask for values; texts from other localities,
and even one from a neighbouring room, confirm the historical affiliations
of “coming up” and “seeing” but reveal that the linking between a problem’s
“home tradition” and its way to ask questions is mistaken, and should have
been turned upside down.

– The nine texts which couple the way to announce results, the way to ask
questions and the “home tradition” of problems start all problems by the
formula “If somebody asks you thus, ...”. This obvious borrowing from the
riddle tradition (used however also for problems with a different historical
affiliation) is present in a few texts from the same region, but never appears
elsewhere, except in one text which uses it in abbreviated form in a single
problem which also on several other accounts demonstrates to be a folkloristic
citation of non-school usage. Once again the formula (which survives within
the practical-geometrical tradition until the late Middle Ages together with
“each” or “all four” sides of a square) is seen to have been known, and its
absence from the texts thus to be a result of filtering.

– Some text groups invariably start the prescription by a formula “You, by
your proceeding”; others restrict themselves to a terse “You”; still others
omit the opening formula altogether.

– early texts often employ two terms for removal, one (nasāhum) meaning “to
tear out”, the other (harāsum) “to cut off”, or use only the latter; if making
use of both, they tend to “cut” from lines and “tear” from areas; the first
of these verbs possesses a Sumerian logographic equivalent (zi), the second
not (which implies that it will have belonged to the non-scribal tradition).
Later groups eliminate “cutting”.

25 YBC 4608, obv. 22, 28 [MCT 49ff ].
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These and a number of similar observations show that the Babylonian school
masters were actively engaged in the creation of canons for how mathematics should
present itself, tabooing alternatives, and that different schools – even schools
located within the same town and active during the same decades, as revealed
by comparison of different texts from Tell Harmal in Eshnunna – did not agree
fully on what was canonical. Some of the choices may have aimed at fencing
off the school from non-school practice – thus the avoidance of “seeing” in texts
from the core, the elimination of “cutting” and of “each side”/“all four sides”,
the ousting of the riddle formula “If somebody ...”. Others – for instance the
deliberate linking of the ways to ask questions and announce results – seem to
reflect a wish to keep traditions alive in memory (mathematicians of our days
are not the first to be “historically interested”, nor are they the first to reinvent
history). Still others – the use or non-use of introductory formulae in prescrip-
tions, the generalization of the riddle formula to all problems types in one group
and of “giving” to all kinds of resulting in another – can hardly be seen as
anything but stylistic choices.

All of these possibilities – fencing off, Traditionspflege, style) belong to the
category with which postmodernist history of science has been much concerned,
those characteristics which are “shared by science and organized crime”, in a
locution borrowed from the Popper-Kuhn exchange in [Lakatos & Musgrave
(eds) 1974]. The “rule of concreteness” and the elimination/justification of the
“broad lines” represent a different category, that cardinal virtue on account of
which, in Benjamin Farrington’s words, science cannot be ethically neutral but
“must be true”.[26] More precisely, they are instances of critique in a Kantian
sense, asking for the extent to which and the conditions under which what is usually
done or believed is justified – “Untersuchung der Möglichkeit und Grenzen
derselben”, “examination of its possibility and limits”, in Kant’s words (Critik
der Urtheilskraft, B III [Werke V, 237]). Explaining the solution of the igûm-igibûm
problem as done above,[27] the teachers will have discovered that the moving

26 [Farrington 1938: 437]. Even this norm is of course, qua institutional imperative, essential
to the long-term “career strategy” of the scientific institution as such; but since postmodern
science studies committed academic parricide on Robert Merton as part of their own career
strategy, this has largely escaped their attention. Moreover, the fact that even Old
Babylonian scribe school teachers felt obliged toward it shows that this norm, just as any
other moral norm, was a generalization that went beyond what immediate utility and
self-interest seemed to ask for (in their case, a generalization from the institutional
obligations to find the correct result and to be able to teach efficiently how to find it).
27 Most of the Babylonian mathematical texts are parsimonious in giving such explanations
(though less so than was believed as long as the whole terminology was interpreted in
a purely arithmetical key), but several texts from Susa contain didactical expositions (for
instance, expounding the use of the KI.GUB.GUB); a few texts from other regions contain
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back of the piece that had been displaced contradicted the precise wording of
the traditional formula “join and remove”, and that they had to turn the phrase
around; that they also expanded it is likely to reflect a will to emphasize the
concrete meaningfulness of the operation. Similarly, the school environment will
have made the notion of the broad line implausible or outright inconceivable.[28]

At an early moment, this will have induced the schoolmasters to separate the
statement of a problem, made in terms of the “heaping” of measurable numbers,
from the geometric procedure by which it was solved; in the latter, the sides
could be represented by rectangles. Later, various schools invented (each in its
own words) ways to justify the trick of the procedure.

The geometry of Elements II.1–10 can be understood as a critique of the cut-
and-paste procedures of the surveying tradition. They presuppose the definition
of what a right angle is (likely never to have been discussed by the practical
geometers of earlier times, who will have had no difficulty in distinguishing a
good from a skew corner) as well as the postulate that was necessitated by this
definition (since it turned out not to be self-evident from the definition that all
right angles are equal). On this basis, the proof of II.6 (which we may take as
our prototype) constructs the rectangles and squares of Figure 1 meticulously
and shows the necessary equalities; in this way the text shows that what had
“always” been done is indeed justifiable on the best theoretical foundations. This
corresponds to a general characteristic of Greek philosophy, and vindicates the
view that the “Greek miracle” consisted to a large extent in this kind of critical
questioning. As we see, however, critique was no Greek privilege but also
undertaken by the Old Babylonian schoolmasters. They did not make a critique
for all times to come, and Euclid had his role to play. But after Hilbert’s
Grundlagen the fleeting character of every critique should no longer come as a
surprise: even Euclid’s critique turned out to be in need of re-critique[29] – and

rudiments of a similar pedagogy, confirming the hunch of Neugebauer and others that
the texts went together with oral instruction explicating the meaning and purpose of steps).
See [Høyrup 2002: 85 and passim].
28 This may have been a consequence of the teaching of the topic, of the need to have
a particular notion of the line of no breadth; in similar torment when adding “roots” to
“squares”, Pedro Nuñez [1567: fols. 6r, 232r] had to explain that roots are to be understood
as rectangles whose width is “la unidad lineal”. It may, however, also be correlated to
the cognitive organization of the Mesopotamian school since its fourth-millennium
beginning around what Luria [1976: 48ff ] calls “categorical classification”, in contra-
distinction to his “situational thinking” – see [Høyrup 2000b: 16]. “Situational thinking”,
mental organization of the world in terms of customary and invariable situations, is indeed
a generalized correlate of the presupposition of the “broad line”: that everybody knows
and agrees what the standard breadth has to be.
29 For this Hilbert was of course only needed in view of the ever-recurrent returns of
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Kant’s Critik der Urtheilskraft is in a way a critique of the preceding critiques of
pure and practical reason.

Summing up the observations made here on the Old Babylonian material
we may conclude that much of what the texts do not say or do not do must be
explained, not from what their authors could not think but instead in terms, either
of what they did not find it professionally fitting to say, or of what they found it
incoherent to say.[30] Thus, in both cases, of what they refused to say. Better,
perhaps, in terms of what they refused to write down – some of the slips suggest
that they may have used the tabooed language in their oral expositions.

Egyptian flashback

With this in mind we may return to the question of the Egyptian canon. If
the Egyptians knew to treat the problem p:q as “a representative of the solution,
that is, as a number” but “refused to use this kind of number when stating a
result”, then we are again confronted not with a case of what the calculators
were unable to think but of what they refused to write down.

Even in this case, the canon is likely to have been produced by the school.
Firstly, there is the argument post hoc, ergo propter hoc: the scribe school only
replaced master-apprenticeship teaching at the onset of the Middle Kingdom
[Brunner 1957: 11–15], that is, at the dividing point between the Old Kingdom
irregular 5̇ 5̇ and the canonical expression of fractional quantities in Middle
Kingdom mathematical and administrative papyri. Secondly, third millennium
computation had made use of sub-units instead of fractions, which is indeed
much more convenient for practical purposes; but sub-units presuppose rounding
and thus preclude the teacher’s unambiguous decision whether “you have found
it correctly” (the recurrent phrase from the teacher’s annotations to the Moscow
Mathematical Papyrus, ed. [Struve 1930]). Since the full and systematic unfolding
of the unit fraction system in the Middle Kingdom thus corresponded to a need
which only came into being by the emergence of the school, it is likely to have
been brought about by the school – and with this system, in which denominators
might go into the hundreds or even further, repetitive writings of p times q̇, in
the vein of 5̇ 5̇, were certainly neither practical nor practicable.

didactics to Euclid as the supreme model; much of the medieval commentary tradition,
Islamic as well as Latin, already submitted the holy text to critical desacralization.
30 My impression from the texts that were used in school to inculcate professional attitudes
and self-importance (“examination texts” and proverbs dealing with scribes) is that
intellectual coherence was no part of the explicit norms regarding what was professionally
fitting. But not all norms are in need of being made explicit: few of us ever had to be
told that it is unfitting to eat your soup with your feet on the table – it is as self-defeating
as teaching mathematics through incoherent explanations.
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But this can hardly be the raison d’être of the canon. For the higher numerals,
the Egyptians made use of multiplicative writings much in the manner of
Diophantos, first eliminating in this way the unit 1000000 and next also 100000
[Sethe 1916: 9].[31] The Egyptians clearly could think in this way if they wanted
to. Gardiner knew so – this kind of multiplicative writing is precisely what is
meant by his “r-7 4 or the like”. The hieratic slips 5̇ and 3 in RMP #81 show that
they actually did think like this on occasion.

Why then? It is not to be excluded that Gardiner got a point, and that the
Egyptian school masters when figuring out what could be meant by an aliquot
part q explained it in a way that precluded that more than one copy could
legitimately be present. It may also have to do with the computational technique
and its use of repeated doublings, as proposed by van der Waerden [1938: 361]
and accepted by Clagett [1999: 25]. We cannot know, nor can we exclude the
possibility that both explanations are wrong and that a third motive has to be
looked for. In any case, the canon was the outcome of deliberate choice, not of
mental divergence.

Greek “numbers”

Nobody suspects that the ancient Greeks made their geometry in the
Euclidean manner because they were intellectually incapable to think in more
heuristic ways. For this, the testimonials of heuristic thinking are too copious.
The only account on which mental inability has been imputed on the Greek
geometers is Sabetai Unguru’s rejection [1975] of the idea that the real reasoning
of Elements II, Elements X and Apollonios’s Conics be algebraic. I see no reason
to challenge Unguru’s arguments.

When it comes to Greek theoretical arithmetic, however, claims about the
limits or distinctiveness of Greek thought abound. As is known, the arithmói of
Greek arithmetic, translated “numbers”, are supposed to be the integers 2, 3,
4, ... – 1 being the “root of number” but no number itself. This is born out by
numerous passages in Aristotle’s Metaphysics, at times as a plain and obvious
fact, at times as something which “is said” or “said by some”; it is stated less

31 For instance, 27,000,000 could be written as 270 below the sign for 100,000, and 40,000
as 4 below the sign for 10,000; as in Diophantos, we see, the unit which is counted (“the
denominator”) is written above the number counting it (“the numerator”).

Even in Jacopo of Florence’s Tractatus algorismi from 1307 [ed. Høyrup 1999: 6], the
same notation is used when the meaning of the Hindu-Arabic numerals is explained,

“700” being for instance explained as and “400000” as . I shall leave aside as
undecidable the question whether this constitutes a case of borrowing or of independent
invention and thus evidence that the notation falls “natural”.
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clearly in Elements VII, deff. 1–2; and it was repeated countless times until
Boethius (and, in the wake of the latter, another set of countless times until the
Renaissance). Fractions, of course, are no arithmói.

Here, it is often claimed (names and exact quotations are omitted for reasons
of charity) that the Greeks could not think otherwise. Since they understood
number as a “collection of units”, they “failed to understand” that 1 is a number.

Several fallacies are involved. Firstly, endemic preaching against sin is
evidence of the existence of endemic sin, not of virtue; no ancient Greek writer
ever asserted that “nothing” is no number, because this was not an idea he would
ever get. If it was necessary to explain so often that unity was no number, then
the temptation must have been great to see it as one. That unity and “numbers”
were treated together and on a par in practical reckoning is obvious and may
already suffice to explain from where temptation might come. But we do not
need to leave the domain of the theoreticians. Reading one definition further
in Elements VII we find a definition of “being a part” which presupposes that
the part is a number;[32] accordingly, 2 is a part of 12 (the 6th part), but 1 is
not a part of 6.

Discussions about the legitimacy of definitions always tend to become futile,
and we might well allow Euclid this quirk. But definitions have consequences,
and this one has the consequence that the parts of 6 are only 2 and 3, for which
reason proposition IX.36 about perfect numbers becomes false. Obviously Euclid
did not mean exactly what he said, but rather that “unity or a smaller number
is a part of a larger number if it measures it”; the slip is not serious unless we
believe that there was a fundamental difference – which we may conclude that
there was not.[33]

The case of fractions is no different. Again, accountants would certainly
divide unity “in many parts”. This, indeed, is Socrates’s complaint in the Republic
(525D–526A, ed. [Shorey 1930: II, 162–164]). But so did Diophantos – his
is the answer to a question for a number.

We are forced to conclude once again that the conceptual otherness which
is reflected in the sermons about the nature of number is not caused by any

32 Μερος εστιν αριθµος αριθµου ο ελασσων του µειζονος , οταν καταµετρη τον µειζονα –
“A number is a part of a number, the smaller of the larger, if it measures the larger” [ed.
Heiberg 1883: II, 184]. It is not said explicitly that only numbers can be parts, but no other
definition states which other kinds of parts exist. In consequence, 1 cannot be meant to
be a part of any number if no number itself.
33 Van der Waerden [1962: 108] was thus in excellent company when treating as mere
“quibbles” the distinction between unity and numbers – quibbles with which there was
no reason to burden an introduction to Greek arithmetic (as distinct from Greek
philosophy of mathematics).
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inability to think otherwise; the sermons censure an ever-recurrent tendency to
neglect in mathematical practice taboos resulting from philosophical critique.
This critique (maybe Pythagorean, maybe not) had once asked what number
really is (a question which practical reckoners may never have asked, knowing
number too well as the stuff they were always dealing with); it had been found
that the only justifiable answer was that number was the collection of units. But
learning thus what number really was entailed learning also what it could not
possibly, and therefore should not be.[34] The Greek mathematicians has some
difficulties in taking to heart the latter part of the lesson, as we have seen. This
was certainly not the last time in history that the philosopher was uncertain
whether the treasure he accumulated in Popper’s Third world was really worth
the price he paid in the first; even Kierkegaard, as is known, tried to reestablish
a bond with his former fiancée Regine once she had found a husband who did
not write monumental books about why he should forsake her.

34 We may remember Vogel’s demonstration [1936] that the whole terminology for ratios –
claimed not to be numbers but relations between pairs of numbers (tacitly including unity)
was derived from the terminology for fractions, in a way that shows ratios to be a way
to save fractions in a philosophically acceptable way once they had been outlawed as
numbers. It was a fortunate accident that this concept could later be extended beyond
the scope of fractions, once the “ineffable” ratios turned up – those ratios that had no
possible name within a language forged after the practice of fractions. In the Modern
epoch the notion of decimal fractions (and later the critiques of Dedekind and others)
reopened the gates to the realm of numbers for both.
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