
Solving the Clustered Traveling
Salesman Problem Using the

Lin-Kernighan-Helsgaun Algorithm

Keld Helsgaun

MAY 2014 ROSKILDE UNIVERSITY COMPUTER SCIENCE RESEARCH REPORT #142

Copyright c© 2014

Keld Helsgaun

Computer Science
Roskilde University
P. O. Box 260
DK–4000 Roskilde
Denmark

Telephone: +45 4674 3839
Telefax: +45 4674 3072
Internet: http://www.ruc.dk/dat en/
E-mail: datalogi@ruc.dk

All rights reserved

Permission to copy, print, or redistribute all or part of this work is
granted for educational or research use on condition that this copy-
right notice is included in any copy.

ISSN 0109–9779

Research reports are available electronically from:

http://www.ruc.dk/dat en/research/reports/

 1

Solving the Clustered Traveling Salesman Problem Using the
Lin-Kernighan-Helsgaun Algorithm

Keld Helsgaun

E-mail: keld@ruc.dk

Computer Science
Roskilde University

DK-4000 Roskilde, Denmark1

Abstract

The Clustered Traveling Salesman Problem (CTSP) is an extension of the Traveling Sales-
man Problem (TSP) where the set of cities is partitioned into clusters, and the salesman has
to visit the cities of each cluster consecutively. It is well known that any instance of CTSP
can be transformed into a standard instance of the Traveling Salesman Problem (TSP), and
therefore solved with a TSP solver. This paper evaluates the performance of the state-of-the
art TSP solver Lin-Kernighan-Helsgaun (LKH) on transformed CTSP instances. Although
LKH is used as a black box, without any modifications, the computational evaluation shows
that all instances in a well-known library of benchmark instances, GTSPLIB, could be
solved to optimality in a reasonable time. In addition, it was possible to solve a series of
new very-large-scale instances with up to 17,180 clusters and 85,900 vertices. Optima for
these instances are not known but it is conjectured that LKH has been able to find solutions
of a very high quality. The program is free of charge for academic and non-commercial use
and can be downloaded in source code.

Keywords: Clustered traveling salesman problem, CTSP, Traveling salesman problem,
TSP, Lin-Kernighan

Mathematics Subject Classification: 90C27, 90C35, 90C59

1. Introduction

The Clustered Traveling Salesman Problem (CTSP) is an extension of the Traveling Sales-
man Problem (TSP) where the set of cities is partitioned into clusters, and the salesman has to
visit the cities of each cluster consecutively. The CTSP coincides with the TSP whenever all
clusters are singletons. The problem has numerous applications, including vehicle routing,
disk defragmentation, and timetabling [1].

The CTSP is defined on a complete graph G = (V, E), where V={v1....vn} is the vertex set and
E={(vi,vj) : vi, vj ∈ V, i < j} is the edge set. A non-negative cost cij is associated with each edge
(vi, vj) and the vertex set V is partitioned into m mutual exclusive and exhaustive clusters
V1....Vm, i.e., V = V1 ∪ V2 ∪ Vm with Vi ∩ Vj = ∅, for all i, j, i ≠ j. The CTSP can be stated as
the problem of finding a minimum cost cycle, where all vertices of each cluster must be vis-
ited consecutively. Furthermore, the clusters can be visited in any order.

December 2013. Updated March 19, 2014

 2

If the cost matrix C = (cij) is symmetric, i.e., cij = cji for all i, j, i≠j, the problem is called
symmetric. Otherwise it is called asymmetric.

Figure 1 is an illustration of the problem. The lines depict a feasible cycle, called a c-tour.

Figure 1 Illustration of the CTSP for an instance with 6 clusters (n = 23, m =6).

It is well known that any CTSP instance can be transformed into a TSP instance containing
the same number of vertices [2]. The transformation can be described as follows, where V’
and c’ denote the vertex set and cost matrix of the transformed instance:

a) V’ is equal to V.

b) Define c’ij = cij, when vi and vj belong to the same cluster.

c) When vi and vj belong to different clusters, define c’ij = cij+M, where M is a suffi-
ciently large constant. It suffices that M is larger than the largest cost.

This transformation works since having entered a cluster at a vertex vi, an optimal TSP tour
always visits all other vertices of the cluster before it moves to the next cluster. The optimal
TSP tour must have exactly m inter-cluster edges. Thus, the cost of the c-tour for the CTSP is
the cost of the TSP tour minus mM.

The transformation allows one to solve CTSP instances using a TSP solver. However, in the
past this approach has had little application, because the produced TSP instances have an unu-
sual structure, which is hard to handle for many existing TSP solvers. Since a near-optimal
TSP solution may correspond to an infeasible CTSP solution, heuristic TSP solvers may have
difficulties in solving this type of instances. In this paper, it is shown that this need not be the
case if the state-of-the-art heuristic TSP solver LKH is used.

LKH [3, 4] is a powerful local search heuristic for the TSP based on the variable depth local
search of Lin and Kernighan [5]. Among its characteristics may be mentioned its use of 1-tree
approximation for determining a candidate edge set, extension of the basic search step, and
effective rules for directing and pruning the search. LKH is available free of charge for scien-
tific and educational purposes from http://www.ruc.dk/~keld/research/CLKH.

The following section describes how LKH can be used as a black box to solve the CTSP.

 3

2. Implementing a CTSP Solver Based on LKH

The input to LKH is given in two files:

(1) A problem file in TSPLIB format [6], which contains a specification of the
TSP instance to be solved. A problem may be symmetric or asymmetric. In
the latter case, the problem is transformed by LKH into a symmetric one with
2n vertices.

(2) A parameter file, which contains the name of the problem file, together with
some parameter values that control the solution process. Parameters that are
not specified in this file are given suitable default values.

A CTSP solver based on LKH should therefore be able to read a CTSP instance, transform it
into a TSP instance, produce the two input files required by LKH, and let LKH solve the TSP
instance. The c-tour is the obtained TSP tour. A more precise algorithmic description is given
below:

1. Read the CTSP instance.
2. Transform it into a TSP instance.
3. Write the TSP instance to a problem file.
4. Write suitable parameter values to a parameter file.
5. Execute LKH given these two files.

Comments:

1. The instance must be given in the GTSPLIB format, an extension of the TSPLIB for-
mat, which allows for specification of the clusters. A description of the GTSPLIB for-
mat can be found at http://www.cs.rhul.ac.uk/home/zvero/GTSPLIB/.

2. The constant M is chosen as INT_MAX/2, where INT_MAX is the maximal value that
can be stored in an int variable. The transformation results in an n x n cost matrix.

3. The problem file is in TSPLIB format with EDGE_WEIGHT_TYPE set to EXPLICIT,

and EDGE_WEIGHT_FORMAT set to FULL_MATRIX.

4. The transformation induces some degeneracy, which makes the default parameter set-
tings of LKH inappropriate. For example, tests have shown that it is necessary to work
with candidate edge set that is larger than by default. For more information, see the
next section.

5. The CTSP solver has been implemented in C to run under Linux. This has made it

possible to execute LKH as a child process (using the Standard C Library function
popen()).

 4

3. Computational Evaluation

The program, which is named CLKH, was coded in C and run under Linux on an iMac 3.4
GHz Intel Core i7 with 32 GB RAM. Version 2.0.7 of LKH was used.

The program was tested using instances generated from instances in TSPLIB [6] by applying
the clustering method of Fischetti, Salazar, and Toth [7]. This method, known as K-center
clustering, clusters the vertices based on proximity to each other. For a given instance, the
number of clusters is fixed to m = ⎡n/5⎤.

In addition, the program has been tested on a series of large-scale instances generated from
clustered instances taken from the 8th DIMACS Implementation Challenge [8] and from the
national instances on the TSP web page of William Cook et al. [9].

The number of clusters in the test instances varies between 4 and 17,180, and the number of
vertices varies between 14 and 85,900.

For instances with at most 1084 vertices, the following non-default parameter settings for
LKH were chosen and written to a parameter file:

 PROBLEM_FILE = GTSPLIB/<instance name>.gtsp
 ASCENT_CANDIDATES = 500
 MAX_CANDIDATES = 7
 OPTIMUM = <best known cost>

PI_FILE = <π file name>
 POPULATION_SIZE = 5

Below is given the rationale for the choice of the parameters:

PROBLEM_FILE: The test instances have been placed in the directory GTSPLIB and
have filename extension “.gtsp”.

ASCENT_CANDIDATES: The candidate sets that are used in the Lin-Kernighan
search process are found using a Held-Karp subgradient ascent algorithm based on
minimum 1-trees [10]. In order to speed up the ascent, the 1-trees are generated in a
sparse graph. The value of the parameter ASCENT_ CANDIDATES specifies the
number of edges emanating from each vertex in this graph. The default value in LKH
is 50. However, the unusual structure of the transformed problem made it necessary to
use a larger value. After preliminary experiments, the value 500 was chosen.

MAX_CANDIDATES: This parameter is used to specify the size of the candidate sets
used during the Lin-Kernighan search. Its value specifies the maximum number of
candidate edges emanating from each vertex. The default value in LKH is 5. But also
here it is necessary to use a larger value. After some preliminary experiments, the
value 7 was chosen.

 5

OPTIMUM: This parameter may be used to supply a best known solution cost. The
algorithm will use this value as the value for M in the CTSP-to-TSP transformation
and stop if this value is reached during the search process. If this parameter is not
specified, M will be chosen as INT_MAX/m, where INT_MAX is the maximal value
that can be stored in an int variable.

PI_FILE: The penalties (π values) generated by the Held-Karp ascent are saved in a
file such that subsequent test runs can reuse the values and skip the ascent.

POPULATION_SIZE: A genetic algorithm is used, in which 10 runs are performed
(RUNS = 10 is default in LKH) with a population size of 5 individuals (TSP tours).
That is, when 5 different tours have been obtained, the remaining runs will be given
initial tours produced by combining individuals from the population.

LKH’s default basic move type, MOVE_TYPE = 5, is used. LKH offers the possibility of us-
ing higher-order and/or non-sequential move types in order to improve the solution quality [7].
However, the relatively large size of the candidate set makes the local search too time-
consuming for such move types.

Table 1 and 2 show the test results for instances with at most 1084 vertices. This set of bench-
mark instances is commonly used in the literature. Each test was repeated ten times. The ta-
bles follow the format used in [11]. The column headers are as follows:

Name: the instance name. The prefix number is the number of clusters of the in-
stance; the suffix number is the number of vertices.

Best: the best known solution cost. The exact solution cost (optimum) is not known
for any of the instances.

Value: the average cost value returned in the ten tests.

Error (%): the error, in percent, of the average cost above the best known solution
cost.

Best (%): the number of tests, in per cent, in which the best known solution cost was
reached.

Time (s): the average CPU time, in seconds, used for one test.

As can be seen in Table 1, the small benchmark instances are quickly solved.

Table 2 shows that all large benchmark instances are solved quite quickly too. Considering
that CLKH uses LKH as a black box, without any modifications, its performance is surpris-
ingly impressive.

 6

Name Best Value Error (%) Best (%) Time (s)
3burma14 3819 3819.0 0.00 100 0.0
4br17 (asym.) 39 39.0 0.00 100 0.0
4gr17 2178 2178.0 0.00 100 0.0
5gr21 2933 2933.0 0.00 100 0.0
5gr24 1289 1289.0 0.00 100 0.0
5ulysses22 7367 7367.0 0.00 100 0.0
6bayg29 1671 1671.0 0.00 100 0.0
6bays29 2056 2056.0 0.00 100 0.0
6fri26 937 937.0 0.00 100 0.0
7ftv33 (asym.) 1406 1406.0 0.00 100 0.0
8ftv35 (asym.) 1631 1631.0 0.00 100 0.0
8ftv38 (asym.) 1697 1697.0 0.00 100 0.0
9dantzig42 759 759.0 0.00 100 0.0
10att48 11516 11516.0 0.00 100 0.0
10gr48 5205 5205.0 0.00 100 0.0
10hk48 12130 12130.0 0.00 100 0.0
11berlin52 8122 8122.0 0.00 100 0.0
11eil51 446 446.0 0.00 100 0.0
12brazil58 26581 26581.0 0.00 100 0.0
14st70 733 733.0 0.00 100 0.0
16eil76 579 579.0 0.00 100 0.0
16pr76 113014 113014.0 0.00 100 0.0
20gr96 55606 55606.0 0.00 100 0.0
20rat99 1301 1301.0 0.00 100 0.0
20kroA100 21536 21536.0 0.00 100 0.0
20kroB100 22869 22869.0 0.00 100 0.0
20kroC100 21343 21343.0 0.00 100 0.0
20kroD100 22677 22677.0 0.00 100 0.0
20kroE100 23541 23541.0 0.00 100 0.0
20rd100 8418 8418.0 0.00 100 0.0
21eil101 670 670.0 0.00 100 0.0
21lin105 14545 14545.0 0.00 100 0.0
22pr107 44326 44326.0 0.00 100 0.0
24gr120 7396 7396.0 0.00 100 0.1
25pr124 60535 60535.0 0.00 100 0.1
26bier127 121798 121798.0 0.00 100 0.1
26ch130 6317 6317.0 0.00 100 0.1
28gr137 74442 74442.0 0.00 100 0.1
28pr136 104405 104405.0 0.00 100 0.1
29pr144 58813 58813.0 0.00 100 1.8
30ch150 6764 6764.0 0.00 100 0.1
30kroA150 27577 27577.0 0.00 100 0.1
30kroB150 27392 27392.0 0.00 100 0.1
31pr152 5430 5430.0 0.00 100 0.3
32u159 2557 2557.0 0.00 100 0.1
35si175 3819 3819.0 0.00 100 0.1
36brg180 39 39.0 0.00 100 0.5
39rat195 2178 2178.0 0.00 100 0.0
Average 0.00 100

Table 1 Results for small GTSPLIB instances.

 7

Name Best Value Error (%) Best (%) Time (s)
40d198 16185 16185.0 0.00 100 0.1
40kroa200 30905 30905.0 0.00 100 0.1
40krob200 31191 31191.0 0.00 100 0.1
41gr202 41997 41997.0 0.00 100 0.1
45ts225 142704 142704.0 0.00 100 0.4
45tsp225 4189 4189.0 0.00 100 0.1
46pr226 81227 81227.0 0.00 100 0.0
46gr229 140584 140743.0 0.00 100 2.4
53gil262 2528 2528.0 0.00 100 0.1
53pr264 54537 54537.0 0.00 100 1.3
56a280 2739 2739.0 0.00 100 0.6
60pr299 50910 50910.0 0.00 100 0.7
64lin318 43490 43490.0 0.00 100 0.0
65rbg323 (asym.) 4602 4602.0 0.00 100 0.2
72rbg358 (asym.) 5249 5249.0 0.00 100 0.3
80rd400 15899 15899.0 0.00 100 0.3
81rbg403 (asym.) 6572 6572.0 0.00 100 9.3
84fl417 12242 12242.0 0.00 100 36.6
87gr431 178174 178174.0 0.00 100 0.4
88pr439 111891 111891.0 0.00 100 0.4
89pcb442 52856 52856.0 0.00 100 0.3
89rbg443 (asym.) 6252 6252.0 0.00 100 14.1
99d493 35998 35998.0 0.00 100 0.8
107ali535 208419 208419.0 0.00 100 0.8
107att532 29072 29072.0 0.00 100 0.6
107si535 48592 48592.0 0.00 100 5.7
113pa561 2988 2988.0 0.00 100 0.2
115u574 38749 38749.0 0.00 100 0.5
115rat575 7257 7257.0 0.00 100 5.7
131p654 35424 35424.0 0.00 100 14.6
132d657 50829 50828.0 0.00 100 0.6
134gr666 303984 303984.0 0.00 100 7.2
145u724 43911 43911.0 0.00 100 0.7
157rat783 9324 9324.0 0.00 100 1.7
200dsj1000 19593614 19593614.0 0.00 100 24.4
201pr1002 270613 270613.0 0.00 100 3.6
207si1032 95354 95354.0 0.00 100 70.6
212u1060 231746 231746.0 0.00 100 63.0
217vm1084 248578 248578.0 0.00 100 7.7
Average 0.00 100

Table 2 Results for large GTSPLIB instances.

 8

To provide some very-large-scale instances for research use, GTSPLIB has been extended
with 44 instances ranging in size from 1000 to 85,900 vertices (see Table 3). The instances
are generated from TSPLIB instances with the following exceptions:

• The instances 200E1k.0, 633E3k.0, 2000E10k.0, 6325E31k.0, 200C1k.0, 633C3k, and

6325C31k.0 are generated from instances used in the 8th DIMACS Implementation Chal-
lenge [8]. The E-instances consist of 1000, 3162, 10000, and 31623 uniformly distributed
points in a square. The C-instances consist of 1000, 3162, 10000, and 31623 clustered
points. For a given size n of a C-instance, its points are clustered around ⎣n/10⎦ randomly
chosen centers in a square.

• The instances 4996sw24978 and 14202ch71009 are generated from the National TSP

benchmark library [9]. They consist, respectively, of 24978 locations in Sweden and
71009 locations in China.

All instances mentioned above were generated using Fischetti et al.’s clustering algorithm.

The following 4 instances in which clusters correspond to natural clusters have been added:
49usa1097, 10C1k.0, 31C3k.0, 100C10k.0, and 316C31k.0. The instance 49usa1097 consists
of 1097 cities in the adjoining 48 U.S. states, plus the District of Columbia. Figure 2 shows
the current best c-tour for this instance. Figure 3 and 4 show the current best c-tour for
10C1k.0 and 200C1k.0, respectively.

Figure 2 Current best c-tour for 49usa1097 (length: 77,563,429 meters ≈ 48,196 miles).

 9

Figure 3 Current best c-tour for 10C1k.0 (10 natural clusters).

Figure 4 Current best c-tour for 200C1k.0 (200 K-center clusters).

 10

The column Best of Table 3 shows the current best solution costs found by CLKH. These
costs were found using several runs of CLKH where in each run the current best c-tour was
used as input tour to CLKH and using the following non-default parameter settings:

PROBLEM_FILE = GTSPLIB/<instance name>.gtsp
 ASCENT_CANDIDATES = 500

INITIAL_PERIOD = 1000
 INPUT_TOUR_FILE = <input c-tour file name>
 MAX_CANDIDATES = 7
 MAX_TRIALS = 1000

OPTIMUM = <current best cost>
OUTPUT_TOUR_FILE = <output c-tour file name>

 PI_FILE = <π-file name>
 POPULATION_SIZE = 1
 PRECISION = 10
 RUNS = 1

The parameter INITIAL_PERIOD specifies the length of the first period in the Held-Karp
ascent (default is n/2). MAX_TRIALS specifies the maximum number of trials (iterations) in
the iterated Lin-Kernighan procedure (default is n). For some of the instances, the trans-
formed costs are so large that the default precision in the π-transformed costs of LKH cannot
be maintained but has to be reduced. The default precision of 100, which corresponds to two
decimal places, is reduced to 10, which corresponds to one decimal place. The number of
RUNS is set to 1 (default is 10).

It may also be mentioned that the parameter MERGE_TOUR_FILE can be used in attempts
to produce a best possible c-tour from two or more given c-tours. Edges that are common to
the corresponding TSP tours are fixed in the Lin-Kernighan search process.

The other columns of the table give the results when the parameter INPUT_ TOUR_FILE is
omitted.

 11

Name Best Value Error (%) Time (s)
10C1k.0 12139627 12139627 0.00 22.5
200C1k.0 11929315 11929315 0.00 9.6
200E1k.0 24468822 24468822 0.00 12.2
49usa1097 77583052 77583052 0.00 33.5
235pcb1173 59796 59796 0.00 13.5
259d1291 55978 55978 0.00 27.0
261rl1304 261132 261132 0.00 16.4
265rl1323 280004 280188 0.07 30.7
276nrw1379 60473 60485 0.02 37.1
280fl1400 20229 20255 0.13 292.4
287u1432 162151 162151 0.00 24.5
316fl1577 23023 23023 0.00 54.9
331d1655 65871 65946 0.11 64.4
350vm1748 348244 348244 0.00 29.1
364u1817 61879 61916 0.06 60.4
378rl1889 323040 323663 0.19 41.5
421d2103 91637 91748 0.12 104.5
431u2152 69876 69876 0.00 42.3
464u2319 246707 246707 0.00 28.3
479pr2392 397707 397867 0.04 90.9
608pcb3038 146351 146362 0.01 168.9
31C3k.0 20058457 20160054 0.49 413.7
633C3k.0 20160074 20162594 0.01 169.7
633E3k.0 42697510 42699039 0.00 109.5
759fl3795 29582 29582 0.00 129.4
893fnl4461 193834 193834 0.00 80.4
1183rl5915 599142 599223 0.00 233.0
1187rl5934 588104 589496 0.24 229.3
1480pla7397 23926551 23957171 0.13 1008.5
100C10k.0 36350972 37014518 1.83 1200.0
2000C10k.0 34571660 34685387 0.33 776.8
2000E10k.0 75508805 75515101 0.01 629.5
2370rl11849 977547 977628 0.01 694.9
2702usa13509 20836277 20842290 0.03 886.7
2811brd14051 496893 496984 0.02 963.6
3023d15112 1658277 1658278 0.02 1180.1
3703d18512 683914 684099 0.03 1465.0
4996sw24978 893094 893456 0.04 1840.7
316C31k.0 63148541 63236932 0.14 4008.6
6325C31k.0 62618284 62831680 0.34 2475.2
6325E31k.0 133745969 133786294 0.03 2956.9
6762pla33810 69318480 69337616 0.03 3784.1
14202ch71009 4779103 4780524 0.03 2350.1
17180pla85900 149096064 149176474 0.05 12532.9
Average 0.10

Table 3 Results for the new very large GTSPLIB instances.

 12

4. Conclusion

This paper has evaluated the performance of LKH on CTSP instances that are transformed
into standard TSP instances. Despite that LKH is not modified in order to cater for the unu-
sual structure of the TSP instances, its performance is quite impressive. All instances in a
well-known library of GTSP benchmark instances, GTSPLIB, could be solved quickly, and it
was possible to find high-quality solutions for a series of new large-scale CTSP instances
with up to 17,180 clusters and 85,900 vertices.

The developed software is free of charge for academic and non-commercial use and can be
downloaded in source code together with an extended version of GTSPLIB and current best
c-tours for these instances via http://www.ruc.dk/~keld/research/CLKH.

 13

References

1. Laporte G., Palekar U.: Some applications of the clustered travelling salesman prob-
lem. J. Oper. Res. Soc., 53(9):972-976 (2002)

2. Chrisman, J. A.: The clustered traveling salesman problem. Comput. Oper. Res.,
2(2):115–119 (1975)

3. Helsgaun, K.: An Effective Implementation of the Lin-Kernighan Traveling Salesman

Heuristic. Eur. J. Oper. Res., 126(1):106-130 (2000)

4. Helsgaun, K.: General k-opt submoves for the Lin-Kernighan TSP heuristic. Math.
Prog. Comput., 1(2-3):119-163 (2009)

5. Lin, S, Kernighan, B.W.: An effective heuristic algorithm for the traveling salesman
problem. Oper. Res., 21(2):498-516 (1973)

6. Reinelt, G.: TSPLIB - a traveling salesman problem library. ORSA J. Comput.,
3(4):376-384 (1991)

7. Fischetti, M., Salazar González, J.J., Toth, P.: A branch-and-cut algorithm for the

symmetric generalized traveling salesman problem. Oper. Res., 45(3):378-394 (1997)

8. Johnson, D.S., McGeoch, L.A., Glover, F., Rego, C.: 8th DIMACS Implementation
Challenge: The Traveling Salesman Problem. (2000)
http://dimacs.rutgers.edu/Challenges/TSP/

9. National traveling salesman problems.
http://www.math.uwaterloo.ca/tsp/world/countries.html

10. Held, M, Karp, R.M.: The traveling salesman problem and minimum spanning trees.

Oper. Res., 18(6):1138-1162 (1970)

11. Gutin, G., Karapetyan, D.: A memetic algorithm for the generalized traveling sales-
man problem. Nat. Comput., 9(1):47-60 (2010)

R
U

/C
S

/R
R

#142
K

E
LD

H
E

LS
G

AU
N

:
S

O
LV

IN
G

TH
E

C
LU

S
TE

R
E

D
TR

AV
E

LIN
G

S
A

LE
S

M
A

N
P

R
O

B
LE

M
U

S
IN

G
TH

E
LIN

-
K

E
R

N
IG

H
A

N
-H

E
LS

G
AU

N
A

LG
O

R
ITH

M

1

RECENT RESEARCH REPORTS

#143 Keld Helsgaun. Solving the Bottleneck Traveling Salesman Problem Using
the Lin-Kernighan-Helsgaun Algorithm. 42 pp. May 2014, Roskilde Univer-
sity, Roskilde, Denmark.

#142 Keld Helsgaun. Solving the Clustered Traveling Salesman Problem Using
the Lin-Kernighan-Helsgaun Algorithm. 13 pp. May 2014, Roskilde Univer-
sity, Roskilde, Denmark.

#141 Keld Helsgaun. Solving the Equality Generalized Traveling Salesman Prob-
lem Using the Lin-Kernighan-Helsgaun Algorithm. 15 pp. May 2014,
Roskilde University, Roskilde, Denmark.

#140 Anders Barlach. Effekt-drevet IT udvikling Eksperimenter med effekt-
drevne systemudviklingsprojekter, der involverer CSC Scandihealth og
kunder fra det danske sundhedsvæsen. PhD thesis, Roskilde, Denmark,
November 2013.

#139 Mai Lise Ajspur. Tableau-based Decision Procedures for Epistemic and
Temporal Epistemic Logics. PhD thesis, Roskilde, Denmark, October 2013.

#138 Rasmus Rasmussen. Electronic Whiteboards in Emergency Medicine
Studies of Implementation Processes and User Interface Design Evalua-
tions. PhD thesis, Roskilde, Denmark, April 2013.

#137 Christian Theil Have. Efficient Probabilistic Logic Programming for Biologi-
cal Sequence Analysis. PhD thesis, Roskilde, Denmark, January 2013.

#136 Sine Zambach. Regulatory Relations Represented in Logics and Biomedi-
cal Texts. PhD thesis, Roskilde, Denmark, February 2012.

#135 Ole Torp Lassen. Compositionality in probabilistic logic modelling for bi-
ological sequence analysis. PhD thesis, Roskilde, Denmark, November
2011.

#134 Philippe Blache, Henning Christiansen, Verónica Dahl, and Jørgen Villad-
sen, editors. Proceedings of the 6th International Workshop on Constraints
and Language Processing, Roskilde, Denmark, October 2011.

#133 Jens Ulrik Hansen. A logic toolbox for modeling knowledge and informa-
tion in multi-agent systems and social epistemology. PhD thesis, Roskilde,
Denmark, September 2011.

#132 Morten Hertzum and Magnus Hansen, editors. Proceedings of the Tenth
Danish Human-Computer Interaction Research Symposium (DHRS2010),
Roskilde, Denmark, November 2010.

#131 Tine Lassen. Uncovering Prepositional Senses. PhD thesis, Roskilde, Den-
mark, September 2010.

#130 Gourinath Banda. Modelling and Analysis of Real Time Systems with Logic
Programming and Constraints. PhD thesis, Roskilde, Denmark, August
2010.

