Solving the Equality Generalized
Traveling Salesman Problem Using
the Lin-Kernighan-Helsgaun
Algorithm

Keld Helsgaun

MAY 2014 ROSKILDE UNIVERSITY COMPUTER SCIENCE RESEARCH REPORT #141

Copyright © 2014
Keld Helsgaun

Computer Science
&@%, Roskilde University

SY

% P O.Box 260
< DK-4000 Roskilde
“oneme S Denmark
Telephone: +45 4674 3839
Telefax: +45 4674 3072
Internet: http://www.ruc.dk/dat_en/
E-mail: datalogi@ruc.dk

All rights reserved

Permission to copy, print, or redistribute all or part of this work is
granted for educational or research use on condition that this copy-
right notice is included in any copy.

ISSN 0109-9779

Research reports are available electronically from:
http://www.ruc.dk/dat_en/research/reports/

Solving the Equality Generalized Traveling Salesman Problem
Using the Lin-Kernighan-Helsgaun Algorithm

Keld Helsgaun
E-mail: keld@ruc.dk

Computer Science
Roskilde University
DK-4000 Roskilde, Denmark

Abstract

The Equality Generalized Traveling Salesman Problem (E-GTSP) is an extension of the
Traveling Salesman Problem (TSP) where the set of cities is partitioned into clusters, and
the salesman has to visit every cluster exactly once. It is well known that any instance of
E-GTSP can be transformed into a standard asymmetric instance of the Traveling Salesman
Problem (TSP), and therefore solved with a TSP solver. This paper evaluates the perfor-
mance of the state-of-the art TSP solver Lin-Kernighan-Helsgaun (LKH) on transformed
E-GTSP instances. Although LKH is used as a black box, without any modifications, the
computational evaluation shows that all instances in a well-known library of benchmark in-
stances, GTSPLIB, could be solved to optimality in a reasonable time. In addition, it was
possible to solve a series of new very-large-scale instances with up to 17,180 clusters and
85,900 vertices. Optima for these instances are not known but it is conjectured that LKH
has been able to find solutions of a very high quality. The program is free of charge for aca-
demic and non-commercial use and can be downloaded in source code.

Keywords: Equality generalized traveling salesman problem, E-GTSP, Traveling salesman
problem, TSP, Lin-Kernighan

Mathematics Subject Classification: 90C27, 90C35, 90C59

1. Introduction

The Equality Generalized Traveling Salesman Problem (E-GTSP) is an extension of the
Traveling Salesman Problem (TSP) where the set of cities is partitioned into clusters, and the
salesman has to visit every cluster exactly once. The E-GTSP coincides with the TSP when-
ever all clusters are singletons. The problem has numerous applications, including airplane
routing, computer file sequencing, and postal delivery [1].

The E-GTSP is defined on a complete graph G = (V, E), where V={v,....v,} is the vertex set
and E={(v;,v) : v;, v; E V,i <} is the edge set. A non-negative cost c; is associated with each
edge (v;, v;) and the vertex set V is partitioned into m mutual exclusive and exhaustive clusters
Vi..V,,ie, V=V, UV,UV, withV,.NV,=, foralli,j,i#j. The E-GTSP can be stated as
the problem of finding a minimum cost cycle that includes exactly one node from each cluster.

If the cost matrix C = (c¢;) is symmetric, ie., ¢; = ¢; for all i, j, i#], the problem is called
symmetric. Otherwise it is called asymmetric.

December 2013. Updated March 19, 2014

Figure 1 is an illustration of the problem. The lines depict a feasible cycle, called a g-tour.

Figure 1 [llustration of the E-GTSP for an instance with 6 clusters (n = 23, m =6).

It is well known that any E-GTSP instance can be transformed into an asymmetric TSP in-
stance containing the same number of vertices [2, 3, 4]. The transformation can be described
as follows, where V’ and ¢’ denote the vertex set and cost matrix of the transformed instance:

a) VisequaltoV.

b) Create an arbitrary directed cycle of the vertices within each cluster and define ¢’; =0,
when v;and v; belong to the same cluster and v; succeeds v; in the cycle.

¢) When v;and v, belong to different clusters, define ¢’; = ¢,;+M, where v, is the vertex
that succeeds v;in a cycle, and M is a sufficiently large constant. It suffices that M is
larger than the sum of the n largest costs.

d) Otherwise, define ¢’; = 2M.

This transformation works since having entered a cluster at a vertex v;, an optimal TSP tour
always visits all other vertices of the cluster before it moves to the next cluster. The optimal
TSP tour must have zero cost inside the cluster and must have exactly m inter-cluster edges.
Thus, the cost of the g-tour for the E-GTSP is the cost of the TSP tour minus mM. The g-tour
can be extracted by picking the first vertex from each cluster in the TSP tour.

The transformation allows one to solve E-GTSP instances using an asymmetric TSP solver.
However, in the past this approach has had very little application, because the produced TSP
instances have an unusual structure, which is hard to handle for many existing TSP solvers.
Since a near-optimal TSP solution may correspond to an infeasible E-GTSP solution, heuris-
tic TSP solvers are often considered inappropriate [5, 6]. In this paper, it is shown that this
need not be the case if the state-of-the-art heuristic TSP solver LKH is used.

LKH [7, 8] is a powerful local search heuristic for the TSP based on the variable depth local
search of Lin and Kernighan [9]. Among its characteristics may be mentioned its use of 1-tree
approximation for determining a candidate edge set, extension of the basic search step, and
effective rules for directing and pruning the search. LKH is available free of charge for scien-
tific and educational purposes from http://www .ruc.dk/~keld/research/LKH. The following
section describes how LKH can be used as a black box to solve the E-GTSP.

2. Implementing an E-GTSP Solver Based on LKH

The input to LKH is given in two files:

(1) A problem file in TSPLIB format [10], which contains a specification of the
TSP instance to be solved. A problem may be symmetric or asymmetric. In
the latter case, the problem is transformed by LKH into a symmetric one with
2n vertices.

(2) A parameter file, which contains the name of the problem file, together with
some parameter values that control the solution process. Parameters that are
not specified in this file are given suitable default values.

An E-GTSP solver based on LKH should therefore be able to read an E-GTSP instance, trans-
form it into an asymmetric TSP instance, produce the two input files required by LKH, let
LKH solve the TSP instance, and extract the g-tour from the obtained TSP tour. A more pre-
cise algorithmic description is given below:

1. Read the E-GTSP instance.
2. Transform it into an asymmetric TSP instance.
3. Write the TSP instance to a problem file.
4. Write suitable parameter values to a parameter file.
5. Execute LKH given these two files.
6. Extract the g-tour from the TSP solution tour.
7. Perform post-optimization of the g-tour.
Comments:
1. The instance must be given in the GTSPLIB format, an extension of the TSPLIB for-

mat, which allows for specification of the clusters. A description of the GTSPLIB for-
mat can be found at http://www .cs.rhul.ac.uk/home/zvero/GTSPLIB/.

. The constant M is chosen as INT MAX/4, where INT MAX is the maximal value that

can be stored in an int variable. The transformation results in an asymmetric n X n
cost matrix.

. The problem file is in TSPLIB format with EDGE_WEIGHT_TYPE set to EXPLICIT,

and EDGE_WEIGHT_FORMAT set to FULL_MATRIX.

The transformation induces a fair amount of degeneracy, which makes the default
parameter settings of LKH inappropriate. For example, tests have shown that it is
necessary to work with candidate edge set that is larger than by default. For more
information, see the next section.

. The E-GTSP solver has been implemented in C to run under Linux. This has made it

possible to execute LKH as a child process (using the Standard C Library function
popen()).

The g-tour is easily found by picking the first vertex from each cluster during a
sequential traversal of the TSP tour. The g-tour is checked for feasibility.

7. In this step, attempts are made to optimize the g-tour by two means: (1) Using LKH
for local optimization as described above but now on an instance with m vertices (the
vertices of the g-tour). (2) Performing so-called cluster optimization, a well-known
post-optimization heuristic for the E-GTSP [11]. This heuristic attempts to find a g-
tour that visits the clusters in the same order as the current g-tour, but is cheaper than
this. It is implemented as a shortest path algorithm and runs in O(nm®) time. If the
smallest cluster has a size of O(1), the algorithm may be implemented to run in O(nm)
time. A detailed description of the heuristic and its implementation can be found in [6,
12]. Local optimization and cluster optimization are performed as long as it is possible
to improve the current best g-tour.

3. Computational Evaluation

The program, which is named GLKH, was coded in C and run under Linux on an iMac 3.4
GHz Intel Core 17 with 32 GB RAM. Version 2.0.7 of LKH was used.

The program was tested using E-GTSP instances generated from instances in TSPLIB [10] by
applying the clustering method of Fischetti, Salazar, and Toth [12]. This method, known as K-
center clustering, clusters the vertices based on proximity to each other. For a given instance,
the number of clusters is fixed to m = [n/5].

In addition, the program has been tested on a series of large-scale instances generated from
clustered instances taken from the 8" DIMACS Implementation Challenge [13] and from the
national instances on the TSP web page of William Cook et al. [14].

The number of clusters in the test instances varies between 4 and 17,180, and the number of
vertices varies between 14 and 85,900.

For instances with at most 1084 vertices, the following non-default parameter settings for
LKH were chosen and written to a parameter file:

PROBLEM_FILE = GTSPLIB/<instance name>.gtsp
ASCENT_CANDIDATES = 500
MAX_CANDIDATES =30

OPTIMUM = <best known cost>

PI_FILE = < file name>

POPULATION_SIZE =5

Below is given the rationale for the choice of the parameters:

PROBLEM_FILE: The test instances have been placed in the directory GTSPLIB and
have filename extension “.gtsp”.

ASCENT_CANDIDATES: The candidate sets that are used in the Lin-Kernighan
search process are found using a Held-Karp subgradient ascent algorithm based on
minimum 1-trees [15]. In order to speed up the ascent, the 1-trees are generated in a
sparse graph. The value of the parameter ASCENT_ CANDIDATES specifies the
number of edges emanating from each vertex in this graph. The default value in LKH
is 50. However, the unusual structure of the transformed problem made it necessary to
use a larger value. After preliminary experiments, the value 500 was chosen.

MAX_CANDIDATES: This parameter is used to specify the size of the candidate sets
used during the Lin-Kernighan search. Its value specifies the maximum number of
candidate edges emanating from each vertex. The default value in LKH is 5. But also
here it is necessary to use a larger value. After some preliminary experiments, the
value 30 was chosen.

OPTIMUM: This parameter may be used to supply a best known solution cost. The
algorithm will stop if this value is reached during the search process.

PI_FILE: The penalties (5t values) generated by the Held-Karp ascent are saved in a
file such that subsequent test runs can reuse the values and skip the ascent.

POPULATION_SIZE: A genetic algorithm is used, in which 10 runs are performed
(RUNS = 10 is default in LKH) with a population size of 5 individuals (TSP tours).
That is, when 5 different tours have been obtained, the remaining runs will be given
initial tours produced by combining individuals from the population.

LKH’s default basic move type, MOVE_TYPE =35, is used. LKH offers the possibility of us-
ing higher-order and/or non-sequential move types in order to improve the solution quality [8].
However, the relatively large size of the candidate set makes the local search too time-
consuming for such move types.

Table 1 and 2 show the test results for instances with at most 1084 vertices. This set of bench-
mark instances is commonly used in the literature. Each test was repeated ten times. The ta-
bles follow the format used in [16]. The column headers are as follows:

Name: the instance name. The prefix number is the number of clusters of the in-
stance; the suffix number is the number of vertices.

Opt.: the best known solution cost. The exact solution cost (optimum) is known for
all instances with at most 89 clusters and 443 vertices.

Value: the average cost value returned in the ten tests.

Error (%): the error, in percent, of the average cost above the best known solution
cost.

Opt. (%): the number of tests, in per cent, in which the best known solution cost was
reached.

Time (s): the average CPU time, in seconds, used for one test.
As can be seen in Table 1, the small benchmark instances are quickly solved to optimality.

Table 2 shows that all large benchmark instances are solved to optimality too. In comparison
with the results obtained for the same instances by the state-of-the-art solver GK [16, p. 58],
the optimality percentage for GLKH is higher (98% versus 81%). This higher success rate is
obtained at the expense of worse running times (a factor of about 40 for the largest instances).
However, the running times for GLKH are satisfactory and reasonable for practical purposes.
Considering that GLKH uses LKH as a black box, without any modifications, its performance
is surprisingly impressive.

Name Opt. Value Error (%) Opt.(%) Time (s)
3burmal4 1805 1805.0 0.00 100 0.0
4brl7 (asym.) 31 310 0.00 100 0.0
4grl7 1389 13890 0.00 100 0.0
Sgr21 4539 45390 0.00 100 0.0
S5gr24 334 334.0 0.00 100 0.0
Sulysses22 5307 5307.0 0.00 100 0.0
6bayg29 707 707.0 0.00 100 0.0
6bays29 822 822.0 0.00 100 0.0
6fri26 481 481.0 0.00 100 0.0
7ftv33 (asym.) 476 476.0 0.00 100 0.0
8ftv35 (asym.) 525 525.0 0.00 100 0.0
8ftv38 (asym.) 511 511.0 0.00 100 0.0
9dantzig42 417 417.0 0.00 100 0.0
10att48 5394 53940 0.00 100 0.0
10gr48 1834 1834.0 0.00 100 0.0
10hk48 6386 6386.0 0.00 100 0.0
11berlin52 4040 4040.0 0.00 100 0.0
11eil51 174 174.0 0.00 100 0.0
12brazil58 15332 153320 0.00 100 0.0
14st70 316 316.0 0.00 100 0.0
16¢il76 209 209.0 0.00 100 0.0
16pr76 64925 64925.0 0.00 100 0.0
20gr96 29440 294400 0.00 100 0.0
20rat99 497 497.0 0.00 100 0.0
20kroA100 9711 97110 0.00 100 0.0
20kroB100 10328 10328.0 0.00 100 0.0
20kroC100 9554 95540 0.00 100 0.0
20kroD100 9450 94500 0.00 100 0.0
20kroE100 9523 95230 0.00 100 0.0
20rd100 3650 3650.0 0.00 100 0.0
21eil101 249 2490 0.00 100 0.1
211in105 8213 82130 0.00 100 0.0
22pr107 27898 27898.0 0.00 100 0.0
24¢r120 2769 27690 0.00 100 0.1
25pr124 36605 36605.0 0.00 100 0.1
26bier127 72418 724180 0.00 100 0.1
26¢h130 2828 2828.0 0.00 100 0.1
28grl37 36417 364170 0.00 100 0.1
28prl36 42570 42570.0 0.00 100 0.2
29pr144 45886 45886.0 0.00 100 0.1
30ch150 2750 2750.0 0.00 100 0.5
30kroA 150 11018 11018.0 0.00 100 0.1
30kroB150 12196 12196.0 0.00 100 0.1
31prl52 51576 515760 0.00 100 0.2
32ul59 22664 22664.0 0.00 100 0.1
35si175 5564 5564.0 0.00 100 0.8
36brg180 4420 44200 0.00 100 0.2
39rat195 854 854.0 0.00 100 03
Average 0.00 100

Table 1 Results for small benchmark instances.

Name Opt.

Value Error (%) Opt.(%) Time (s)

40d198 10557 105570 0.00 100 1.9
40kroa200 13406 13406.0 0.00 100 04
40krob200 13111 13111.0 0.00 100 0.6
41gr202 23301 23301.0 0.00 100 04
4515225 68340 68340.0 0.00 100 1.9
45tsp225 1612 1612.0 0.00 100 23
46pr226 64007 64007.0 0.00 100 0.1
4621229 71972 71972.0 0.00 100 03
53gil262 1013 10130 0.00 100 14
53pr264 29549 295490 0.00 100 0.6
56a280 1079 1079.0 0.00 100 09
60pr299 22615 226150 0.00 100 1.5
641in318 20765 20765.0 0.00 100 1.7
65rbg323 (asym.) 471 4710 0.00 100 03
72rbg358 (asym.) 693 693.0 0.00 100 0.8
80rd400 6361 6361.0 0.00 100 8.1
81rbg403 (asym.) 1170 1170.0 0.00 100 39
84f1417 9651 9651.0 0.00 100 2.0
87grd31 101946 101946.0 0.00 100 7.6
88pr439 60099 60099.0 0.00 100 2.6
89pcb442 21657 216570 0.00 100 8.1
89rbg443 (asym.) 632 632.0 0.00 100 25.6
99d493 20023 20023 .4 0.00 100 170.5
107ali535 128639 128639.0 0.00 100 184
107att532 13464 13464.0 0.00 100 12.0
10751535 13502 13502.0 0.00 100 345
113pa561 1038 1038.0 0.00 100 7.7
115u574 2388 2388.0 0.00 100 455
115rat575 16689 16689.0 0.00 100 26.5
131p654 27428 27428.0 0.00 100 14.0
132d657 22498 22498 .0 0.00 100 490.8
134gr666 163028 163028.0 0.00 100 162.3
145u724 17272 17272.0 0.00 100 1454
157rat783 3262 3262.9 0.03 70 764 4
200dsj1000 9187884 9187884.0 0.00 100 794 4
201pr1002 114311 1143110 0.00 100 164.8
207511032 22306 22306.0 0.00 100 12025
212u1060 106007 106029.5 0.02 50 20549
217vm1084 130704 130704.0 0.00 100 209.0
Average 0.00 98

Table 2 Results for large benchmark instances.

To provide some very-large-scale instances for research use, GTSPLIB has been extended
with 44 instances ranging in size from 1000 to 85,900 vertices (see Table 3). The instances
are generated from TSPLIB instances with the following exceptions:

* The instances 200E1k.0, 633E3k.0, 2000E10k.0, 6325E31k.0, 200C1k.0, 633C3k, and
6325C31k .0 are generated from instances used in the 8" DIMACS Implementation Chal-
lenge [13]. The E-instances consist of 1000, 3162, 10000, and 31623 uniformly distrib-
uted points in a square. The C-instances consist of 1000, 3162, 10000, and 31623 clus-
tered points. For a given size n of a C-instance, its points are clustered around |n/10] ran-
domly chosen centers in a square.

* The instances 4996sw24978 and 14202ch71009 are generated from the National TSP
benchmark library [14]. They consist, respectively, of 24978 locations in Sweden and
71009 locations in China.

All instances mentioned above were generated using Fischetti et al.’s clustering algorithm.

The following 4 instances in which clusters correspond to natural clusters have been added:
49usal097, 10C1k.0, 31C3k.0, 100C10k.0, and 316C31k.0. The instance 49usal097 consists
of 1097 cities in the adjoining 48 U.S. states, plus the District of Columbia. Figure 2 shows
the current best g-tour for this instance. Figure 3 and 4 show the current best g-tour for
10C1k.0 and 200C1k .0, respectively.

Figure 2 Current best g-tour for 49usal097 (length: 10,465,466 meters ~ 6,503 miles).

Figure 4 Current best g-tour for 200C1k.0 (200 K-center clusters).

10

The column Best of Table 3 shows the current best solution costs found by GLKH. These
costs were found using several runs of GLKH where in each run the current best g-tour was
used as input tour to GLKH and using the following non-default parameter settings:

PROBLEM_FILE = GTSPLIB/<instance name>.gtsp
ASCENT_CANDIDATES = 500
INITIAL_PERIOD = 1000

INPUT_TOUR_FILE = <input g-tour file name>
MAX_CANDIDATES =30

MAX_TRIALS = 1000

OPTIMUM = <current best cost>
OUTPUT_TOUR_FILE = <output g-tour file name>
PI_FILE = <7t-file name>

POPULATION_SIZE =1

PRECISION =10

RUNS =1

The parameter INITIAL_PERIOD specifies the length of the first period in the Held-Karp
ascent (default is n/2). MAX_TRIALS specifies the maximum number of trials (iterations) in
the iterated Lin-Kernighan procedure (default is n). For some of the instances, the trans-
formed costs are so large that the default precision in the st-transformed costs of LKH cannot
be maintained but has to be reduced. The default precision of 100, which corresponds to two

decimal places, is reduced to 10, which corresponds to one decimal place. The number of
RUNS is set to 1 (default is 10).

It may also be mentioned that the parameter MERGE_TOUR_FILE can be used in attempts
to produce a best possible g-tour from two or more given g-tours. Edges that are common to

the corresponding TSP tours are fixed in the Lin-Kernighan search process.

The other columns of the table give the results when the parameter INPUT_ TOUR_FILE is
omitted.

11

Name Best Value Error (%) Time (s)
10C1k.0 2522585 2522605 0.00 49
200C1k.0 6375154 6375154 0.00 133.7
200E1k.0 9662857 9670122 0.08 241.8
49usal097 10465466 10465466 0.00 50.6
235pcb1173 23399 23669 1.15 3674
259d1291 28400 28400 0.00 284.1
261111304 150468 150860 0.26 4152
265111323 154023 154134 0.07 4184
276nrw1379 20050 20194 0.72 398.3
28011400 15316 15316 0.00 119.6
287u1432 54482 54632 0.28 3452
316f11577 14182 14183 0.01 1294 .2
331d1655 29443 29620 0.60 706.8
350vm1748 185459 185588 0.07 563.6
364ul817 25530 25667 0.54 724.0
378r11889 184034 185246 0.66 694.0
421d2103 40049 40270 0.55 806.5
431u2152 27614 27719 0.38 815.7
464u2319 65758 66589 1.26 748.7
479pr2392 169874 171361 0.88 938.9
608pcb3038 52416 53565 2.19 1082.9
31C3k.0 3553142 3553142 0.00 4823
633C3k.0 10255031 10255031 0.00 28339
633E3k.0 16197552 16484977 1.77 1218.0
759113795 18662 18691 0.16 3802.4
893fnl4461 63163 65060 3.00 1825.1
1183115915 309243 314927 1.84 3000.1
1187115934 295767 300618 1.64 3505.5
1480pla7397 12732870 12793563 048 5466.2
100C10k.0 6158999 6240251 1.32 3268.7
2000C10k.0 18044846 18284681 1.33 140272
2000E10k.0 28769011 29644352 3.04 5138.5
2370r111849 427996 440652 2.96 7640.7
2702usal3509 10080705 10274251 1.92 8356.8
2811brd14051 176639 181912 2.99 8472.6
3023d15112 628259 649649 3.40 9787.7
3703d18512 234921 244558 4,10 11665.5
4996sw24978 417631 428690 2.65 20395.1
316C31k.0 10098861 10554017 451 137480
6325C31k.0 31834048 32105148 0.85 54866.3
6325E31k.0 50503475 52533090 402 27188.6
6762pla33810 28222961 29062848 297 382654
14202ch71009 2322839 2378232 238 90408.7
17180pla85900 54792193 56758297 359 1212533
Average 1.38

Table 3 Results for the new very large benchmark instances.

12

4. Conclusion

This paper has evaluated the performance of LKH on E-GTSP instances that are transformed
into standard asymmetric TSP instances using the Noon-Bean transformation [2, 3]. Despite
that LKH is not modified in order to cater for the unusual structure of the TSP instances, its
performance is quite impressive. All instances in a well-known library of E-GTSP benchmark
instances, GTSPLIB, could be solved to optimality in a reasonable time, and it was possible
to find high-quality solutions for a series of new large-scale E-GTSP instances with up to
17,180 clusters and 85,900 vertices.

A possible future path for research would be to find a method for reducing the size of the
candidate set. This would not only reduce running time but also allow LKH’s high-order k-
opt submoves to come into play and probably improve the solution quality. The algorithms
for problem reduction presented in [17] might be useful here.

The developed software is free of charge for academic and non-commercial use and can be

downloaded in source code together with an extended version of GTSPLIB and current best
g-tours for these instances via http://www.ruc.dk/~keld/research/GLKH/.

13

References

1.

10.

11.

12.

13.

14.

Laporte G., Asef-Vaziri A., Sriskandarajah, C.: Some applications of the generalized
travelling salesman problem. J. Oper. Res. Soc., 47(12):1461-1467 (1996)

Noon, C.E, Bean J.C.: An efficient transformation of the generalized traveling sales-
man problem. INFOR 31(1):39-44 (1993)

Behzad. A., Modarres, M.: A New Efficient Transformation of Generalized Traveling
Salesman Problem into Traveling Salesman Problem. In: Proceedings of the 15"
International Conference of Systems Engineering, ICSE (2002)

Ben-Arieh D., Gutin G., Penn M., Yeo A., Zverovitch A.. Transformations of
generalized ATSP into ATSP. Oper. Res. Lett., 31(5):357-365 (2003)

Laporte, G., Semet, F.: Computational evaluation of a transformation procedure for
the symmetric generalized traveling salesman problem. INFOR 37(2):114-120 (1999)

. Karapetyan. D., Gutin, G.: Efficient Local Search Algorithms for Known and New

Neighborhoods for the Generalized Traveling Salesman Problem. Eur. J. Oper. Res,
219(2):234-251 (2012)

Helsgaun, K.: An Effective Implementation of the Lin-Kernighan Traveling Salesman
Heuristic. Eur. J. Oper. Res., 126(1):106-130 (2000)

Helsgaun, K.: General k-opt submoves for the Lin-Kernighan TSP heuristic. Math.
Prog. Comput., 1(2-3):119-163 (2009)

Lin, S, Kernighan, B.W.: An effective heuristic algorithm for the traveling salesman
problem. Oper. Res., 21(2):498-516 (1973)

Reinelt, G.: TSPLIB - a traveling salesman problem library. ORSA J. Comput.,
3(4):376-384 (1991)

Fischetti, M., Salazar Gonzdlez, J.J., Toth, P.: A branch-and-cut algorithm for the
symmetric generalized traveling salesman problem. Oper. Res., 45(3):378-394 (1997)

Fischetti, M., Salazar Gonzalez, J.J., Toth, P.: The generalized traveling salesman and
orientering problems. in: Gutin, G., Punnen, A.P. (Eds.), The Traveling Salesman
Problem and its Variations. Dordrecht: Kluwer, 602—-662 (2002)

Johnson, D.S., McGeoch, L.A., Glover, F., Rego, C.: 8« DIMACS Implementation
Challenge: The Traveling Salesman Problem. (2000)
http://dimacs.rutgers.edu/Challenges/TSP/

National traveling salesman problems.
http://www.math.uwaterloo.ca/tsp/world/countries.html

14

15. Held, M, Karp, R.M.: The traveling salesman problem and minimum spanning trees.
Oper. Res., 18(6):1138-1162 (1970)

16. Gutin, G., Karapetyan, D.: A memetic algorithm for the generalized traveling sales-
man problem. Nat. Comput., 9(1):47-60 (2010)

17. Karapetyan, D., Gutin, G.: Generalized Traveling Salesman Problem Reduction Algo-
rithms. Alg. Oper. Res., 4:144-154 (2009)

15

RECENT RESEARCH REPORTS

#143

#142

#141

#140

#139

#138

#137

#136

#135

#134

#133

#132

#131

#130

Keld Helsgaun. Solving the Bottleneck Traveling Salesman Problem Using
the Lin-Kernighan-Helsgaun Algorithm. 42 pp. May 2014, Roskilde Univer-
sity, Roskilde, Denmark.

Keld Helsgaun. Solving the Clustered Traveling Salesman Problem Using
the Lin-Kernighan-Helsgaun Algorithm. 13 pp. May 2014, Roskilde Univer-
sity, Roskilde, Denmark.

Keld Helsgaun. Solving the Equality Generalized Traveling Salesman Prob-
lem Using the Lin-Kernighan-Helsgaun Algorithm. 15 pp. May 2014,
Roskilde University, Roskilde, Denmark.

Anders Barlach. Effekt-drevet IT udvikling Eksperimenter med effekt-
drevne systemudviklingsprojekter, der involverer CSC Scandihealth og
kunder fra det danske sundhedsveesen. PhD thesis, Roskilde, Denmark,
November 2013.

Mai Lise Ajspur. Tableau-based Decision Procedures for Epistemic and
Temporal Epistemic Logics. PhD thesis, Roskilde, Denmark, October 2013.

Rasmus Rasmussen. Electronic Whiteboards in Emergency Medicine
Studies of Implementation Processes and User Interface Design Evalua-
tions. PhD thesis, Roskilde, Denmark, April 2013.

Christian Theil Have. Efficient Probabilistic Logic Programming for Biologi-
cal Sequence Analysis. PhD thesis, Roskilde, Denmark, January 2013.

Sine Zambach. Regulatory Relations Represented in Logics and Biomedi-
cal Texts. PhD thesis, Roskilde, Denmark, February 2012.

Ole Torp Lassen. Compositionality in probabilistic logic modelling for bi-
ological sequence analysis. PhD thesis, Roskilde, Denmark, November
2011.

Philippe Blache, Henning Christiansen, Veronica Dahl, and Jgrgen Villad-
sen, editors. Proceedings of the 6th International Workshop on Constraints
and Language Processing, Roskilde, Denmark, October 2011.

Jens Ulrik Hansen. A logic toolbox for modeling knowledge and informa-
tion in multi-agent systems and social epistemology. PhD thesis, Roskilde,
Denmark, September 2011.

Morten Hertzum and Magnus Hansen, editors. Proceedings of the Tenth
Danish Human-Computer Interaction Research Symposium (DHRS2010),
Roskilde, Denmark, November 2010.

Tine Lassen. Uncovering Prepositional Senses. PhD thesis, Roskilde, Den-
mark, September 2010.

Gourinath Banda. Modelling and Analysis of Real Time Systems with Logic
Programming and Constraints. PhD thesis, Roskilde, Denmark, August
2010.

