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Abstract

This thesis is concerned with the application of probabilistic logic programming
to biological sequence analysis. Probabilistic logic programming is a declarative
programming paradigm which enables convenient and concise expression of
a wide range of statistical models including common models from biological
sequence analysis. A main advantage of this approach is that logic and control
is separated — this enables that general inference algorithms can be reused for
any model which is expressed using probabilistic logic programming.

The dissertation demonstrates the usefulness of probabilistic logic program-
ming for biological sequence analysis through applications in bacterial gene
finding and through programming abstractions that enable convenient expres-
sion of constraints from the domain of biological sequence analysis. To deal
with central limitations with regard to the efficiency of probabilistic logic pro-
gramming, a number of optimizations of the approach are introduced. With
these optimizations, probabilistic logic programming is now efficient enough to
deal with a wide range of problems from biological sequence analysis.






Resumé

Denne afhandling omhandler anvendelsen af probabilistisk logikprogrammering
til biologisk sekvensanalyse. Probabilistisk logikprogrammering er et deklar-
ativt programmeringsparadigme der pa en nem og kortfattet made gor det
muligt at udtrykke en bred vifte af statistiske modeller. Dette inkluderer en
reekke af de modeller som normalt bruges til biologisk sekvensanalyse.

En fordel ved denne tilgang er at der er en opdeling mellem logik (model)
og kontrol (inferens). Dette muligger at generelle inferensprocedurer kan gen-
bruges for alle typer af modeller der udtrykkes ved hjelp af probabilistisk
logikprogrammering. Dette gor det markant lettere at udvikle nye typer af
modeller.

I afhandlingen demonstreres nytten af probabilistisk logikprogrammering
til biologisk sekvensanalyse i kraft af anvendelser indenfor bakteriel genfind-
ing og gennem programmeringsabstraktioner der ggr det nemmere at udtrykke
modelbegraensninger i form af viden og antagelser fra biologisk sekvensanalyse.
For at handtere problemer i forbindelse med beregningseffektiviteten af prob-
abilistisk logikprogrammering praesenterer afhandlingen en raekke teknikker og
optimeringer.

Med disse optimeringer er probabilistisk logikprogrammering nu effektivt
nok til at handtere en lang raekke problemer indenfor biologisk sekvensanalyse.
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Chapter 1

Introduction

1.1 Problem statement

This thesis is in the intersection of probabilistic logic programming, biological
sequence analysis and constraints. The thesis does not represent a complete
synthesis of these subjects. Rather, it is a collection of applications and ab-
stractions for biological sequence analysis built using probabilistic logic pro-
gramming and also some new optimization techniques to deal with complexity
and efficiency of these. Yet, these diverse efforts all contribute to shed light on
the following three related research questions:

o To what extent is it possible to use probabilistic logic programming for
biological sequence analysis?

e How can constraints relevant to the domain of biological sequence analysis
be combined with probabilistic logic programming?

e What are the limitations with regard to efficiency and how can these be
dealt with?

To motivate these research questions and the approach taken to answer
them, the context of the project and my original research agenda will be dis-
cussed.

This project is part of the larger research project, Logic-Statistic Modeling
and Analysis of Biological Sequence Data (abbreviated LoSt)!. With offset in
the LoSt project and in conception phase of this project a research agenda
formed [85]. The research agenda has served to guide the direction of the re-
search. In the course of the the project, however, insights and collaboration
opportunities have arisen, which leads the project to digress slightly from the
original agenda. The project has been adapted to these circumstances, result-
ing in a more dispersed picture, which is nevertheless still highly relevant to
the above high level research questions. The original agenda is formulated as
follows,

“This project aims to investigate biologically inspired, logic-statistical mod-
els with constraints. The complexity and expressiveness of different kinds of

Lwebsite: http://lost.ruc.dk

11



12 CHAPTER 1. INTRODUCTION

models will be examined and algorithms to efficiently cope with inference in
and training of such models will be explored. The models will be evaluated with
regard to their applicability to biological sequence analysis.”

This agenda touches upon two very distinct problems. On one hand, it sets
out to explore sophisticated models with constraints which can be expressed
using probabilistic logic programming. On the other hand it sets out to build
useful models for biological sequence analysis. This somehow indicates that
such models are useful for biological sequence analysis, but does not state why
this may be the case.

Biological sequence analysis is subfield of bioinformatics which aims to an-
alyze biological sequences, e.g., DNA, RNA and proteins, to understand their
features, functions and evolutionary relationships. Biological sequence analysis
is a computational process which can take place when the sequences are repre-
sented as data in a digital format. The conversion from biological molecules to
digital data is made possible by modern biotechnology. Models are central to
biological sequence analysis. A biological sequence analysis model accounts for
relationships between features of sequence data and is the basis for inferring
biological information from the sequences. An inference algorithm utilizes the
model to extrapolate such information.

Probabilistic logic programming is a general framework which provides the
ability to express arbitrarily complex models, including a variety of models
commonly used for biological sequence analysis. It supports the expression of
complex models in a concise manner which resemble (or even simplify) their
mathematical definition. It is certainly more convenient to create a proba-
bilistic sequence model using probabilistic logic programming, than it is using
modern imperative languages, e.g., C/C++ or Java. Such languages require
the design of suitable data structures and algorithms for specific models. An-
other issue is that it is prohibitively difficult to reason about (and transform)
programs in these languages. With probabilistic logic programs, logic and con-
trol are more separated [114]. Due to this property, the need for adapting
inference algorithms for different kinds of models is eliminated. In the spirit of
logic programming, the separation of logic and control enables that algorithms
can be written in a general fashion, such that they may be used for any model
expressible within the framework. For many types of models these general al-
gorithms — at least, theoretically — can have identical time complexity to the
best known specialized algorithms.

Logic programming is particular well-suited for modeling constraints and
the integration of constraints from the domain of biological sequence analysis
may lead to better and more realistic models. Constraints can be formulated
in a variety of ways and may be either inherent in models or explicit to models.
To be useful, they must somehow bridge the gap between the model and the
problem domain. They can be seen as an abstraction — a high level language
— which supports the translation of domain knowledge and assumptions to
practical aspects of the model. More concretely, constraints should be under-
stood as conditions which delimits a problem by restricting possible solutions
and hence reducing the search space. This may, however, make the search
space more difficult to explore if the constraints violate preconditions for ef-
ficient inference, e.g., common problem substructure in the case of inference
based on dynamic programming. Constraint Logic Programming represents
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a more declarative paradigm, which express constraints over a logic program
and where the control is in principle left implicit. The control can be delegated
to specialized constraint solving algorithms, which can take advantage of the
structure and interdepencies of the constraints.

The agenda also contains an algorithmic aspect — to explore and develop
efficient means of inference. This an early indication of a looming problem;
Even though probabilistic logic programming shows great promise in its abil-
ity to represent advanced models, it is apparent that models expressed using
existing tools for probabilistic logic programming may not be efficient enough
to deal with the complexity and overwhelming magnitude of data present in
real biological sequence analysis problems. Furthermore, the interaction of
constraints with probabilistic logic programming — for which efficient infer-
ence relies on certain assumptions about the problem structure — is not always
trivial to address.

The usefulness of a tool for biological sequence analysis depends not only
on how accurately its underlying model reflects relevant details in biological
sequences, but also in its practical use for deriving new knowledge from such
sequences. Efficient inference is a precondition for practical use.

1.1.1 How this thesis address the research goals

The contributions of this thesis is divided into three categories — Applications,
Abstractions and Optimizations — each of which is concerned with a different
aspect the overall research goal. They each correspond to one of the three
research questions, respectively.

Applications demonstrate the use of probabilistic logic programming to deal
with real and relevant biological sequence analysis problems, i.e., to contribute
new knowledge the field of biology or bioinformatics. Abstractions provide a
language for incorporating constraints from the domain of biological sequence
analysis. Optimizations deal with limitations of probabilistic logic program-
ming that may hinder its use in biological sequence analysis.

The papers in the thesis generally fall into to at least one of the three
categories. Occasionally they address more than one of the research questions,
since these turn out to be intricately related.

As mentioned, this thesis does not aim to be a complete synthesis of proba-
bilistic logic programming, constraints and biological sequence analysis. In the
end, the measure of success will be if we can demonstrate that probabilistic logic
programming is capable of expressing the sort of models and constraints that
are relevant to biological sequence analysis and if inference for these models is
efficient enough to apply them to real biological problems.

Applications One of the main goals of the LoSt project is to evaluate whether
probabilistic logic programming is suitable for modeling problems of biological
sequence analysis. This is intricately related to my research goal. To evaluate
this goal we must identify problems within biological sequence analysis where
probabilistic logic programming is useful. It is not feasible to provide an entire
catalogue of such problems, but at least we should provide some successful
cases.

Prokaryotic gene prediction has been in focus in the LoSt project and is also
the biological sequence analysis task which is given most attention within this
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thesis. The motivation for prokaryotic gene prediction is partly due to coop-
eration opportunities within the project. Prokaryotic gene finding is perceived
as an almost “solved task” within the bioinformatics community. Reasonable
golden standard data is available and this makes it possible to define a precise
success criteria based on prediction accuracy. For the same reason, gene pre-
diction is also challenging — the low hanging fruits have already been reaped
and new ideas are necessary to improve state of the art.

Within the LoSt project, it has already been demonstrated that probabilis-
tic logic programs can be used to model the core approaches used by contem-
porary gene finders and provides a suitable environment for comparing these
[137]. Existing approaches to gene prediction, which have influenced my work
are summarized in section 2.3. Rather than duplicating existing efforts within
prokaryotic gene finding, this thesis seeks to develop new ideas and constraints
which can be modeled to improve upon the state of the art. In that light, the
developed tools should be seen as experimental and when seen from the per-
spective of gene prediction accuracy, some of the explored methods are more
successful than others.

Abstractions Abstractions increase the approachability of problems by lift-
ing the way we think about and express such problems to a higher level. An
abstraction contributes to problem clarification by focussing on relevant issues
and by hiding irrelevant details.

A key advantage of using logic programming is its declaritivity (ignoring the
control aspect), high expressivity and its firm foundation in mathematical logic.
These properties make it possible to form well-founded abstractions which can
be used to model certain kinds of problems in a more elegant and convenient
manner. Probabilistic logic programming is itself such an abstraction which
allows for convenient expression of probabilistic models and similarly constraint
logic programming is an abstraction which introduces the explicit notion of
constraints in logic programs.

In this thesis, the principle of abstraction is applied to bring probabilistic
logic programming closer the problems we encounter within biological sequence
analysis. Often, the abstraction takes the form of a declarative language, which
can be used to express, e.g., constraints from the domain of biological sequence
analysis. Several such languages are presented in this thesis including proba-
bilistic extended regular expressions, a constraint language for Hidden Markov
Models and a pipeline language which facilitates composition of probabilistic
models through a principle we call Bayesian Annotation Networks [43].

Optimizations Probabilistic logic programming is a field that is still matur-
ing and efficiency and run-time is inferior compared to imperative program-
ming languages. There is a significant overhead associated with the execu-
tion of probabilistic logic programs and in effect they are significantly slower
and more memory intensive than specialized programs written in low-level lan-
guages, e.g., C, C++ and Java. However, the gap is closing in, and probabilistic
logic programs are now efficient enough for an interesting range of problems.
One of the main algorithmic devices used for inference in probabilistic mod-
els is dynamic programming. Dynamic programming is essentially the use of a
polynomially compressed representation of an exponentially large search space,
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allowing for polynomial time inferences in this search space. Prolog/PRISM
supports dynamic programming through a language feature called tabling,
which is central to the efficiency of inferences in PRISM. Tabling is a recurrent
theme in this thesis.

Key contributions of this thesis are optimizations for tabling of structured
data, e.g., sequences, and optimizations for tabling programs with constraints.

1.2 The LoSt project

My project has its offset in the larger research project, the LoSt project. The
LoSt project aims to apply logic-statistical modeling to perform analysis of
biological sequence data.

The LoSt project was already an active project when I joined half a year
after finishing my master thesis. My master thesis, supervised by Professor
Henning Christiansen, is on a different but related subject of a probabilistic
logic grammar formalism [88]. At the point where I joined the project, I was
largely ignorant of molecular biology, but had gained some useful knowledge
on probabilistic logic programming. Retrospectively, though, I realize that I
was a novice even on this subject.

Had it not been for the resourceful, helpful and collaborative people in the
project, I do not think that I would have gained much ground. The social dy-
namics of the group have also been remarkable — it has been fun and rewarding
all the way because of all the great people I have had a chance to collaborate
with and have gotten to know.

1.2.1 Peers in the LoSt project

My supervisor, Professor Henning Christiansen, has been my mentor and also
my key collaborative partner in the project. Henning Christiansen has been the
visionary of the LoSt project and his vision for the LoSt project has had a major
influence on the my Ph.D. project and this thesis. He is an inspiring person
with a wealth of knowledge and ideas. Furthermore, he has an encouraging and
down-to-earth style of leadership and he is generally a very nice guy. It has
been an immensely gratifying experience being his student and collaborator.

I have also collaborated with the postdocs within the LoSt project, Ana
Capatana, Matthieu Petit and Sine Zambach.

Ana worked on the LoSt project in the beginning of my stipend. I had just
begun to learn basic molecular biology and found it difficult to access relevant
literature on bioinformatics. With large generosity, she pedagogically con-
tributed biological insights and helped me and others in the group to decipher
the more biological parts of various papers.

I have had the pleasure of close cooperation with Matthieu Petit on several
papers. In particular, the work on constrained hidden markov models (see
chapter 5), which he had already started when I entered the LoSt project,
e.g. [154]. He engaged me in this line of research and we had a very synergetic
cooperation. Later, he was also quite engaged and cooperative when we started
work on the LoSt framework — an effort to integrate the various sub-projects
of the LoSt projects. This effort sparked the development of a pipeline for
biological sequence analysis. It has been a rewarding to work with Matthieu
and I appreciate him as friend.
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I had the pleasure of working with Sine Zambach even before she joined the
LoSt project as a postdoc. We co-supervised a student project, which resulted
in a joint paper for the ESSLLI student session [84]2. When she was later hired
as postdoc in the LoSt project, we had a engaged and energetic cooperation
to create a gene finder for pyrrolysine incorporating genes (see chapter 14). It
is very motivating and inspiring to work with Sine Zambach and I enjoy our
cooperation. In addition, Sine Zambach is a good friend and colleague who is
fun and inspiring to be around.

Professor Ole Skovgaard is the senior biologist in the LoSt project and he
has provided me with many biological insights and have encouraged a focus on
the biological relevance of the work within project. Through discussions, he has
patiently attended computer science dominated group meetings and tutored us
in microbial biology and existing bioinformatics tools and approaches.

As it turns out, the LoSt project — including my project — has devoted
more effort to applying probabilistic logic programming to biological sequence
analysis, than it has to discovering new genes or biological insights. I am certain
that Ole Skovgaard would have preferred a stronger focus on the latter, since
this is in the core of his research interests. I think, however, that we managed to
cross the chasm between computer science (probabilistic logic programming)
and biology and I find this to be a significant accomplishment of the LoSt
project. The mentoring efforts of Ole Skovgaard were fundamental in building
the bridge from the biology side.

Two other PhD students — Ole Torp Lassen and Sgren Mgrk — have been
involved in the LoSt project and have had distinct projects from mine. They
both have had a collaborative spirit and my project is entangled with theirs
through coauthored papers. The following paragraphs briefly summarize their
projects and show how they resemble and differ from my project.

Compositionality in probabilistic logic modeling for biological se-
quence analysis The dissertation of Ole Torp Lassen is primarily concerned
with compositionality of probabilistic logic programs for sequence analysis. The
driving motivation is the optimization of probabilistic logic programs for se-
quence analysis and a reduction in the computational complexity of inference.
Realistic probabilistic models for biological sequence analysis may be of a too
complex nature to allow feasible inference. In his thesis, he presents approaches
to deal with this problem based on compositionality and decomposition.

The thesis provides a gentle, yet concise introduction to complex (biological)
sequence analysis, which from the ground up covers aspects from formal lan-
guage theory, probability theory, logic programming, basic biology and which
culminates in a engaging presentation of his own work on compositionality
which draws upon all these aspects.

A theme which is prevalent in his thesis and is recurring in this thesis is
Bayesian Annotation Networks (BANs). Bayesian Annotation Networks is an
compositional approach which resembles Bayesian Networks, but which repre-
sent networks of probabilistic annotation models (in the form of probabilistic
logic programs) rather than single random variables. These models may rep-
resent different aspects of sequence analysis which may be combined through
other models. The network details how the models fit together by representing

2The paper is not included in this thesis, since it is on a different subject.
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the interdependencies. Inference with BANs is accomplished iteratively and
bottom-up, where each model produces a “best annotation”, which is then used
as input to depending models. The thesis of Ole Torp Lassen provides some
additional details on BANSs, which are not part of this thesis. For instance, he
provides an information theoretical basis for BANs.

The other perspective in his thesis is to make inference feasible using ap-
proximation by decomposition. In this approach, a complex probabilistic se-
quence model — for which predictive inference is not feasible — is decomposed
into complex and less complex parts. Predictive inference may be feasible
for individual parts and predictions these locally optimal predictions may be
combined by a coordinating model. The combined predictions constitute an
approximation of the predictions of the original model. In experiments, he
demonstrates how such approximations may be evaluated by sampling in the
lack of authoritative test data.

Besides the work presented in his dissertation, Ole Torp Lassen has con-
tributed to several of the articles constituting this thesis. In addition to articles,
we have shared office, travel experiences, ideas and frustrations. In has been a
pleasure to work Ole Torp Lassen and I am grateful for his friendship and the
many rewarding experiences we have had together.

Probabilistic Logic Hidden Markov Models for Biological Sequence
Analysis Sgren Mgrk has been working with various interesting probabilistic
HMM-like models for biological sequence analysis — in particular with applica-
tions to gene finding and RNA modeling.

In his paper “Evaluating Bacterial Gene-Finding HMM Structures as Prob-
abilistic Logic Programs”[137] he demonstrates the applicability of the proba-
bilistic logic language PRISM to model and compare a range of known HMM-
based bacterial gene finder architectures. The standard gene finder architec-
tures are furthermore extended and improved with length modeling. The mod-
els are systematically compared using the built-in model selection mechanisms
of PRISM and also using cross-validation.

In the paper draft "Development and Evaluation of RNA Models as Proba-
bilistic Logic Programs", he provides a catalogue of RNA models implemented
in PRISM. This catalogue includes models for a variety of common RNA bioin-
formatics tasks such as RNA folding, simultaneous RNA folding and align-
ment, mRNA models for simultaneous RNA folding and codon sequence predic-
tion and RNA-RNA interaction models. Modeling approaches based on both
Stochastic Context-Free Grammars and Probabilistic Push-Down Automata
are explored and compared. Extensions which are usually associated only with
Hidden Markov Models, are shown to be straight-forward to integrate the latter
type of models. T am a coauthor of this paper, but my contribution is rather
modest. It has, however, been inspiring and enlightening for me to have this
cooperation. Since my contribution is very modest, the paper is not included
in this thesis.

We have cooperated closely on an other paper on a probabilistic model
which use the sequence of gene reading frames to improve the specificity of ex-
isting gene finders with a minimal loss of sensitivity. In this paper we introduce
a type of model which we call a “delete-HMM?”. This model is used to filter the
predictions of existing gene finders. The paper is included as chapter 13 of this
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thesis.

It has been very rewarding to work with Sgren Mgrk and he has inspired
me on many occasions with his views, ideas and optimism. He has a delightful
ability to think outside the box, which I value very much and I consider him a
good friend.

1.2.1.1 External partners

Anders Krogh at the bioinformatics department of Copenhagen University has
had the role of external advisor for the LoSt project. He has on several occasions
provided insightful bioinformatic guidance of which I am very appreciative.

Manfred Jaeger, James Cussens and Nicos Angoupolus have also been ex-
ternal project partners and have participated in LoSt workshops and provided
very valuable inputs and ideas.

PRISM developers The lost project has had a very close cooperation with
the developers of the PRISM language and system, which is absolutely central
to my PhD project and to the LoSt project more generally. The main PRISM
developers, Professor Taisuke Sato and Professor Yoshitaka Kameya have been
very helpful and participated in workshops in our project with great enthusi-
asm. They have personally helped me in analyzing and resolving performance
issues of my PRISM models. Furthermore they have been very forthcoming in
the discussion of ideas and feedback on our work. I am very grateful for this
assistance.

I had planned a longer research visit to Professor Satos laboratory in Tokyo.
The visit was unfortunately cancelled due to the earth quake in the spring of
2011. I am, however, grateful for being offered the opportunity and I am sure
it would have been a great personal and learning experience for me.

I have also had a very nice cooperation with Professor Neng-Fa Zhou, who is
also coauthor of PRISM and the author of the B-Prolog system which underlies
PRISM. He has encouraged my work on tabling and helped me through many
fruitful discussions, from which I learned a lot. Ultimately, we cooperated on a
paper on an improvement of tabling in B-Prolog (chapter 12) which I am very
proud to be the coauthor of.

CLC-Bio I have had the pleasure of visiting LoSt project partner company
CLC-Bio, with the purpose of integrating our pipeline with their development
workbench. After a three day session, we had rudimentary integration which al-
lowed running PRISM based models from our framework from within their soft-
ware and visualizing the results inside their genomic workbench software. Sub-
sequently, this integration has been revised slightly to accommodate changes in
our framework. It has been quite useful to have this integration and has helped
me to debug and test models in ways would not have been possible otherwise.

1.3 Dissertation overview

This thesis is organized as follows: Chapter 2 provides some background on
logic programming (section 2.1) (including probabilistic logic programming and
constraint logic programming), some background on molecular biology (sec-
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tion 2.2) and a short review of approaches to bacterial gene finding (section 2.3).
Chapter 3 outlines my contribution and explains how the papers in this thesis
fit together. Chapters 4 through 14 each contain a distinct paper. Finally,
chapter 15 concludes and gives directions for future research.






Chapter 2

Background

2.1 Logic Programming

Logic programming is a way of using logical inference as a means for computer
programming. Logic programming has roots which can be traced to before the
modern computer, but the seminal paper “programming in predicate logic” [114]
by Kowalski gave a procedural interpretation (of horn clauses) which inspired
the invention of the Prolog programming language by Colmerauer and Roussel
[48].

A logic program, as defined by Kowalski, consists of a finite set of rules
defining implications (horn clauses), i.e.,

Bif A; and ... and A,

Ay, ..., A, are positive or negative (negated) literals — atomic logic for-
mulas which can be either true or false. B is a positive literal. B is called
the consequent and A ... A, are called antecedents. There may be multiple
rules with the same consequent. Problems are stated as theorems (goals) to be
proved through interpretations of implications, e.g., to prove the consequent
B, we recursively need to prove the antecedents A; through A,, by using rules
where these appear as consequents, or by the absence of such rules in the
case of negated literals. This recursive procedure is called backward chain-
ing. Alternatively, through the reverse procedure — called forward chaining
— implications can be derived from a given set of antecedents.

Probabilistic logic programming is a form of logic programming which deals
with uncertainty. A (non-probabilistic) logic program induces a set of possi-
ble worlds, i.e., the set of derivable consequents and their alternative proofs.
Probabilistic logic programming extends logic programming by assigning prob-
abilities to each of these possible worlds and extends logical inference into
probabilistic inference, as to, e.g., derive the probability of a goal or infer the
most likely derivation of a goal.

2.1.1 Logic Programming with Prolog

Prolog [45] is the perhaps the most used language and formalism for logic
programming. Prolog employs a closed world assumption, which means that
the absence of a fact implies its falsity (negation-as-failure).

21
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There several are other logic programming formalisms, which have different
underlying assumptions and different semantics. Prominent examples include
Answer Set Programming [125] and Constraint Logic Programming [101].

2.1.1.1 Syntax and terminology of Prolog programs

In this section the basic syntactic elements of Prolog are introduced.

Clauses A Prolog program consist of a finite sequence of clauses where a
clause is a formula (implication) on the form,

B(*Al,...,An s 77,20

where Aj,..., A, and B are literals. B is called the head (and must be a
positive literal) and Aq,..., A, is called the body. In actual Prolog programs,
the ascii-friendly syntax : - is used in place of - and clauses are followed by a
dot which syntactically denotes the end of the clause.

Literals A literal is an atom (positive literal) or the negation of an atom
(negative literal).

Facts A clause with exactly one positive literal in its head and no body is
called a unit clause or more often a fact. A fact may be declared as a clause on
the form, F' <+ true, or just as a clause with no body F', where the implication
true is implicit.

Atoms An atom is a predicate of arity n, i.e., p or p(t1,...,t,), where
t1,...,t, are terms.

Terms A term is either a variable, a constant or the application of a functor
of arity n > 0, i.e., f or f(t1,...,t,), where tq,...,¢, are terms.

Lists Prolog represents lists as nested terms. A list is a term, ?.?(¢,1), where
>’ represents the cons function, ¢ is a term and [ is a list. As syntactic
sugar, Prolog allows defining lists of terms, ¢1,...,%,, using a bracket notation
[t1,...,t,], n > 0. As a further notational convenience, list composition is
possible using the notation [ty,...,t,[l1, n > 1, where t1,...,t, are terms and
l is a list.

Constants A constant is a numeral, a string starting with a lower case letter
or any single-quoted string.

Variables A variable is a named placeholder for a term and is syntactically
represented by a string token — the name of the variable — starting with an
upper case letter or an underscore. Multiple occurrences of the same variable,
i.e., with the same name, may occur in a clause.

The underscore identifier by itself or as prefix of a variable denotes a spe-
cial kind of variable called an anonymous variable. Anonymous variables are
used when the programmer does not care about the value of the variable and
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they serve primarily a notational convenience. Multiple occurrences of single
underscore anonymous variables in a clause refer to distinct variables, whereas
anonymous variable occurrences with the same name (having underscore as
prefix) refer to the same variable.

Ground terms A term is said to be ground if it contains no variables or if
— at some point in the execution of the program — all variables in the term
are bound to ground values.

2.1.1.2 Declarative semantics of Prolog

The clauses represent universally qualified implications. For all variables X, ..., X,
in a clause B < A1,...,A,, Bis true if all of Ay, A> up to A,, are true, i.ce.,

for all X4,...,X,, occuring in the clause B < A1,..., A, | A, 4; = B.

The Herbrand universe Ho.(P) of a program P is the set of all ground terms
in the program, which may be defined inductively:

e Let ¢ be a constant in P, then ¢ € Hy (P),

e Let f(t1,...,t,) beafunctorin P, then f(t1,...,t,) € Hoo(P)ift1,...,ty €
He(P)

The Herbrand universe may be infinite.

The Herbrand base Hp,s.(P) of a program P is the set of all ground atoms
which can be formed by replacing variables in clauses of P with elements of
Ho(P). Hpgse(P) is infinite if Hoo(P) is infinite.

Let Hinterpretations(P) be the set of all subsets of Hpqse(P). A Herbrand
interpretation I € Hipterpretations(P) of a program P is a subset of its Herbrand
base, i.e., I C Hpase(P). An interpretation assigns truth values to all elements
of Hpgse(P), i-e. members of the interpretation are true and all other elements
are false.

A Herbrand model H,,,q4¢; is @ Herbrand interpretation, inductively defined
as follows:

e Let A be a ground fact in P, then A € H,,o4ei,

e Let B <+ Aq,...,A, be a clause in P, let B’ be ground instance of B
and let A7,..., A" € Hpmodel-

B’ € H,,o4e if for all A; we can replace all variables X1,...,X,, in a
clause B < Ay, ..., Ay, with a term in A} such that,

—forallof 4;,1<i<n :A;=A,

— B’ is a ground instance of B where all such variables occurrences
have been replaced accordingly.

The intersection of two Herbrand models is also a Herbrand model. The
declarative meaning of a program P is the minimal Herbrand model of P,
which is the intersection of all Herbrand models of P. A program always has
a unique, minimal Herbrand model.



24 CHAPTER 2. BACKGROUND

2.1.1.3 Operational semantics of Prolog

Prolog may also be seen as an abstract computational machine with goal-
driven computation. The general principle of inference is called SLD-resolution
(Selective Linear resolution with Definite clauses) [115].

Goal-driven computation (resolution) implies that the user states a goal —
a conjunction of atoms to be proven — and backward chaining is applied in
order to prove the goal. The operational semantics can be characterized in
terms of a rewrite system [193].

A state of the computation is the pair (G;6), where G is a goal and 6 is a
substitution. A substitution is a finite set of mappings of variables to terms,
i.e., 0= {Xl —t1,... 7Xn — tn}

The state is updated as a result of each rewrite step. Before the first
rewrite step, 6 is the empty substitution and G is the goal stated by the user.
Resolution proceeds non-deterministically (with regard to selection of clauses)
using two transition rules — reduce and fail,

(Av, . Agy o Ay 0) e (Ay By, ..., By,...,Ap; 000 (2.1)

<A17"';Ai7"'7An;0> fﬁjl <faZl79> (22)

Here, #of’ denotes the application of the substitution 6’ after the application
of the substitution §. The reduce transition applies if a substitution 6’ can be
found through wunification: The term A; is unified with the head of a clause
in the program, A’ + Bi,..., By, i.e., a substitution which is a most general
unifier §/ = mgu({A;, A'}) is found such that after applying it to A; and A’,
written as A;6’ and A’¢’, A;60/ = A’¢’. For the substitution 6’ to be a most
general unifier it must be the case that for any other unifier w, there is a unifier
A such that 8’ = wo \.

If no substitution can be found then unification fails and the fail transition
applies.

As a strategy to deal with the non-determinism of SLD-resolution, Prolog
uses depth-first search. In Prolog the computation always proceeds by con-
sidering each clause from top to bottom when trying to unify a goal. Once a
satisfying clause is found, it proceeds recursively by attempting to unify each
term in the body from left to right. In the case of failure of unification, the
computation backtracks to the previous state and attempts the next clause.

To use of depth-first search means that resolution is incomplete and may
not terminate. The principle is complete for certain types of otherwise non-
terminating programs, when Prolog is extended with tabling (see section 2.1.1.5).

2.1.1.4 Proofs, proof trees and explanation graphs

A sequence of states such that the final state consists of an (irreducible) con-
junction of facts is a derivation of the initial goal G. If no such sequence exists,
i.e., if every state sequence ends in a fail state, the goal G is refuted or failed.
In the context of logic programs, the terms “proof”; “derivation” and “explana-
tion” are synonymous, but the use may differ depending on the context, i.e.,
the word “derivation” has operational connotations whereas the word “proof”
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has a more declarative flavor and word “explanation” is more often used with
abductive reasoning.

A proof tree is a graph T = (V, E) where the vertices V' correspond to
goals, and the edges F are induced from the sequence of states in a proof in
the following way,

e The root of the tree is the initial goal G.

e For each consecutive pair of states in the proof, the tree contains a di-
rected edges from the rewritten consequent goal A; to each of the an-
tecedent goals By, ..., By.

There may be more than one distinct sequence of states which proves a goal
G, and we denote the set of all such proofs Pg. We can compactly represent
Pg as an explanation graph which we denote EFn. The explanation graph is
a directed acyclic hypergraph'. More precisely, the explanation graph is a
pair Eq¢ = (V,E), where V is a set of vertices and the edges E are pairs
(vo, {(v1,...,Um)) such that vg,...,v, € V. The explanation graph contains
an edge (p, (q1,...,qn)) from a state p to one or more other states, g1, ..., qn,
if there is a proof tree Tz for G with edges (p,¢1),. .., (p,qn). Note that this
representation share states which different proofs may have in common. The
proofs may be recovered by traversal of the explanation graph; every distinct
path from the root node to a leaf node corresponds to a proof.

2.1.1.5 Tabling and the explanation graph

Tabling is a mechanism whereby goals and their answers are memorized once
computed. If a memorized goal is encountered in a different computation, the
memorized answer is used rather than recomputing the goal. This is useful,
e.g., when the same goal is present in multiple proofs or multiple times in a
single proof.

Tabling can be seen as implicitly building an explanation graph without
explicitly generating all proofs. Tabling stores one copy of each goal — isomor-
phic to a distinct goal corresponding to one node in an explanation graph. A
table record of a goal has pointers to each of its answers — isomorphic to the
edges of the explanation graph.

With tabling the number of computational steps needed to build the expla-
nation graph is proportional with the size of the explanation graph, which may
be fewer than required for enumerating all proofs if the proofs share common
substructures.

2.1.2 Probabilistic Logic Programming with PRISM

PRISM — which abbreviates PRogramming In Statistical Models — is a prob-
abilistic extension of Prolog with probabilistic declarative semantics developed
at the Tokyo Institute of Technology by Taisuke Sato and Yoshitaka Kameya.
It is based the highly efficient B-Prolog system [226] by Neng-Fa Zhou. The
authors of PRISM are collaboration partners of the LoSt project. The PRISM

LA hypergraph is a generalization of a graph where an edge can connect any number of
vertices, i.e. edges are non-empty subsets of vertices.
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system is one of the most mature systems and efficient tools for probabilistic
programming and is used extensively throughout this thesis.

This section gives a brief overview of the main facilities of PRISM and out-
lines how its syntax and semantics tie together to provide efficient probabilistic
inferences. For more detailed descriptions, the reader is referred to the PRISM
manual [207] and the comprehensive papers about PRISM [175, 176, 174].

We use the terms PRISM model and PRISM program interchangeably — A
PRISM program is in effect a probabilistic model.

2.1.2.1 The distribution semantics

The underlying semantics of PRISM is called the distribution semantics [173]
and defines a probability distribution over Herbrand interpretations of a pro-
gram.

The sample space 2p — or possible worlds — of a program P is the set of all
Herbrand interpretations of P. Let Ay, Bs,... be the atoms in the Herbrand
base of P. In a given Herbrand interpretation we may have A; = true or
A; = false, and the set of possible Herbrand interpretations form a cartesian
product, Qp = []2, {true, false};.

Let ng) be a restriction of the Herbrand base to the first n atoms, let Il(jn)
be the set of Herbrand interpretations of le) and let PI(Dn) be a probability
measure for le), i.e., assigning a probability p;x) to each element i e Il(gn).

A (possibly infinite) probability measure Pp on Qp is obtained by merging
the family of finite probability measures PI(;L), given that the following three
conditions holds for PI(Dn):

for any p;n) € P;,n), 0<pm <1 (2.3)
Z Piny =1 (2.4)
pi(n)EP}(j")
for any it and i st. i C (1), Zpi(n+l) = D;(n) (2.5)

Equation 2.3 asserts that the probability measure PI(Dn) assigns a valid proba-
bility to each interpretation. Equation 2.4, also called the uniqueness condition
asserts that sum of probabilities for all possible interpretations sum to unity,
i.e., interpretations are exclusive probabilistic events. Finally, equation 2.5 as-
serts that when extending with another atom of the Herbrand base, events
(interpretation of n atoms) are divided into specialized events (interpretations
of n+ 1 atoms) which together constitute the event corresponding to the inter-
pretation of the n atoms. The sum of probabilities of these specialized events
are asserted to be equal to the probability of the event they constitute.

2.1.2.2 The PRISM language

The PRISM language implements the distribution semantics through an ex-
tension of Prolog with random variables embodied as a special type of goals
called multi-valued switches (msws).
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Since PRISM is a compatible extension of Prolog, the syntax PRISM is
identical to that of Prolog.

Multi-valued switches Random variables, embodied by multi-valued switches,
consist of a switch values declaration and may be used in the program by call-
ing the msw/2 goal.

A multi-valued switch goal (msw) takes the form

msw (t,v)

where ¢ is a ground term. This causes v to be chosen randomly from a list of
outcomes according to a predefined switch values declaration.
A switch values declaration takes the form

values (t;q, [vy,...,v,]1)

where t;4 is a Prolog term and may contain (anonymous) variables and [v1, ..., v,]
is a list of possible outcomes represented as ground atoms.

In a call to a multi-valued switch msw(¢,X) for some ground ¢, the cor-
responding values declaration is found using unification of ¢ and t;4. It is
assumed that any term ¢ is unifiable only with one values declaration. The
outcome X is selected according to a probability distribution which can ei-
ther be explicitly defined (using the set_sw goal) or learned from observed
goals. For a multi-valued switch call msw(¢,X), where ¢ unifies with ¢;4, prob-

abilities p1, ..., p, are associated with each element of [vq,...,v,] such that
Z?:l p; = 1. The outcome probabilities p1,...,p, are referred to as a param-
eter.

A values declaration with variables in the identifier may serve as to define
the outcome space of a family of multi-valued switches with the same out-
come space, but which may individually have different probabilities of these
outcomes. This is for instance the case in the coin(_) values declaration in
figure 2.1.2.2.

Multi-valued switch calls are stationary in the sense that the probability
of the outcomes of an msw does not change over time (during execution of
the program), i.e., in any explanation ...,msw(i,X;),... msw(i,X;41),...,
P(X; =v) = P(X;41 = v) for some fixed switch ¢, for any (time) j and for
any outcome v.

PRISM programs and the distribution semantics The distribution se-
mantics is defined for PRISM programs where all probabilistic ground atoms?
in the Herbrand base of a program are probabilistically exclusive, independent
and unique. To guarantee this, all non-determinism must be governed by msws.
Essentially, for any disjunction in the program, the disjuncts must correspond
to mutually exclusive subsets of the outcomes of an msw (or set of such).
Given independence and exclusiveness, the probability of any atom may be
computed as a sum-product; The probability of a conjunction A A B is the

2Without loss of generality it can be assumed that all ground facts are represented as
multi-valued switches in accordance with the distribution semantics. In practice, though, it
is common to have both msws and usual prolog facts (which can be seen as probabilistic facts
with probability 1).
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values(select_coin, [fair,loaded]).
values(coin(_), [heads,tails]).

flip_coin(Result) :-
msw(select_coin, Coin),
msw(coin(Coin), Result).

:- set_sw(coin(fair),[0.5,0.5]).
:- set_sw(coin(loaded), [0.9,0.1]).
:- set_sw(select_coin, [0.5,0.5]).

Figure 2.1: A simple PRISM program that simulates randomly selecting a
coin (either fair or loaded) and flipping it to obtain either heads or tails. The
first two lines declare the multi-valued switches, select_coin and coin(_).
The predicate flip_coin first invokes the switch select_coin to randomly
select an outcome (and unify the variable Coin), which is either the fair or
loaded as defined by the values(select_coin,...) declaration. Then, the
msw(coin(Coin) ,Result) msw is called and value of Coin indicates which
probability distribution to select unify Result — the outcomes are heads or
tails regardless of the value of Coin. The probability distributions are defined
manually in the last three lines, e.g., if Coin=1loaded, then the probability of
heads is 0.9.

product® P(A) x P(B) and the probability of disjunction A V B is the sum
P(A) + P(B). This naturally generalizes to the goals and their explanations.

The independence condition asserts that the probability of an explanation
FExplg of a goal G is the product of probabilities of msw outcomes in the
explanation. For an explanation Fxplg = msw(iy,X1),...,msw(i,,,X,,) this
is defined as follows,

P(Explg) = [ [ Pwsw(ij, X;))
j=1

The exclusiveness condition asserts that the probability of a goal G is sum of
the probabilities of its explanations,

P(G)= Y P(Explg)
Explg

The uniqueness condition — corresponding to equation 2.4 — asserts that
the probabilities of all observable atoms sum to unity.

Conditional probabilities Conditional dependencies between msws can be
modeled by capturing the outcome of a multi-valued switch in a variable and

3 Note that the probability of a conjunction of identical msw goals is still the product,
e, P(msw(i,v) Amsw(i,v)) = P(msw(i,v)) X P(msw(i,v)). Intuitively, this differs slightly
from from the usual logic interpretation, where conjunction of identical goals are truth-wise
identical to the single occurrence of the goal. This is necessary to be able to reuse the same
values declaration.
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using this variable to identify a subsequent multi-valued switch, i.e., in a con-
junction msw(a,X), msw(X, Y), the outcome of the probabilistic choice of the
first msw is used as identifier for the second msw. The example in figure 2.1.2.2
illustrates this principle.

2.1.2.3 Inference with PRISM programs

A PRISM program is effectively a probabilistic models and inferences which
are usually associated with probabilistic models can be performed on PRISM
programs.

Sampling The direct mode of execution of PRISM programs — called sam-
pling — closely resembles Prologs SLD resolution procedure, with the only
exception being that the outcome of msw facts are determined probabilisti-
cally. Sampling a goal G is either done by explicitly calling the goal or calling
sample (G). Executing this query will probabilistically derive an explanation

of G.

Probability calculation Besides sampling, a common inference is to calcu-
late the probability of a goal G. Calling probf (G, P) will unify P to the prob-
ability of the goal G calculated as specified in the previous section. PRISM
also supports computation of hindsight probabilities (hindsight) which are
probabilities of subgoals given a top-level goal. Newer versions of PRISM may
soon include a procedure for calculating prefix probabilities as well [189].

Viterbi decoding The Viterbi algorithm provided is a generalization of the
classical HMM Viterbi decoding algorithm [218] extended for arbitrary PRISM
programs. The generalized Viterbi algorithm [188] of PRISM finds the most
probable explanation of a goal G, i.e.,

Viterbi(G) = argmax P(Ezplg)
ecExplag
In practice, this procedure is invoked using the built-in viterbif (G, FE, P),
where E is unified to the most probable explanation of G and P is the proba-
bility of E. PRISM provides various extensions of this, which can for instance
return the n most probable explanations.

Parameter learning Finally, the parameters of a PRISM program may
be learned from examples using the built-in predicate learn([G1,...,G,1).
PRISM includes several procedures for parameter learning. Using default set-
tings learn performs mazimum-likelihood estimation, where the model param-
eters are optimized as to maximize the probability that random sampling with
the program would result in G1,...,G,. This is achieved using an Expec-
tation Maximization (EM) algorithm (gEM) [107, 105] which generalizes the
well-known EM algorithm for PRISM programs. The PRISM system includes
other learning methods which may be preferable in a given situation. The
fgEM algorithm is used for programs with failures [182, 187, 183]. The VB-EM
algorithm uses a Variational Bayes method which puts dirichlet priors (essen-
tially pseudo-counts) on parameters [186] and is useful in particular when the
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training data is sparse. More recently the PRISM system includes Hard-EM
(Viterbi learning) which eliminates the exclusiveness condition [188] and pro-
vides for better prediction accuracy under certain conditions. Furthermore,
the most recent version of PRISM includes also Markov Chain Monte Carlo
(MCMC) [177]. The choice of algorithm to be used when calling learn is
determined by setting execution flags (set_prism_flag)*.

Parameter learning is fully supervised when Gi,...,G, are ground, but
learning become unsupervised or semi-supervised if all or some of G1,...,G,
contain (possibly anonymous) variables.

The explanation graph The central inference mechanisms of PRISM —
except, maybe sampling — rely on explanation graphs, which are efficiently
implemented by tabling [228]. The number of different derivations in a PRISM
program may be exponential, but the explanation graph represents these in
polynomial space. The computed probability — maximal in the case of viterbi
and total in the case prob — of a goal is stored in the explanation graph and
reused for derivations which include the same goal. The use of the explanation
graph allows PRISMs generic inference mechanisms to mimic specialized and
efficient dynamic programming algorithms complexity-wise. For a variety of
commonly used models, e.g., Hidden Markov Models and Stochastic Context-
Free Grammars, PRISM theoretically achieves the same computational com-
plexity as the best known specialized algorithms.

2.1.2.4 Introducing constraints

Constraints may be seen as a restriction of the set of possible worlds of a
program.

A hard constraint reduces the set of possible worlds of a program. A pro-
gram P’ is a constrained version of a program P if the possible worlds of P’ is
a subset of the possible worlds of P, i.e., Qp; C Qp. Hard constraints may be
introduced in logic programs through the coercion of logic variables. Such a
coercion can be introduced, e.g., by asserting equality, X=Y, or inequality, X\=Y,
between variables.

PRISM programs may in the same way as Prolog programs introduce con-
straints through coercion of logic variables. In PRISM, however, the terms
bound by variables may be stochastically determined and unification failures
arise from incompatible probabilistic choices. For instance, in a conjunction of
msw calls msw (i1, X) msw(io, X), the first call will unify X to the probabilis-
tically determined outcome of i1, but the second call i3 may try to unify X to
a different outcome.

This is useful for variety of purposes — for instance, to express Constrained
Hidden Markov Models or probabilistic grammars with more than context-free
expressivity [187, 88].

It also means that PRISM programs may fail — the sampling of a goal
may result in failure of unification. This violates the uniqueness condition and
compromises the distribution semantics since the probabilities may not sum to
one — a portion of the probability mass is assigned to the failed derivations.

4Refer to the PRISM manual for details.
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This can be alleviated by making failures explicit and mapping them in-
stead to a form of successful derivations. PRISM incorporates the first order
compiler, which given a PRISM program Prog, generates a failure program
= Prog that traces all failed derivations, such that Prog U —Prog satisfies the
uniqueness assumption.

Failures also present challenges for parameter learning. For a stochastic
process, we may not be able to observe failures. We can only observe what
corresponds to the successful derivations. It therefore not possible to directly
estimate parameters which maximize the likelihood of all the (observed and un-
observed) data. Usually, PRISMs EM learning procedures rely on the unique-
ness assumption, which implies the falsity of all unobserved atoms. In the case
of programs with failures, PRISM maximizes instead likelihood of observed
data and normalizes the resulting distribution by estimating the probability
of failure using the failure program. This is handled by the fgEM algorithm
[182, 187, 183], which is an adaptation of Failure-Adjusted Maximization [53].

As an alternative to programs which introduce failures, constraints may
instead be introduced as soft constraints. A soft constraint does not reduce
the set of possible worlds, but it expresses a preference for or a bias towards
a subset of possible worlds. In PRISM, conditional probabilities is the natural
way to express soft constraints.

Soft constraints expressed through conditional probabilities can be data
driven, in the sense that the degree of preference corresponds to observed em-
pirical frequencies of correlations in the training data. In the total absence
of (observed) correlation, conditional probabilities learned from data by max-
imum likelihood in effect become hard constraints since associated events are
assumed to have zero probability®. Expressing constraints through conditional
probabilities have the disadvantage of leading to a larger set of model param-
eters — hence requiring more training data for reliable learning and leading to
degradation of inference performance.

2.1.3 Constraint logic programming

Constraint logic programming (CLP) combines logic programming and con-
straint satisfaction. In addition to the usual literals, constraint logic programs
may include constraints which restrict the possible values for logic variables.

These constraints may for instance be equality constraints (tree constraints),
e.g., X=Y which forces the unification of the two variables. It may also be other
types of constraints which specify the relation between variables with certain
types of values such as integers or floats, e.g., X > Yor X = Y + 1. While
ordinary logic programs may also include such constraints, the constraints in
a constraint logic program are treated differently.

Clauses in a constraint logic program takes the form,

A(—Bl,...,Bn,Cl,...,Cm.

where A, By,..., B, are literals and Cj,...,C,, are constraints®. A solution
to a constraint logic program is a proof of a goal G in which all constraints
occurring in clauses selected in the proof of G are satisfied.

5 Assuming that we use plain EM, i.e., no priors or pseudo-counts.
SThe ordering By, ..., Bn,C1,...,Cmn is artificial and used only for notional convenience.
In practice literals and constraints can occur in mixed order.
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Constraint logic programs maintain a constraint store which holds all sat-
isfied constraints. This constraint store may be rewritten or simplified during
execution and constraints may be replaced by other constraints (simplification)
or new derived constraints may be added to the constraint store (propagation).

2.1.3.1 Semantics of Constraint Logic Programming

The cruix of constraint logic programming is the constraint store. We formulate
the semantics of constraint logic programs in a similar fashion to the formula-
tion of semantics of Prolog programs in section 2.1.1.3. We represent the state
of computation as a triple (G;6;v), where G is a goal, 6 is a substitution and
~ is a constraint store. The constraint store may be represented as a set (or
multiset) of constraints. Computation may then — as with Prolog programs
— be characterized as a non-deterministic rewrite system,

(Ar, . Ay A 0;7) e (Ay By, ..., By, ..., Aps 008 s 4U{Cy, ..., C})

(2.6)
(Ay,..., Ap; 60;7) Sil’ip”fy (A1,..., Ap; 00054 (2.7)
<A17aAZ77A7L795’Y> fgfl <f0/Ll,9,’Y> (28)

The reduce transition resembles the rule from with the same name from the
Prolog semantics. Constraints, however, may be added to the constraint store
as an effect of this reduce transition. The reduce transition only applies if the
constraint store yU {C4,...,C,} is consistent (satisfiable).

The simplify applies whenever v # +' and v |= v/ according to the semantics
of the constraint solver. The simplify transition updates the constraint store
and applies rules of the constraint solver to simplify the constraint store. Note
that the constraint solver may update the substitution.

As with Prolog programs, the fail transition applies if no other rule applies.

2.1.3.2 Constraint Handling Rules

Constraint Handling Rules (CHR) [71] is a rule based language which rewrites
a constraint store represented as a multiset. It was originally developed as a
language to write constraint solvers, but has found many applications beyond
this domain [198]. The language is used within a host language — typically
Prolog — and inherits notions from this language. In this thesis, only Prolog
is considered as host language. With Prolog as host language, a constraint is
represented as a Prolog term and CHR inherits logic variables and unification.

CHR is a declarative and rule-based language like Prolog. However, un-
like Prolog, CHR is a committed-choice language, which means that once a
particular rule has been applied, no backtracking occurs.

The language include three types of rules: Propagation, simplification and
simpagation.

A simplification rule takes the form,

Cl,...,Ci <=> Guard | Ci+17...,cn
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leq(X,X) <=> true.

leq(X,Y), leq(Y,X) <=> X=Y.
leq(X,Y) \ leq(X,Y) <=> true.
leq(X,Y), leq(Y,Z) ==> leq(X,Z).

Figure 2.2: A CHR program (adapted from [71]) implementing a constraint
solver for less-than-or-equal leq constraints. The first rule (reflexivity) is a
simplification rule which remove 1eq(X,X) constraints from the constraint
store. The second rule removes the two anti-symmetric constraints in the
head and unifies X and Y (using the built-in constraint =). The third rule
(a simpagation rule) removes duplicate constraints (such may occur due to the
multi-set semantics of CHR). The fourth rule is a propagation rule which mod-
els the transitivity of leq constraints by adding the (redundant) leq(X,Z2)
constraint to the constraint store.

A simplification rule replaces the constraints in the head, C1,...,C;, with
the constraints in the body, C;41,...,Cy, if the Guard is true. The guard is
a conjunction of so-called built-in constraints, which take the form of a Prolog
goal when the host language is Prolog. It may be omitted in all types of rules.
The <=> syntax implies the relation to logical equivalence.

A propagation rule takes the form,

Cq,...,C; ==> Guard | OH_l,...,Cn

Propagation rules add the constraints in the body to the constraint store when
matching the constraints in the head and if the Guard is true. For a particular
instance of constraints, Cq,...,C;, the rule is only applied once. The ==>
syntax implies the relation to logical implication.

The third type of rule, simpagation, takes the form,

Cla B Ci\ci-‘rl; B CT)’L <=> Guard | C’rn—i—h BN} Cn

The simpagation rule is a hybrid between the simplification and the prop-
agation rules. The constraints C1,...,C; are kept in the constraint, the con-
straints Cy41, . .., C), are removed and the constraints Cy,11, ..., C,, are added
to the store.

Several semantics have been introduced for CHR. Informally, the abstract
semantics assumes confluence’, i.e., it assumes that the order of rule applica-
tions are not important. The refined semantics (which is used by most imple-
mentations) select the next rule to apply by giving precedence to the top-most
applicable rule in the CHR program.

A small CHR program is shown in figure 2.1.3.2.

2.2 Biology and biological sequence analysis

In this section I introduce basic biological concepts which are central to the
kind of biological sequence analysis presented in this thesis. The focus is on
relevant concepts with regard to the biology of prokaryotic organisms. The

7This concept is defined more formally in chapter 7
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introduction is brief and the reader is referred elsewhere for details, e.g. [4].
It does, however, contain some details which would not ordinarily be part
of an introductory text on molecular biology. These details are included in
anticipation of some of the more biologically oriented papers in this thesis.

2.2.1 Basic genetics

The cells of living organisms contain a blueprint of the organism in the form
of DNA, short for Deoxyribo-Nucleic Acid. DNA is a molecule composed of
short subunits called nucleotides. Nucleotides consist of a five carbon sugar
compound, a phosphate group and a base. In DNA the base is either cytosine
(C), guanine (G), adenine (A) or thymine (T). The letters, indicated for each
of the bases form the four letter alphabet {A, G, C,T}.

In eukaryotes,e.g., humans, plants and amoeba, the genetic material is
stored in a protective core within the cell called the nucleus. In these multi-
cellular organisms, the same genetic material is stored in each cell. The DNA
is coiled up in chromosomes, of which eukaryotes usually have several.

In prokaryotes (Bacteria and Archaea), which are usually single-celled, the
cells have no nucleus and the genetic material floats freely in the cytoplasm of
the cell. Prokaryotes usually carry only a single chromosome.

The total genetic material of an organism — including all chromosomes and
extra-chromosomal genetic material (e.g., plasmids) — is called the genome.
The size of the genome varies greatly between organisms. The (haploid - resting
phase) human genome consists of roughly three billion basepairs, whereas the
genomes of prokaryotes are usually less than ten million basepairs.

The genome consists of DNA molecules in a double helix structure. The two
DNA molecules (strands) are bound together through hydrogen bonds between
complementary bases: cytosine-guanine pairs and adenine-thymine pairs.

The nucleotides of each strand are joined together covalently via phos-
phate links between the sugars, resulting in a sugar-phosphate backbone struc-
ture. FEach nucleotide is joined with neighboring nucleotides. One is connected
through a bond to the 3’ carbon atom of the sugar and the other is connected
through a bond to the 5’ carbon atom of the sugar, giving each strand a 5" and
3’ directionality.

The genetic material of the genome is organized in genes.

Originally — before the age of modern molecular biology as initiated by the
discovery of DNA in 1953 [220] — the term gene referred to the discrete units of
heredity associated with differences and similarities between parents and their
progeny. The term is now usually used to denote stretches of DNA which are
transcribed to mRNA and encode proteins — the main macromolecules that
perform the many functions of a cell. (See below for some more detail).

The term upstream with regard to a gene refers to the region before the
5" end of the gene downstream refers to region after its 3’ end - of its “sense”
strand (the one that is identical to the transcribed mRNA sequence).

2.2.2 The central dogma

The phenotype of an organism is its observable function and appearance. The
genotype of an organism is the encoding of its phenotype in the genome. The
central dogma of molecular biology refers to the template directed sequential
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synthesis processes of DNA, RNA and protein that connect the genotype with
the phenotype [52].

In the replication process DNA is copied during cell-division. In the tran-
scription process, DNA is transcribed into RNA. Some RNA sequences (mes-
senger RNA, mRNAs) can act as templates for the accretion of amino acids
that compose a protein (the translation process).

These “information transfer” processes between DNA, RNA and proteins
are the most central ones, although other transitions are known to occur, for
instance RNA to RNA (RNA replication) and RNA to DNA (Reverse Tran-
scription).

2.2.2.1 Transcription and translation

Transcription from DNA into RNA is performed by the transcriptional appa-
ratus, which at its core has a DNA dependent RNA polymerase enzyme. The
polymerase attach to a promoter sequence in one of the DNA strands — the
template strand — and separates the two strands in a short approximately 10
bases window and proceeds in the 3’ — 5’ direction of the template strand. As
it proceeds, it produces a growing strand of RNA which is complementary to
the template strand through the addition of ribonucleotides at the 3’ end of
the nascent transcript.

Somewhere downstream of the promoter sequence, the polymerase encoun-
ters a termination sequence at which point it detaches from the template strand.
The transcribed mRNA is released.

In eukaryotes the mRNA then migrates from the nucleus to the cytoplasm
where it is translated by a massive ribonucleic-protein complex called a ribo-
some.

In prokaryotes — which have only the cytoplasm — the translation of the
mRNA may begin while it is still being transcribed and several ribosomes may
translate the same mRNA simultaneously.

The ribosome attaches to the mRNA at a ribosomal binding site — the
Shine-Delgarno sequence — and proceeds downstream i.e. in the 5 — 3’ direc-
tion. Downstream the RBS, the ribosome begins translation when it encounters
a specific sequence triplet called the initiation codon which is translated into
the amino acid methionine. It then proceeds translating each triplet — a codon
— into an amino acid. Table 2.1 show the relation between specific codons and
the corresponding amino acids. The amino acids are carried to the ribosome
by transfer RNAs (tRNA) which are specific to the type of amino acid they
carry. The tRNAs have an anti-codon which is complementary to a triplet
in the mRNA and by mediation of the ribosome they attach to such triplets.
The ribosome detaches the amino acid from the tRNA and adds it the to the
growing polypeptide chain. For specific codons known as stop codons, there
are no tRNAs with complementary anti-codons. Instead, proteins known as
release factors attach to these. When the ribosome encounters a release factor
it releases the protein and detaches from the mRNA. An mRNA may encode
a single protein or multiple proteins (poly-cistronic transcripts). The region
upstream an initiation codon is called the 5 untranslated region (UTR) and
the region downstream a stop codon is called the 3" UTR.
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2.2.2.2 Replication

Prokaryotic genomes usually only have a single large circular chromosome.
Replication is performed by a multi-component molecular machinery called
the replisome, that initiates replication at a specific location in the genome
(the origin) and proceeds along the genome in both directions (replichores)
towards the region were replication terminates (terminus).

Replication is initiated by elongation of short RNA sequences called primers,
that forms the beginning of the synthesis of a new anti-parrallel strand. An
enzyme — DNA polymerase IIT — attach to the primer and elongates the new
strand at its 3’ end.

The 3’ — 5’ template strand of each replichore is called the leading strand
and opposite the 5 — 3’ template strand is called the lagging strand (replica-
tion proceeds slower with this strand since the polymerase can only polymerize
from the 3’ end resulting in DNA synthesis going in the opposite direction of
the replisome).

On the leading strand, DNA polymerase III continuously elongates the
synthesized strand in the 5" — 3’ direction and towards the terminus. Only
one RNA primer is needed.

In the lagging strand DNA polymerase I1I also work in the 5" — 3’ direction,
which is toward the origin. RNA primers attach every 1000-2000 bases and the
DNA polymerase III synthesize the fragments in between. These are called
okazaki fragments.

The RNA primers are subsequently removed by an exonuclease (polymerase
I) and the synthesized fragments are joined together by an enzyme called DNA
ligase.

It is important to note that replication and translation are not isolated
processes, but occur simultaneously in prokaryotes. Halfway through the repli-
cation process the chromosome will have the two copies of the DNA near the
origin, but only one copy near the terminus. Hence, genes located near the
origin are more frequently expressed than genes near the terminus. Collisions
between the enzymes involved in these two processes can affect the efficiency of
either process. For this reason, genes are preferentially located on the leading
strand.

2.2.3 Genes

In the previous section I loosely introduced a gene as a stretch of DNA which
is translated to a functional protein.

As a simplified working definition, a (prokaryotic) gene is a consecutive
stretch of DNA which,

e is translated to a complete protein and

e has a length which is a multiple of three (codons) and

e in which the 5 end starts with a codon translated as methionine and

e which contains exactly one stop codon — the last codon near the 3’ end.

This definition is an oversimplification which besides excluding non-protein
encoding genes, i.e., functional RNA genes, also excludes several classes of
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Second base in codon

T C A G

TTT Phe F TCT Ser S TAT Tyr Y TGTCys Y T

T TTC Phe F TCC Ser S TAC Tyr Y TGCCys Y C

TTA Leu L TCA Ser S TAA Stop * TGA Stop *(U) A

TTGLeu L TCGSer S TAG Stop *(O) TGGTrp W G
g CTT Leu L CCT Pro P CAT His H CGTArg R T ;
3 c CTCLeu L CCCPro P CACHis H CGCArg R C ;
: CTA Leu L CCAPro P CAAGIn Q CGAArg R A o
= CTGLeu L CCGPro P CAGGIn Q CGGArg R G %
@ ATTIle 1 ACT Thr T AAT Asn N AGTSer S T 5
f A ATCIle I ACCThr T AAC Asn N AGCSer S C o
3 ATA Tle I ACAThr T AAALys K AGA Arg R A 2
= ATG Met M ACGThr T AAGLys K AGGArg R G g

GTT Val V GCT Ala A GAT Asp D GGTGly G T

G GTCVal V GCCAla A GACAsp D GGCGly G C

GTA Val V GCA Ala A GAAGIu E GGAGly G A

GTGVal V GCGAla A GAGGlu E GGGGly G G

Table 2.1: The standard genetic code. The table shows how triplets of nu-
cleic acid bases correspond to different amino acids. Besides the codon ATG
with always codes for methionine, alternatively TTG, CTG, ATT, ATC, ATA
and GTG can serve as initiation codons, in which case they are translated as
methionine rather than the amino acid indicated.

rare protein encoding genes. In the case of two rare amino acids the standard
genetic code is expanded and codons which are normally stop codons may
encode amino acids; Selenocysteine (U) is a rare amino acid which is encoded
by the stop codon TGA and similarly the amino acid pyrrolysine (O) is encoded
by the stop codon TAG. Other factors such as mRNA structure contributes to
translation of these stop codons as amino acids. Another exception is genes
with programmed frame shifts, where the translation may skip a few bases.

On each strand, genes can occur in three different reading frames. Each
reading frame begins with a different nucleotide of a triplet.

Genes in prokaryotes may overlap in the sense that the same stretch of DNA
may be part of more than one gene. Overlapping genes have been observed
in all transcriptional cases, i.e., co-directional (——), convergent (—+) and
divergent (+—) [147] (see table 2.2). The lengths of overlaps are usually
quite small — less than three bases, but longer overlaps have been observed as
well, and existing prokaryotic genome annotations include several much longer
overlaps, i.e., more than 100 bases. Many of the excessively long overlaps,
however, are thought to be misannotations [151].

2.2.4 Evolution

Organisms evolve through modifications of the genetic material which are ben-
eficial (or at least not overly detrimental), i.e., contributing to the survival or
proliferation of the organism. Genome mutations can occur due to errors in
the replication process or through exposure to radiation or chemicals. Such
mutations can be a point mutations where a base changes into an other base,
but can also be insertions or deletions of (even multiple) bases.

Unlike eukaryotes which primarily combine genetic material with close rel-
atives (through sexual reproduction), the acquisition of genetic material from
distant organisms — called lateral or horizontal transfers — play a major role
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Same strand, same reading frame overlapping gene pairs
A
Co-directional orientation (——) B—)B'
A>B;A =B
Same strand, different reading frame overlapping gene pairs
A A'
>
Co-directional orientation (——) B_—)B'
A< B;A <B
A A'
e
Co-directional orientation (embedded) (——) g ;B'
A>B;A <B
Sense-antisense overlapping gene pairs
A A'
convergent orientation (—+) B B'
A< B;A <B;B< A
A A'
—
divergent orientation (+—) B B'
B<A;B <A;A< B
—
divergent orientation (embedded) (+—) € B
B< A;A < B

Table 2.2: Different transcriptional cases for overlapping gene pairs. Note that
a gene may be part of more than one overlapping pair. A, A’, B and B’ indicate
gene ends — A and B correspond to the first nucleotide of the start codon of the
genes and similarly A’ and B’ correspond to last nucleotide of the stop codon.
The arrows indicate the direction of transcription of a gene, i.e., the strand
that the genes are located on.

in prokaryotic evolution [148|. Lateral gene transfer can happen through a
variety of different mechanisms, e.g., via plasmids or bacteriophages.
Prokaryotes may carry plasmids which are covalently closed circular double
stranded DNA molecules — a sort of mobile mini-chromosomes which may con-
tain thousands of base pairs, but are typically much smaller than a prokaryotic
chromosome. Plasmids do not encode genes necessary for translation and repli-
cation, but rely the on genes in the chromosome for these processes. Prokary-
otes can exchange genetic material through plasmids by a mechanism called
conjugation, where the plasmids pass through a pore established between two
prokaryotic cells. Plasmids may recombine with genetic material of the chromo-
some, thus enabling transfer of chromosome encoded genes between organisms.
Bacteriophages are viruses which attack bacteria and injects their genetic
material into the host chromosome. Their viral genome encode genes necessary
for its own replication outside the host genome®, but rely on the translation
mechanisms of the host for expression of its genes. When such viruses replicate

8This process is distinct from the replication process of the host.
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they may copy adjacent host genomic material into the viral genome which
is then injected when the virus attacks another host organism. This form of
lateral transfer is called transduction.

Genetic material can also be copied within a genome. For instance, it
may be beneficial for an organism to have multiple copies of a gene for which
a high level of expression is advantageous. The copying of genetic material
within a genome occur through the processes of lateral transfer and a range of
other mechanisms. An integron is a dynamic mechanism whereby cassettes of
genes are inserted in tandem at a special site mediated by an enzyme called an
integrase. Transposons are clusters of genes which are transferred in bulk and
reinserted mediated by an enzyme called a transposase.

Genes which exist in multiple copies within a genome of a single specie
are called paralogues. Genes which exist across species are called orthologues.
Homologues is a broader term which refer to both paralogues and orthologues.

2.2.4.1 Size of prokaryotic genomes

Prokaryotic genomes are small compared to the genomes of eukaryotes, ranging
from a few hundred thousand and up to ten million basepairs. The vast ma-
jority of the genome encode genes (typically around 85%) and there are little
non-functional DNA. The number of functional genes in prokaryotes correlates
with the size of their genomes [223].

Prokaryotes tend to shed the genes that they do not need. Having a small
genome can be advantageous for proliferation, since the replication process is
faster. Genes which do not confer an evolutionary advantage may mutate to
become dysfunctional, i.e., they are not translated or are quickly degraded after
translation. Such dysfunctional genes which represent an intermediate stage
before deletion are called pseudogenes. Comparisons between pseudogenes and
homologous functional genes reveal that prokaryotes have a mutational bias
which favor deletions over insertions [136].

2.2.5 RNA

RNA is very similar to DNA, but it is usually single-stranded and has a dif-
ferent kind of sugar backbone; RNA use ribose instead of deoxiribose as DNA.
Furthermore, in RNA Uracil (U) is used in place of Thymine (T).

RNA molecules have many diverse roles in biological processes, e.g., in the
form of messenger RNA (mRNA) it carries the genetic information from the
genome to be translated, in the form of transfer RNA (tRNA) it recognizes
codons and carries amino acids, and in the form of ribosomal RNA it catalyzes
the formation of a peptide bond between two amino acids.

Where the double-helical shape of DNA is very stable, RNA molecules can
take a rich variety of shapes by forming hydrogen bonds between bases in the
molecule. The functional shape of RNA molecules is essential to their function.
For instance, a tRNA is clover-shaped with an exposed anti-codon which can
bond with a particular codon. In the mRNA, the breaking of formed bonds
leads to translational stalling which can affect the shape of growing protein
and the termination sequence may attain a particular functional structure cat-
alyzing termination. Certain mRNA structures play a key role in programmed
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frameshifts and also in the alternative translation of the non-standard amino
acids Pyrrolysine and Selenocysteine.

The structure of an RNA molecule can be characterized in different lev-
els of detail; The primary structure refers to the sequence of bases, the sec-
ondary structure specify the hydrogen bonds between the bases, and the ter-
tiary structure specifies the three-dimensional structure in atomic coordinates
of the molecule.

2.3 Gene finding

Prokaryotic gene finding have been a motivating case for the application of
probabilistic programming in the LoSt project and it is a central theme in this
thesis. This section introduces the problem of gene finding and explores differ-
ent perspectives and different ways of defining and decomposing the problem.
It explores contemporary state-of-the-art techniques by examining some of the
most prevalent modern gene finders and the assumptions and techniques they
use.

A gene finder is a computational /statistical model which attempt to predict
(some of) the genes of a genome.

Gene finders exploit some underlying assumptions about what constitute
genes and assumptions about factors outside the sequence comprising the gene
that may affect the likelihood of a particular sequence being a gene or not.
These assumptions are reflected as constraints in the computational gene finder
model, and as result, these models may serve as formalized definitions of genes
with a probabilistic part which captures the uncertain aspects. Taking this
view, a gene finder may be seen as forming a hypothesis; It proposes a simplified
view of genes which can be evaluated with respect to accuracy in the prediction
of known genes.

A more pressing concern is that computational gene finders are necessary
for analyzing the vast amounts of sequence data being generated. Manual an-
notation and experimental verification of genes is expensive and computational
gene finding provides a cheaper (feasible) way of annotating this data. This is
feasible only because gene finders can be evaluated, so that qualified estimates
about their accuracy can be used to assess the quality of resulting annotations.
Conversely, the accuracy of a gene finder correlates with the probability that
predicted genes are real genes. This may guide biologists in their work in order
to minimize wasted lab effort spent on verifying genes.

State-of-the-art prokaryotic gene finders are very successful and mature,
and have made great progress in providing an accurate set of predictions (con-
versely, eukaryotic gene finders have limited accuracy). It has been stated that
prokaryotic gene finding is an almost solved problem. Such a statement is not
completely unjustified, since gene finders correctly predict the majority genes
in most prokaryotic genomes.

Still, accuracy depends a lot on the organism. Many short and unusual
genes elude modern gene finders. Furthermore, accuracy is difficult to as-
sess for genomes which have not been extensively studied and for which the
golden standard annotation consist largely of unverified predictions from other
gene finders. Hence, there is still room for improvements and computational
prokaryotic gene finding is still an important and active and important area of



2.3. GENE FINDING 41

research.

This dissertation include several approaches to gene finding, which aims
to further state-of-the-art. In chapter 6, we provide a method to deal with
overlapping genes. Chapter 9 explores a novel approach to combine different
signals in a gene finder. Chapter 13 demonstrates how the sequence of gene
reading frames may be used to improve the accuracy of prokaryotic gene finding.
Chapter 14 presents a gene finder for an usual type of genes which may include
the non-standard amino acid pyrrolysine.

2.3.1 Constraints and assumptions

This section will briefly discuss some of the main assumptions commonly used
in computational gene finding without going into details about specific gene
finders.

2.3.1.1 Signals used for gene finding

The way the problem of (prokaryotic) gene finding is traditionally stated is
roughly as a crisp classification problem, where some stretches of DNA are
classified as either protein coding or not [66]. Due to the requirements of the
translation process of genes, this classification problem can be restricted to
subsequences which start with a codon which can be translated as methionine
(a start codon) and ends with a stop codon. Such a sequence, if it is not
interrupted by stop codons, is called an Open Reading Frame (ORF).

More formally, an ORF is a sequence of DNA in the sense strand which can
be generated by the following grammar in BNF form:

(ORF) == (start) (not-stop)* (stop)
(start) == TTG |CTG | ATT | ATC | ATA | ATG | GTG
(stop) == TAA | TAG | TGA

(not-stop) == AAA|..|TTT //all codons except those in (stop)

The identification of prokaryotic genes may be decomposed into two distinct
problems:

1. Identification of ORFs which contain protein coding genes.
2. Identification of the correct start codon within an ORF.

Selection of the correct start codon tends to be the hardest of the two
problems. Current state-of-the-art gene finders achieve near perfect accuracy
for problem 1, but somewhat lower accuracy for problem 2.

A strong indicator and property of protein coding genes is the statistical
composition of nucleic acid sequences. The nucleic sequence composition is
markedly different in protein coding genes than it is the non-coding parts of
the genome. Genes tend to have a higher G/C content than non-coding regions
and since the stop codons have bias towards A/T, the probability of a stop
codon arising by chance is lower in high G/C content DNA sequences.

Statistically speaking, a long uninterrupted ORF becomes unlikely to occur
by chance and hence long ORFs are likely gene candidates. In early approaches
to gene finding it was noted that simply predicting very long ORFs (longer than
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400 — 500 bases) as genes is remarkably accurate (in particular with respect
to problem 1) [25]. This method is obviously incapable of predicting shorter
genes.

In most cases, the correct start codon is an ATG (in approximately 80
percent of genes?) which can encode only methionine and alternative start
codons occur less frequently.

The context of the ORF can also provide useful indications as to whether
it comprises a gene and for the selection of the start codon. Often, a ribosomal
binding site — most often the Shine-Dalgarno sequence AGGAGG'® — is present
6-7 bases upstream of the start codon of a gene. Similarly, a RNA transcrip-
tion termination signal, e.g., a Rho-independent terminator stem-loop, may be
found downstream a gene.

Furthermore, the expected extent and size of overlaps between genes can
often be used to eliminate candidate ORFs which significantly overlap with a
much more promising candidate.

Because of the massive amount of genomes being sequenced, it is often the
case that similar genes occur in different genomes. A predecessor gene may
have been present in a common ancestor and evolutionarily conserved or genes
may have been acquired horizontally. If a gene has been identified (and possible
verified) in one genome, the identified similar gene in the other genome is most
likely also a gene. Such homologues are usually identified by sequence align-
ment using high-performance heuristic alignment techniques such as BLAST[9].
Hence, conservation is a powerful signal which facilitates the detection a sig-
nificant amount of genes. Core genes — common genes which are necessary
for survival — are usually well-conserved among organisms. Genes which are
specialized for individual organisms, are more less likely to be conserved across
species. Since most of the core genes have been identified, even as more genomes
are sequenced, detection of new genes by conservation is subject to diminishing
returns.

2.3.2 Evaluation of gene finders

Gene finders classify stretches of the genome as either coding or non-coding!*.
They are then evaluated on their ability to correctly predict the coding parts
of the genome. This can be evaluated at both nucleotide and gene level'2. In
the case of the evaluation on the gene level we may consider correctness with
regard to the 3’ end or correctness with regards to both the 3" and 5’ end of
the gene.

Gene finders are usually evaluated with regard to the golden standard of
experimentally verified genes or a reference annotation which contain a set of
known genes (often only a subset of these are experimentally verified).

Alternatively, gene finders can be evaluated by comparing to predictions of
other gene finders. This may serve as a way to compare the different signals and

9Depending on the genome, e.g., in E.Coli it is 83 percent.

10Different organisms vary slightly in what compromises a Shine-Dalgarno sequence, e.g.,
in E.coli it is most frequently AGGAGGT.

HIn practice, we may have more fine grained classes, but usually only these two are
considered for evaluation purposes.

121n the case of Eukaryotic genes, evaluation is often with regard to exons (transcribed
parts), which in eukaryotic genes are separated by introns (parts which are not transcribed).
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hypotheses embodied in different gene finders. If the same genes are detected
by gene finders using distinct signals, then this may indicate that these signals
are redundant. If such signals leads to similar predictions, but otherwise have
nothing to do with each other, i.e., they are orthogonal, then this may serve
as substantial evidence to indicate that a signal is useful.

Unless the golden standard consists of experimentally verified genes, evalu-
ation is biased. If the predicted genes are again used for evaluating other gene
finders, then a systematic propagation of bias, i.e. ascertainment bias, may
occur.

This comparison between predicted genes and a golden standard (“reality”)
can be viewed in terms of a contingency table:

Reality
o coding non-coding
2 coding TP FP TP+ FP
-fa) non-coding FN TN FN+TN
E TP+ FN | TF+TN

True positives TP is the number of true positives (correct predictions with
label coding), FP is the number of false positives (incorrect predictions with
label coding), F'N is the number of false negatives (incorrect predictions with
label noncoding) and T'N is the number of true negatives (correct predictions
with label non-coding).

Results of gene finders are usually reported using sensitivity and specificity
measures. Both measures can be reported with regard to predicted bases, gene
3’ ends and genes 3'+5" ends.

We can derive sensitivity and specificity from the contingency table. Both
measures are relative frequencies which can be intuitively interpreted as prob-
abilities estimates of a models performance.

Sensitivity (SN):

TP

N=—""__
SN = TP+ FN

~ P(prediction(coding)|coding) (2.9)
Sensitivity can be seen as a completeness measure. Sensitivity is a relative
measure of the amount of classification instances correctly predicted as coding
out of the total number of classifications which should be predicted as coding.
Sensitivity is also sometimes referred to as recall in the context of natural
language processing and information retrieval [31, 131].
In binary classification problems specificity is traditionally defined [8] as,

S Piraditional = %. (2.10)
In the gene prediction literature, however, it is usually defined as,
Specificity (SP):
SP = _Ir P(coding|prediction(coding)) (2.11)
TP+ FP

In the context of this thesis, the latter definition of specificity may be assumed.
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Specificity is an exactness measure. It is the proportion of classification in-
stances correctly predicted as coding out of all instances predicted as coding.
In natural language processing and information retrieval the same measure is
usually referred to as precision.

Sensitivity and specificity are usually reported together, since the measures
are not very informative individually. For this reason, a combination of the
measures is also often used. One such combined measure is the correlation
coefficient,

(TP x TN)— (FN x FP)
V(TP + FN) x (TN + FP) x (TP + FP) x (TN + FN)

CcC = (2.12)

Unfortunately, the correlation coefficient has the problem that it is undefined
if one of the factors in the square root term of the denominator becomes zero.

In practice, a measure called Average Correlation (AC)!3 is often used in-
stead [26]:

_1( TP N TP N TN N TN
T 2P+ FN TP+FP TN+ FP TN+FN

AC )—1  (2.13)

These integrative accuracy measures, and others, are treated in more detail
in [26]. With regard to gene finder results it is almost always the case that
AC > CC and that AC is within 0.05 of CC 90% of the time [26].

Treating gene finding as a simple classification problem makes it straight-
forward to evaluate using the above measures. Reporting only the binary clas-
sification for each ORF is, however, usually a simplification which is subject to
information loss.

For gene finders using a single Viterbi decoding or other methods which
result in a set of predictions with no further ordering with regard to the prob-
ability of individual predictions, these measures are suitable. However, if the
method used reports the probability of each individual prediction, e.g., as is
usually the case with posterior decoding [61], there are more informative ways
of reporting accuracy.

The probabilities of individual predictions induce an ordering of predictions,
e.g., a ranking of predictions from most probable to least probable. Selecting
the top-n predictions from this ranking, impose a discrimination threshold
which is a function of n, and which give rise to a particular tradeoff between
sensitivity and specificity. By measuring sensitivity and specifity for each pos-
sible n, we can derive and plot a Receiver Operator Curve (ROC) [64]. An
example ROC curve is shown in figure 2.3. A ROC curve has a nice intuitive
interpretation — it can be seen as dividing a probability space. The area under
the curve (AUC) corresponds to the probability that the classifier will rank
a randomly chosen positive example higher than a randomly chosen negative
example.

In the lack of a golden standard it is more difficult to evaluate gene finders.
One possibility is to consider how well the model fits the training data. For
a probabilistic model trained using the maximum-likelihood principle, this is

13This measure is sometimes misleadingly described just as “accuracy”, perhaps due to
the ambiguous abbreviation.



2.3. GENE FINDING 45

Q |
=
«© _|
o
[0
ko)
[
© |
2 o
=
[}
Q
o
()
2
Ll
s
z
(%]
N
o
o |
o

T T T T T T
0.0 0.2 0.4 0.6 0.8 1.0

1-SP = False positive rate

Figure 2.3: Example Receiver Operator Curve. A set of predictions corre-
sponds to a point in the ROC space. Perfect prediction is achieved at the
point (0,1). The dotted line corresponds to random choice of classification —
predictions below this line are worse than random and predictions above the
line are better than random. The solid curve exemplifies (good) predictions at
various discrimination levels.

measured by the likelihood of the training data given the model and its param-
eters. Increased likelihood, however, can be due to overfitting and provides no
guarantee that the gene finder yield accurate predictions for anything but the
training data. To ensure a good balance between overfitting and generalization
capability a model selection criterion can be used. One such measure is the

Bayesian Information Criterion'4,

BIC = -2 x In(L) + k x In(n)

where L is the maximized likelihood, k is the number of model parameters and
n is the number training examples. BIC is expected to roughly correlate with
accuracy and can be used to choose the model with expected best accuracy
among alternative models.

14This criteria is provided for trained models in PRISM.
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2.3.3 Probabilistic methods for prokaryotic gene finding

This section reviews the techniques used by some of the most prevalent prokary-
otic gene finders. This includes the modeling techniques that they use, how
they estimate their probabilistic models and how they evaluate the results. In
this brief and non-exhaustive review we consider techniques which are related
to prokaryotic gene finding and may elucidate the relevant concepts.

An intrinsic, de novo or ab initio gene finder is a computational gene find-
ing method which is characterized by only considering the sequenced genome
as its input. Such gene finders rely only on data which is “available to” the
mechanisms within the organism. Hence, they constitute hypotheses about the
internal machinery of the organisms.

A gene finder which also relies on the genomes and/or annotations of other
organisms are called extrinsic or comparative.

Some gene finders rely only on contigs — consensus fragments of genomes
from sequencing, whereas most methods use whole chromosomes. A special case
is meta-genomic gene finders, which deal with contigs or reads from multiple
organisms simultaneously.

Some recent gene finders incorporate more experimental evidence sources,
such as expressed sequence tags [22] — a sort of complementary RNA primers
used to detect expressed mRNAs.

2.3.3.1 Preprocessing and postprocessing

While many gene finders employ a rigorous and statistically well-justified model
at their core, they usually also employ certain tricks of the trade to preprocess
the input data or post-process the results.

It is common to consider only ORFs that are larger than a particular size,
ranging from 60 bp - 200 bp. Most methods have difficulties with such short
ORFs (of which there are many) and the statistical significance of predictions
for short ORFs is low.

Post processing usually occur after the gene finder has decided on a set
of high-probability predictions. In particular, a pair of predictions may be
unlikely if the predictions overlap each other to a large extent.

2.3.3.2 Intrinsic methods

A survey of measures of coding potential was described in [66]. The main
conclusion from the paper was that oligomer statistics — frequencies of con-
secutive nucleotide patterns — is the most effective measure for determining
coding potential and that other considered measures are to a large degree re-
dundant.

Oligomer statistics can be reflected by Markov models. An example of a
Markov chain for DNA is shown in figure 2.4. A Markov chain defines the
probability P(S) of a sequence S = sy, ..., s,, which is decomposed as

P(S)=P(sp,...,81) = P(Sn|$n-1)P(sn—1|$n—2) ... P(s1)

by repeated application of the chain rule. In an n’th order Markov chain, the
probability depends on the n previous states.

The Genemark [138] gene finder was pioneering in the use of Markov models
in gene finding. In this gene finder, a “coding” Markov chain model is applied
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Figure 2.4: A Markov chain for DNA with the states for each base (circles) and
possible transitions between states are represented by arrows. Each transition
is associated with a probability.

for each reading frame and a reading frame agnostic non-coding Markov model
is also applied for the same sequence. These models are applied to calculate the
probability of sequences, given the respective model, in windows of a defined
size. A naive Bayes model is then applied to select the model which is more
probable for the sequence. This serves to classify each window as being coding
in a particular reading frame or as being non-coding.

Higher order Markov models can capture longer oligomer patterns, poten-
tially increasing the accuracy of their predictions. The higher the order of
the Markov chains, however, the more training data is necessary to reliable
estimate the transition probabilities. The Glimmer gene finder [57, 172] use
interpolated Markov models (IMMs) to deal with this problem. In this gene
finder, Markov models of different orders are interpolated to give a combined
transition probability PIMM (s|c;,) of a transition to a state s given different
order k-mers'® ¢, cr_1,...,c1, as defined by the equation,

PIYMM (sley) = Aew) x P(slex) + (1= Aex)) x PP (s]eg1).

The interpolation parameter A(cg) is a weight assigned the k-mer ¢, which
reflects the reliability of P(s|ck) in terms of the amount of training that was
used to estimate it.

Later developments include the use of Hidden Markov Models (HMMs)
[116, 117, 128, 123] which have been a large influence in the field. HMMs
provide for more elegant modeling and rather than explicitly using naive Bayes
inference to decide between several individual (Markov chain) models, such

15A k-mer is an oligomer of length k
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choices are embedded in HMMs using hidden states. A decoding algorithm is
used to select a sequence of hidden states for an “observed” input sequence. The
corresponding sequence of hidden states serves to classify each symbol in the
input sequence. The HMM is constrained by the allowed transitions between
states and it is in this way possible to ensure that the sequence of hidden states
is grammatically sound with respect to genes. For an introduction to HMMs
and variants, see chapter 4.

Different HMM designs calls for different decoding measures. The Viterbi
decoding strategy is well-suited for looping HMM designs which for instance
specify a grammar alternating between coding states and non-states. In “linear”
designs, posterior decoding — which is used to calculated the posterior proba-
bility of each state for each sequence position — is a more suitable choice. In
looping designs, posterior decoding may lead to an grammatically inconsistent
state sequence.

The ECOPARSE program [117] was pioneering in its use of Hidden Markov
Models for gene finding. It uses a looping design (see figure 2.5) and uses the
Viterbi algorithm for decoding. The gene finder was developed before the E.coli
genome was fully sequenced and used the Viterbi algorithm for decoding of each
available contig!6.

Easygene [123] is a prominent HMM-based prokaryotic gene finder which
uses posterior decoding. Easygene is built on a linear design (see figure 2.6) and
decoding is done using posterior decoding. One of the merits of Easygene over
other gene finders is its capability to reliably detect some shorter genes. Most
gene finder approaches exclude genes shorter than a certain size. Easygene
incorporates duration modeling the HMM design by applying three identical
codon models in series. In conjunction with posterior decoding, this allows
for more general length distributions than geometrical'”. Easygene explicitly
models the context near the two ends of a gene, since these may have more
distinct patterns [133]. It also explicitly models a possible ribosomal binding
site in front of a gene. Even with duration modeling, it is still difficult to
reliable predict short genes. To deal with this, Easygene provides a measure of
statistical significance for each predicted gene.

Common for most gene finder approaches is the assumption that protein
coding genes in a particular genome are characterized by a common codon
or nucleotide k-mer frequency pattern and that such a pattern may be used
to distinguish them from non-gene parts of the genome. While models based
on this assumption may successfully identify most genes, they ignore possible
differences in characteristics between genes of the genome. Horizontally trans-
ferred genes tend to have a different frequency pattern than host genes [133].
Genemark-Genesis [90] deals with the problem by creating a model for typi-
cal genes and one for atypical genes. Easygene models this by having three
branches of codons models and can hence reflect three distinct types of gene
frequency patterns. However, these approaches assumes common characteris-
tics among atypical genes. RescueNet [129] eliminates this assumption using
Self-Organizing Maps (SOMs) to automatically derive multiple coherent amino
acid frequency bias models. The RescueNet model, however, is based only on
simple amino acid frequency bias as opposed to the HMM based models which

16 A continuous DNA subsequence resulting from sequencing.
17The probability of staying in a state with a self-transition decays geometrically.
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) (222),... (1tt) intergenic  Jgagct

Figure 2.5: The ECOPARSE HMM model. Outgoing transition arrows are
labelled with the possible emission from each state. All states except the coding
state emits each a, g, ¢ or t. The coding state emit one of 61 possible codons
(i.e., excluding stop codouns).

also reflect sequential grammatical aspects of the sequence.

Overlapping genes can be problematic for gene prediction approaches. ECO-
PARSE provide an extension of the basic model, which probabilistically models
short overlaps between genes, but relies on heuristics for resolving longer over-
laps. Several gene finders, e.g., Genemark, ECOPARSE and RescueNet, use
heuristic rules for excluding predictions with long overlaps.

A recent tendency in prokaryotic gene finders, however, is to consider the
set of predictions in a genomic context, rather than merely predicting and
selecting ORFs individually. In Glimmer 3 [56] and Prodigal [99], a global
dynamic programming algorithm is responsible for selecting predictions in a
coherent way that respects distance and overlap constraints.

To construct training data, Prodigal implements a dynamical programming
algorithm, that selects a subset of preliminary predictions of genes (represented
by their containing ORFs) in the genome. Initially, Prodigal screens these ORFs
to identify G/C bias in different codon positions. Then G/C bias is used to
construct an initial score for Each ORF is given a preliminary score calculated
as a function of the relative codon position G/C bias and the ORF length.
In a pass of the DP algorithm, Prodigal connects a highest scoring sequence
of ORFs subject to constraints on overlaps between these ORFs. A maximal
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Figure 2.6: The Easygene HMM model. The number of bases emitted from
each state is indicated by the number after the colon. The i state models
intergenic non-coding sequence. The RB.S state models a possible ribosomal
binding site, start models a start codon, Astart models bases immediately
after the start codon, codon is a fourth-order gene codon model, bstop models
base immediately before the stop codon, stop models a stop codon and Astop
models bases immediately after a stop codon.
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overlap of 60 bp is allowed between ORFs on the same strand and 200 bp
overlap between two ORFs on opposite strands if the overlap is between the 3’
ends of the ORFs. No overlap is allowed between 5’ ends of genes on opposite
strands.

A very similar DP algorithm is used for prediction. The identified ORFs
from the first algorithm are used as training data for a second pass of the DP
algorithm where they use a linear combination of hexamer (k-mers of length
6, corresponding to two codons) scores, scores for start codon usage, scores for
detected ribosomal binding sites and a score for distance to to an upstream
gene. The scores are additionally tweaked to favor particularly long genes.
The overlap constraints applied in the first DP algorithm for construction of
training data are also applied in the prediction step.

2.3.3.3 Extrinsic techniques

The BLAST tool [9] is one the most commonly used tools in bioinformatics. It
is a tool which given a database of sequences (nucleotide or amino acid), finds
statistically significant sequence matches to a given (sequence) query, possibly
allowing for gaps and mutations.

A recent approach by Poptsova and Gogarten [156] applies BLAST to search
for orthologues to annotated genes and large number of missing genes in bac-
terial genome annotations.

The ORPHEUS gene finder [69] combines frequency pattern statistics with
evidence of known proteins. For each ORF, ORPHEUS translates it to a
corresponding amino acid sequence and uses database similarity search to find
known proteins which are significantly similar.

The CRITICA gene finder [13] computes a codon score for ORFs using
statistically significant matches to similar ORFs in the same and other genomes.
Inexact matches are scored higher than exact matches, which assures that
phylogentically broad conservation is given more weight and that, e.g., repeat
regions within the genome are given less weight. The conservation score is
combined with a hexamer frequency score.

BioDictionary [194] is a database of statistical oligomer patterns derived
from genes from different genomes. This database is used for gene finding by
matching patterns against an ORF and determining if the number of matches
is statistically significant.

2.3.4 Pipelines and combiners

Annotation pipelines are integrated tools with the purpose of assisting annota-
tion and curation of genomes. Gene finding can be seen as series of dependent
tasks — particularly for approaches which incorporate different types of data.
Training data must be gathered and the data may need to be preprocessed
and prepared before the probabilistic model can be trained and applied to
prediction on relevant part of the data. Similarly a range of post-processing
steps may be applied, e.g., overlap resolution, start-site correction [209, 150],
accuracy calculation or similar. Often, these steps are delegated to several ded-
icated reusable tools. The annotation pipeline is the glue that tie such tasks
together. A variety of dedicated tools and languages have been proposed for
this purpose, e.g, [171, 202, 95, 62, 158]. The annotation pipeline may also



52 CHAPTER 2. BACKGROUND

include several gene finders to provide better coverage (sensitivity). Many an-
notation pipelines include a visual component — often in the form of a “track
viewer” which provide simultaneous overview of different sources evidence, e.g.,
[201, 195].

A form of pipeline which does not just aggregate predictions and other
evidence sources, but combines them to form more accurate predictions is
called a combiner. Combiners are very successful in FEukaryotic gene find-
ing [6, 152, 27, 69, 224, 192, 47, 7, 5, 126], but have found limited application
in the domain of prokaryotic gene finding, e.g., [231] — perhaps because of the
limited gain due to the high accuracy of prokaryotic gene finders as opposed
the imprecision of eukaryotic gene finders. Many of the techniques used in
combiners for eukaryotic genomes could in theory also be directly applied to
prokaryotic genomes, but would probably be less accurate than a single gene
finder since they do not reflect the peculiar properties in prokaryotic genomes
(e.g., overlapping genes).

2.3.4.1 Training data

There are various methods to bootstrap gene finders with training data which
may also be obtained in a variety of ways.

One way is simply to use the annotated genes of the genome and train the
gene prediction algorithm on those. In newly sequenced genomes, however, no
annotated genes are available.

In practice, this problem is alleviated by using training data obtained from
existing annotations of a phylogenetically related genome. Even so, this solu-
tion may introduce a bias towards the existing set of genes which may have
be obtained primarily using other computational gene prediction methods. To
alleviate these problems, some approaches use only genes which are annotated
to have a known function and avoids using genes marked as putative or hypo-
thetical in training data. For model organisms such as F. coli, a database with
experimentally verified genes [108] exists and training only on those is also a
possibility for reducing bias introduced in reference annotations by other gene
finders.

Self-training has been used to deal with the problem of sparse training data,
e.g, the gene finder Genemark$S [18] iteratively trains on its own predictions
(which is demonstrated to yield improved accuracy).

To completely avoid dependency on existing annotations, several approaches
use the unusually long open reading frames — which are statistically likely to
contain real genes — as training data. The approach works reasonably well
in genomes with low G/C content, whereas long ORFs become more likely to
occur by chance in genomes with high G/C content. Some approaches such as
[99] attempts to adjust for this.

Easygene uses long conserved ORFs found using database similarity search
as training data. Its underlying model, however, still constitutes a hypothesis,
since conservation is only used in the training phase, so I still consider it an
intrinsic gene finder.



Chapter 3

Overview of Contributions

Each of the following chapters correspond to a particular published or draft
paper and the title of the chapter is the same as the title of the paper. A
few papers occur in a slightly extended form of the published versions. The
aim of this chapter is to provide an overview of the contributions of the papers
and to illustrate how these papers fit into the big picture and relate to the
research goal. The contributions are divided into to one or more of the following
categories:

Abstractions provide a higher level language for working with some sort of
problem. The abstractions presented build on the general framework of prob-
abilistic logic programming and extends it toward more specific applications.

Optimizations deals with the complexity of biological sequence analysis by
enhancing the underlying algorithms or systems. The optimizations included
in this thesis pertain mostly to tabling, a feature which enables the dynamic
programming algorithms that is used for inference with probabilistic models.

Applications are tools which can be applied to biological sequence analysis
for some particular purpose.

3.1 Abstractions

Several new abstractions are introduced in this thesis. These are summarized
in this section.

3.1.1 A Zoo of Hidden Markov Models

Hidden Markov Models are ubiquitous in biological sequence analysis and a
variety of different kinds have emerged. In chapter 4 we suggest a unified
characterization of various types of Hidden Markov Models using the generic,
probabilistic-logic framework PRISM and its generic inference methods. This
may promote experiments with new variants of HMMs. Such variants may even
involve context dependencies that traditionally are considered beyond reach of
HMMs.

33
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A variety of Hidden Markov Models and related models are introduced and
details of their implementation in PRISM is described.

The chapter may serve as a starting point to learn about probabilistic se-
quence analysis with PRISM. It is a self-contained introduction to Hidden
Markov Models and the PRISM programming language, although it does as-
sume familiarity with Prolog.

3.1.2 Probabilistic extended regular expressions

Chapter 8 introduces the formalism, Probabilistic extended regular expressions.
Regular expressions is a familiar and widely used formalism which is integrated
in many modern programming languages. Contemporary versions of regular
expressions are typically extended variants whose expressive power goes beyond
regular languages.

Probabilistic extended regular expressions combine extended regular ex-
pressions and probabilistic models. This introduces the possibility to learn the
affinity for strings and matches from examples and to assign probabilities to
alternative ways of matching a string. The procedural control semantics are
replaced by a probabilistic semantics, where the possible matches are ranked
by their probability and the most probable match is the one returned.

To deal with cases where the expressive power of extended regular expres-
sions is insufficient, we extend the syntax to integrate external functions, which
may be deterministic or probabilistic. It is demonstrated how such exten-
sions can support context-free features and approximate matching of noisy
data which may contain insertions, deletions and mutations.

As an abstraction, probabilistic extended regular expressions provide a fa-
miliar way to express string matching problems, while at the same time utilizing
the power of probabilistic models. This could appeal to programmers, even if
they have limited knowledge about probabilistic models or if they are not inter-
ested in the details of an underlying probabilistic model. It also simplifies the
control logic of traditional extended regular expressions, which is undoubtedly
a complex issue that can lead to unintended behavior if the programmer is not
careful. The probabilistic variant is more declarative in the sense that the user
may disregard issues such as greedy or lazy control — the probabilistic seman-
tics cover cases entailed by both forms of control logic. Another advantage
is that the formalism is that less rigorous regular expressions can be made to
match what the user intends, if he can provide sufficient training examples to
accompany it. This may be useful for instance in cases where the user cannot
anticipate all pattern variations in advance.

The formalism is not as expressive (in terms of languages that can me mod-
eled) as, e.g., stochastic definite clause grammars [88], but provides a simple
language to express small grammars which are nevertheless capable of model-
ing a wide range of phenomena. While it can be used for limited parsing, it is
primarily intended for more adhoc pattern matching.

3.1.3 Constrained Hidden Markov Models

Chapter 5 describes constrained Hidden Markov Models, which is an extension
of Hidden Markov Models with side-constraints. The chapter is an extended
version of [41] which includes an example from the preceding workshop paper
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[42]. Tt is demonstrated how side-constraints can simplify modeling and lead to
improved performance for certain applications. This is exemplified this using
a constraints on a pair HMM for alignment of sequences. Such pair HMMs
are widely used for alignment of biological sequences. The side-constraints
are added through a CLP(fd)-like language which restricts the allowed state
sequence and emission sequence. The language allows the expression of well-
known global constraints such as cardinality and all_different. The con-
straint model considers each time step as variable whose domain is the possible
states of the HMM. By adding constraints, the domains of these variables —
and hence the state sequence — are restricted. Constrained Hidden Markov
Models are implemented as a PRISM-based framework. A constraint store
is maintained such that it corresponds to (partial) derivations of the PRISM
programs. When the PRISM derivations are extended, the constraint store is
updated. If the extension leaves the constraint store inconsistent, the PRISM
derivation is forced to fail. Constrained Hidden Markov Models may also be
seen as an optimization of Hidden Markov Models. The restriction of possible
paths combined with efficient tabling mechanisms may lead to more efficient
inference.

In chapter 6 we outline a similar way of adding constraints to Markov
chains, but where constraints are instead expressed using a restricted form of
Constraint Handling Rules (CHR).

As a different, but related approach, in chapter 7 we consider the expression
of the common Viterbi inference algorithm for HMMs in CHR.

3.1.4 Bayesian Annotation Networks and BANpipe

In chapter 9, we introduce Bayesian Annotation Networks (BANs). Bayesian
Annotation Networks is a modular methodology, in which complex probabilistic-
logic models are defined in terms of separate sub-models, each representing a
particular aspect (or “signal”) of the input data to be analyzed. The dependen-
cies among the results of analyses performed by these sub-models are described
in terms of edges in a Bayesian network. This allows for an implementation
based on incremental application of standard methods for prediction and train-
ing, one sub-model at a time.

While Bayesian Annotation Networks is an abstraction which allows de-
composition of complex models, the proposed inference algorithms for BANs
can be viewed as optimizations. The rationale for decomposition and the use
of the (approximative) inference algorithms is that inference with a joint model
is infeasible.

Chapter 10 introduces BANpipe — a logic-based pipeline scripting language
designed to facilitate complex compositions time consuming analyses. Al-
though it is designed to support Bayesian Annotation Networks, it is a general
pipeline programming language.

The language supports complex pipelines of Prolog programs, PRISM mod-
els and other types of programs through rules which specify dependencies be-
tween computations. While existing pipeline scripting languages are not de-
signed for the integration of Prolog and PRISM programs, BANpipe provides
for a smooth integration of such programs at the language level.

BANDpipe rules implicitly express dependencies between symbolically rep-
resented files which are automatically mapped to the underlying filesystem.
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The symbolic filenames may include logic variables which enables advanced
control mechanisms, i.e., recursion, leading to compactly expressed pipelines.
The declarative semantics of the language facilitates goal directed execution,
parallel execution, change propagation and type checking.

The applications described in chapter 9, 13 and 14 were implemented using
early versions of BANpipe.

3.2 Optimizations

Dealing with biological sequence data requires efficient algorithms. Such al-
gorithms are usually based on dynamic programming which exploits common
problem sub-structure to reduce complexity to polynomial rather than expo-
nential. Tabling of structured data is important to support dynamic program-
ming in logic programs. In particular, the algorithms which underpin proba-
bilistic inference in PRISM are based on tabling. The earlier tabling system in
B-Prolog and PRISM did not handle structured data in goals efficiently and
as result the problems that could be efficiently dealt with in the framework of
PRISM was limited.

Early on in the LoSt project, Christiansen and Gallagher [40] deal with one
such problem related tabling of annotation arguments. They show that these
arguments do not affect control flow and that they can be eliminated during
inference and then reconstructed afterwards. They also demonstrate how these
arguments can be identified by means of program slicing and implement a
program transformation that automatically handles argument elimination and
reconstruction. This significantly reduces the running time of PRISM programs
with such arguments.

Even with this optimization, scalability in PRISM is still an issue. It is com-
mon to introduce constraints in arguments. These affect the control flow, but
only in a limited way, i.e., they may lead to failure. Tabling of such arguments,
however, leads to significantly decreased efficiency. Tabling of arguments which
contain structured data is also inefficient. Since the underlying tabling system
does not allow any sharing of such arguments, multiple copies of the arguments
are tabled during execution of PRISM programs leading to increased time and
space complexity due to argument copying.

To deal with these problems, an approach for (avoiding) tabling of con-
straint stores and two approaches for efficient tabling of structured data have
been devised [86, 227], included as chapter 5, chapter 11 and chapter 12, re-
spectively.

3.2.1 Tabling of constraint stores

In the context of constrained Hidden Markov Models, tabling of a constraints as
arguments can significantly decrease efficiency. For such arguments, generalized
as constraint stores, we provide a mechanism to allow for incremental constraint
checking whilst avoiding tabling of the constraint store (see chapter 5). This
leads to huge performance gains for certain types of constraints. The approach
is, however, only sound for certain types of constraints and in chapter 6 a
mechanism for pruning tabled constraint stores is applied instead.
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3.2.2 Efficient tabling of structured data

In chapter 11, we propose simple program transformation which uses an index-
ing of structured data to allow efficient tabling of structured data.

The transformation results in O(1) time and space complexity for table
lookups for programs with arbitrarily large ground structured data as input
arguments. A term is represented as a set of facts, each representing a sub-
term which is referenced by a unique integer serving as an abstract pointer.
Matching related to tabling is done solely by comparison of such pointers, in-
dependently of the underlying system. The transformation is not specific to
PRISM programs, but applies to any Prolog system with tabling.

Benchmarks demonstrate significant speedups of the transformation for all
major Prolog systems with tabling and also specifically for PRISM.

The transformation has some limitations, though:

e It uses dynamically asserted facts to achieve constant time lookups - this
incurs a considerable constant time overhead.

e It does not allow sharing of tables between different calls.

The paper advocates that similar techniques are integrated directly with
underlying tabling systems, where it can be implemented at a lower level where
machine address pointers are available.

In a collaboration with Neng-Fa Zhou — the author of B-Prolog — tech-
niques to ensure efficient tabling of structured data was later implemented
directly in the tabling system of B-Prolog.

In chapter 12 we apply enhanced hash-consing to improve tabling of struc-
tured data in BProlog. While hash-consing can reduce the space consumption
when sharing is effective, it does not change the time complexity. We enhance
hash-consing with two techniques, called input sharing and hash code memo-
ization, for reducing the time complexity by avoiding computing hash codes for
certain terms. The improved system is able to eliminate the extra linear factor
in the old system for processing sequences, thus significantly enhancing the
scalability of applications such as language parsing and bio-sequence analysis
applications.

A comparison with trie based tabling systems reveals that the hash-consing
technique is a more attractive method for most sequence analysis programs.
Generally speaking, a trie is suitable for sharing prefixes and hash-consing
is suitable for sharing suffixes of sequences. Although it is possible to find
programs that make prefix sharing arbitrarily better than suffix sharing, it is
more common for subgoals of recursive programs to share suffixes than prefixes.

The method is also compared with effects of the program transformation
in chapter 11 and is shown to achieve comparable or better results. Unlike
the transformation approach, the hash-consing approach fully exploits data
sharing. The improvements of the technique is verified using experimental
results.
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3.3 Applications

3.3.1 Models of repeats in DNA

Finding repeats is an important task in biological sequences analysis. There
are countless variations of the problem depending on the type of repeats, the
distance between repeats and any combination of such constraints.

Repeats may occur, e.g. through mutational events and can have impor-
tant functions such as serving as a defense mechanism against invading vira.
Oppositely, repeats may also be of a malicious kind which causes diseases in
the host organism. A particular form of repeats known as CRISPRs, which
are regions of bacterial or archaeaic DNA with short direct repeats, comprised
of repeat elements of 24-28 basepairs and interleaved by spacers of around 30
basepairs. The repeat element itself consist of an inverted repeat, i.e., a palin-
dromic structure. The function of CRISPRs is to remember past exposure to
exogenous elements such as phages; A protein (CAS) intercepting viral DNA
creates a novel spacer and inserts it into to the genome at a CRISPR locus.
Once this CRISPR is transcribed as RNA it interacts with proteins which
target and inactivate the viral DNA.

In chapter 8 we model simple repeats and CRISPRs using a probabilistic
variant of extended regular expressions. By training on existing CRISPRs,
a probabilistic extended regular expression model is shown to be capable of
predicting repeats which correspond to those indicated by minimal free energy
models.

3.3.2 Integration of signals in an experimental prokaryotic
gene finder

In chapter 9 we introduce a gene finder for prokaryotes to demonstrate the
principle of Bayesian Annotation Networks. Different gene finder architectures
and combinations of signals are evaluated. The signals considered are

e a Hidden Markov Model which reflects preferential codon usage in genes,
e a model which incorporates length modeling of genes,

e a conservation model which reflects conservation of genes in related or-
ganisms.

These different models are combined in various topologies and evaluated by
first training on a random fraction of the genes in F. Coli and then predicting
other genes in the E. Coli genome. Results are assessed in a systematic manner,
which allows the evaluation of the impact of the addition of individual signals.

The evaluated gene finders should be regarded as experimental, as they
are merely meant to illustrate and evaluate the method of Bayesian Annota-
tion Networks. The obtained results are not on par with state-of-the-art gene
finders. The models themselves incorporate useful signals, but it turns out
to be difficult to utilize these fully in a combined model using the Bayesian
Annotation Network principle.

The gene finder components are implemented as modules in an precursor
of BANpipe (chapter 10).
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3.3.3 Constraints and Global Optimization for Gene
Prediction Overlap Resolution

In this paper, we apply constraints and global optimization to the problem of
restricting overlapping of gene predictions for prokaryotic genomes. We inves-
tigate existing heuristic methods and show how they may be expressed using
Constraint Handling Rules. Furthermore, we integrate existing methods in a
global optimization procedure expressed as probabilistic model in the PRISM
language. The approach yields an optimal (highest scoring) subset of pre-
dictions that satisfy the constraints. Experimental results indicate accuracy
comparable to existing heuristic approaches.

3.3.4 A Probabilistic Genome-Wide Reading Frame
Sequence Model

In chapter 13 we introduce a probabilistic model, which reflect the sequential
composition of reading frames of genes in a genome. A reading frame sequence
bias is a general signal that can incorporate gene strand bias, bias due to
operonic structures and other potential effects yielding non-random sequence
composition. We believe that this is a novel signal to be used in gene finding.

The model is a kind of “delete” HMM (our term) which is used to prune
predictions which exhibit unlikely reading frames according to observed reading
frame bias in a genome. The predictions are produced by existing state-of-the-
art gene finders and ideally, pruned predictions are the false positives of the
gene finders.

We demonstrate that our pruning approach can lead to improved specificity
with minimal impact to sensitivity. The improvement in accuracy is robust to
low quality in the quality of training data and the method works with different
underlying gene finders. The reading frame sequence signal is also robust across
species — even when the model is trained on distant genomes, improvements in
accuracy are achieved.

3.3.5 A gene finder for pyrrolysine incorporating genes

Pyrrolysine is a rare amino acid known as the 22nd amino acid. It is encoded by
a codon which is usually stop codon. The mechanisms leading to the translation
of stop codons as pyrrolysine are largely unknown.

In chapter 14, we propose an informative method for prediction of pyrroly-
sine incorporating genes in genomes of bacteria and archaea. Our method clus-
ters open reading frames with possibly pyrrolysine encoding codons based on
sequence similarity and rank these clusters according to several features which
may influence pyrrolysine translation. The ranking effects of different features
are assessed and we propose a weighted combination of these features which
best explains the currently known pyrrolysine incorporating genes. From the
weighted ranking, we identify a number of potentially pyrrolysine incorporating
genes.

Furthermore, we investigate possible factors driving pyrrolysine translation.
In particular, the effect of structural conservation is explored. By predicting
structures of existing pyrrolysine incorporating genes and by clustering them
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with regard to the similarity of possible PYLIS structures, we assess the rele-
vance of structure with regard to pyrrolysine translation.

3.4 How chapters of the dissertation contribute to the
research goal

The following details how the paper chapters included in this thesis contribute
to the research goal.

Chapter 4: The zoo of Hidden Markov models demonstrates the expres-
siveness of PRISM and the feasibility of expressing various types of Hidden
Markov Models which are commonly used in biological sequence analysis. It
also touches upon possible ways of integrating constraints, e.g., copying sub-
strings in a pseudo-knot HMM.

Chapter 5: Constrained Hidden Markov models demonstrate that extend-
ing Hidden Markov Models with side-constraints can be useful as a means to
express constraints from the domain of biology, e.g., the maximal extent of
insertion/deletion in pairwise alignment. All the models in the paper are from
the domain biological sequence analysis. Furthermore, it is demonstrated that
the addition of such constraints make otherwise time-consuming inferences fea-
sible.

From this perspective, the paper addresses all of my three research ques-
tions. It demonstrates the use of probabilistic logic programming to create
models for biological sequence analysis, it introduces a language for constraints
in these models and finally it shows that the introduction of constraints can
be a way to deal with the limitation of inefficient inference with these mod-
els. This is made possible by introducing an optimization of probabilistic logic
programming which avoids tabling of constraint stores.

Chapter 6: This paper demonstrates the combination of probabilistic logic
programming extended with constraints expressed using Constraint Handling
Rules. This is used to express a model which is extended with constraints about
overlapping genes. This model is used to find a optimal (highest-scoring) set
of gene finder predictions with respect to the expressed constraints. It hence
contributes to my research goal both by demonstrating of the feasibility of
using probabilistic logic programming for biological sequence analysis and by
making a case for the introduction of (biological) constraints in such models.
It also contains an optimization to prune a (tabled) constraint store in order
to deal with the limitation of infeasible inference.

Chapter 7: This paper makes a case for expressing Hidden Markov models
using Constraint Handling Rules. The paper demonstrates an intuitive Viterbi-
like algorithm for HMMs written in CHR and develops optimizations necessary
for its efficient execution. The paper exposes a relation between constraint logic
programming and probabilistic logic programming. It is a first step towards
demonstrating that constraints may form the core of probabilistic logic models
and related inference algorithms. It is the only paper in the thesis which is not
based on the PRISM system.



3.4. CONTRIBUTIONS OF PAPERS TO RESEARCH GOAL 61

Chapter 8: Probabilistic extended regular expressions is an abstraction which
allow the modeling of certain types of grammatical constraints. These con-
straints are demonstrated to be useful in the modeling of different types of
repeats in biological sequences.

Chapter 9: Bayesian Annotation Networks are used to deal with a central
limitation — the infeasibility of inference (both training and prediction) — of
complex biological sequence analysis. This is done decomposing the analysis
task into separate models for individual aspects of the sequence and combining
the results from these in a structured way. The resulting Bayesian Annotation
Network model is an approximation of a hypothetical joint model, but achieves
reasonable results as demonstrated on the gene finding task.

Chapter 10: BANpipe is a pipeline scripting language design to support the
Bayesian Annotation Network paradigm. It contributes to the goal of making
probabilistic logic programming more usable for biological sequence analysis
in several ways. First, it provides a means to support bioinformatics work-
flows with probabilistic logic programming components. Second, it deals with
limitations due time-consuming analyses by exploiting to the notion of con-
ditional independence in Bayesian Annotation Networks to provide automatic
parallelization of execution when it is thus possible.

Chapter 11: This paper deals with the problem of tabling structured data.
This are central to to efficient inference of probabilistic logic programming and
the problem leads to non-optimal time and space complexity of inference in
the PRISM system (among others). A program transformation is developed
to deal with the problem. The result is constant complexity of table lookups.
The paper contributes to the research goal by dealing with a central limitation
of probabilistic logic programming.

Chapter 12: In this paper, the problem of tabling structured data is dealt
with in an low-level implementation in the tabling system of B-Prolog. An
new technique called Enhanced Hash-Consing is used for the optimization.
This technique does not only guarantee constant complexity, but also enables
structure sharing in tabled goals. As the previous chapter, this contributes
to the research goal by addressing a central limitation of probabilistic logic
programming.

Chapter 13: This chapter introduces a probabilistic model which demon-
strates that there is a non-random signal in the sequence of reading frames of
genes which can be exploited in gene finding. It contributes to the research
goal by demonstrating an application probabilistic logic programming which
manage to discover new biological knowledge.

Chapter 14: The chapter demonstrates an application of probabilistic logic
programming to disseminate how various features may contribute to the trans-
lation of pyrrolysine-incorporating genes. Furthermore, this dissemination is
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used to build a gene finder pipeline that is used to predict novel pyrrolysine-
incorporating genes. It contributes to the research question, by the demon-
strating the usefulness of probabilistic logic programming to a real biological
problem.

3.5 My contribution to papers in the dissertation

This section more specifically outlines my contributions to the articles included
in this thesis.

Chapter 4: Taming the Zoo of Discrete HMM Subspecies and Some
of Their Relatives This work was inspired by several activities in the group.
I drafted only a few sections of the paper, but participated in revising and
proofreading the manuscript.

Chapter 5: Inference with Constrained Hidden Markov Models in
PRISM I wrote the implementation, performed the experiments and drafted
the sections on these topics. I participated in devising the constraint model and
the more theoretical aspects of the paper, but these contributions are mainly
due to my coauthors.

Chapter 6: Constraints and Global Optimization for Gene Predic-
tion Overlap Resolution 1 was solely responsible for this article. Much of
the inspiration for the problem and motivating the approach, however, came
from discussions in the LoSt group. The approach draws inspiration from Con-
strained Hidden Markov Models.

Chapter 7: The Viterbi Algorithm expressed in Constraint Handling
Rules Henning Christiansen came up with the idea, wrote the implementa-
tion and the initial draft of the manuscript. I participated in discussions and
revisions of the manuscript.

Chapter 8: Modeling repeats in DNA using Extended Probabilis-
tic Regular Expressions I implemented the system, performed the experi-
ments and drafted the paper, which was revised in cooperation with my coau-
thor.

Chapter 9: Bayesian Annotation Networks for Complex Sequence
Analysis I am responsible for a large part of the implementation of the sys-
tem and the experiments. I participated in discussions and in the writing of
the manuscript.

Chapter 10: A Declarative Pipeline Language for Big Data Analysis
I am the principal designer the language and is responsible for its implemen-
tation. I drafted the initial manuscript, which was significantly revised in
cooperation with my coauthors to in order to cover the formal semantics.
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Chapter 11: Efficient Tabling of Structured Data using Indexing
and Program Transformation I conceived the idea and implemented the
program transformation and experiments described in the paper. I wrote the
first draft of the paper, which was revised in cooperation with my coauthor.

Chapter 12: Efficient Tabling of Structured Data with Enhanced
Hash-Consing The idea developed through discussions with my coauthor
at ICLP 2011 and PADL 2012. My coauthor wrote the implementation and
wrote the first draft of the paper. I ran the benchmarks and drafted a first
version of the corresponding section. I participated in the proof-reading of the
manuscript.

Chapter 13: A Probabilistic Genome-Wide Gene Reading Frame
Sequence Model I implemented major parts of the system. Experiments
and manuscript writing was done in cooperation and with equal contributions
from my coauthor.

Chapter 14: Effects of using Coding Potential, Sequence Conserva-
tion and mRNA Structure Conservation for Predicting Pyrrolysine
Containing Genes 1 designed the pipeline in cooperation with my coau-
thors. I wrote the implementation of the pipeline, ran the most of experi-
ments and actively participated in the data analysis and in the writing of the
manuscript.
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Abstract

Hidden Markov Models, or HMMs, are a family of probabilistic models used
for describing and analyzing sequential phenomena such as written and spoken
text, biological sequences and sensor data from monitoring of hospital patients
and industrial plants. An inherent characteristic of all HMM subspecies is
their control by some sort of probabilistic, finite state machine, but which may
differ in the detailed structure and specific sorts of conditional probabilities.
In the literature, however, the different HMM subspecies tend to be described
as separate kingdoms with their entrails and inference methods defined from
scratch in each particular case. Here we suggest a unified characterization using
a generic, probabilistic-logic framework and generic inference methods, which
also promote experiments with new hybrids and mutations. This may even
involve context dependencies that traditionally are considered beyond reach of
HMMs.

4.1 Introduction

Discrete! Hidden Markov Models (HMMs) have become a very popular tool
used for the modeling and analysis of a variety of sequential phenomena, e.g.,
biological sequence data, shallow text analysis and speech recognition; see,
e.g., [61, 104] for overview and background. A HMM is a probabilistic finite
state machine that produces sequences of symbols from some finite alphabet.

1We ignore continuous HMMSs completely as they do not fit into the probabilistic-logic
framework that we rely on in this paper; see, e.g., [159] for a definition.

65
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In a typical application, the state machine is intended as a (simplified)
reconstruction of some sort of system, whose internal details typically cannot
be inspected, and the sequence of emission symbols represents the observable
behaviour of that system. For DNA analysis, for example, we may consider
an actual genome sequence as being produced by an informed typist who, in a
probabilistic way, decides when to enter states that corresponds to typing, say
promoter sub-sequences, operons, genes etc., or intergenic subsequences whose
contents is debated.

One of the advantages of HMMs is that analysis of a sequence can take
place in linear time as a function of the sequence length. The price, however, is
a lack of sophistication, as the underlying sequence languages are regular [34].
Basically, the only memory available at a given time in the run of a state ma-
chine is knowledge about the current state; in its simplest form, a HMM has
a probability table for each state to govern transition to the next state and a
table for the emission. Subspecies of HMMs may differ by having the probabil-
ities conditioned by one or more previously passed states and-or emissions; in
this case we talk about higher-order HMMs. Other distinctive features can be
different ways of structuring the state machine, e.g., by product or hierarchical
structures of separate machines and other ways that are considered below.

The following three ways of reasoning with HMMs are essential for practical
applications:

e Analysis of a sequence S, also called prediction, means to identify the
most probable path of states that the machine may pass through in order
to produce S; prediction is typically made using some adaptation of the
Viterbi algorithm [218], which is a dynamic programming algorithm that
reads the sequence symbol by symbol and keeps track of one best path up
to each possible state. Its time complexity is known to be O(n b?) where
n is the length of the sequence and b the number of machine states.

e The probabilities which, thus, determine which path is preferred, can
be set manually but more interestingly produced by training from known
sequences using machine learning techniques, e.g., the EM algorithm [58],
that we shall not describe further.

e Finally, sampling is a process of using the HMM to produce sequences
that are representative for the distribution defined by the HMM.

In the present paper, we propose a uniform treatment of different subspecies
of discrete HMMSs, showing how they can be defined in very concise ways using
state-of-the-art probabilistic-logic programming as represented by the PRISM
system [179, 178]. In addition, we obtain for free, implementations of predic-
tion, training, and sampling, relying on PRISM’s generic built-in facilities. We
will also show examples of models that go beyond what can be considered as
HMMs in a strict sense, such as probabilistic context-free grammars and defi-
nite clause grammars as well as context-sensitive extensions to HMMs, can be
treated in similar ways. Our reasons for writing this paper can be summarized
as follows.

e It can be a bit of a nuisance trying to get an overview of the literature in
the field, as there seems to be a trend that each paper defines from scratch
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its own probability calculations, adaptations of Viterbi and learning al-
gorithms, and implementation principles — and it is left to the reader to
figure out that all these anyhow are instances of a common pattern. We
hope that the present exposition may contribute to a better overview.

e We want to relieve the researcher who wants to apply, design or exper-
iment with alternative sequential models from wasting valuable time on
tiresome programming in imperative languages and on learning the id-
iosyncrasies of different, specialized software, anyhow doing more or less
the same thing.

e We want to emphasize the advantages of using probabilistic-logic pro-
gramming in teaching, as a uniform theoretical treatment and implemen-
tation framework for these inherently related models.

As an example of how this unification can be exploited, it is fairly straight-
forward to set up a testbed for comparing how well different models perform
with respect to precision and recall for the same collections of training and
validation as done, e.g., by [137].

We should emphasize that the principle of implementing plain HMMs in
PRISM is not our invention but has been used as an example, e.g., in the
PRISM User’s manual [178]. Our formulation below may be a bit more elegant
for the plain HMM case, as this has been a particular goal for us, and most of
the variations that we unfold have not been investigated systematically before
in PRISM.

We expect a basic knowledge of probability theory and elementary Prolog
programming. For reasons of space, we do give all details of all our models,
but only highlight the essential fragments; the website [37] lists all models in
full text and explains how they can be executed efficiently.

Below, in section 4.2, we give as background a standard definition of HMMs
and their probabilities. Section 4.3 provides a compact introduction to PRISM
and shows how a plain HMM can be defined in a very concise way together
with minor extensions with silent states and duration. The following sections
compose a stroll through the HMM Zoo Garden, showing different subspecies
properly kept in order by definitions in PRISM; sec. 4.4 shows how transitions
and emissions may be conditioned by events in the past, so-called higher-order
HMMs; sec. 4.5 shows HMMs that concern several sequences at a time, e.g.,
for alignment, and different ways that multiple HMMs can form symbioses;
sec. 4.6 goes a step further showing how context-dependencies beyond regular
and even context-free languages can be characterized as direct extensions of
plain HMMs. Finally, section 4.7 mentions other sequence models that can
be described in PRISM, but not treated in details here, such as probabilistic
versions of context-free and definite clause grammars; sec. 4.8 mentions a few
related works, and sec. 4.9 gives a brief summary and conclusion.

4.2 Definition of a Common Ancestor: 1st Order HMMs

We define here the most primitive subspecies of Hidden Markov models, in
which transition and emissions probabilities are conditioned by the current
state only. For simplicity of the definition, we assume one fixed initial state.
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Definition 4.2.1. A Hidden Markov Model (HMM) is a quadruple (¥, A, T, E),
where

e Y is a finite set of states, one of which is distinguished as initial and one
or more as final states, and A a finite set of symbols called the emission
alphabet;

e T is a set of transition probabilities {p(s;;s;)} for pairs of states, with
s; not final, such that for each s;, Zsj p(siisj) =1;

e E is a set of emission probabilities {p(s;;e;)} for pairs of state, with s;
not final, and letters e; € A such that for each s;, Zej p(sise;) = 1.

A run for a given HMM is defined is as a pair of sequences of states sg -+ Spi1
and letters eg - - - e, where sg (Spt1) s an initial (final) state, p(s;; siy1) > 0
and p(si;e;) > 0; Sp- -+ Spt1 s called a path foreg---ep,.

The probability of a given run R is defined as follows, using the notation

above.
n n

P(R) = HP(3i§3i+1) HP(Si;ez‘)

=0 =0

Notice that the set of non-zero transition probabilities defines the under-
lying finite state machine of a specific HMM. For an overview of inference
methods for such HMMs, including prediction and training, see, e.g., [61].

In the next section we introduce the generic probabilistic-logic framework
PRISM and show how a definition of standard HMMs in PRISM is a realization
of the semantics given by def. 4.2.1. For the remaining part of this paper, we
will take a specification in the PRISM language as the definition of a subspecies.

4.3 Probabilistic-Logic Modelling in PRISM

The PRISM language [179, 178] extends Prolog with so-called multi-valued
switches: a call msw(name, X) represents a probabilistic choice of value to be
assigned to X. A switch is introduced by a declaration of the form

values(name, [--- outcomes ---1)

and defines a family of random variables, one for each execution of msw(name,
-++) in a program run. The name can be parametric — as we will show in
the example below — in a way that makes it possible to define conditional
probabilities.

The probability table associated with an msw can be defined by an explicit
declaration or be produced by learning as we show below. The overall seman-
tics of a PRISM program is given as a probabilistic Herbrand model, in which
any logical atom has a probability of being true, given as the product of the
probabilities for the msws applied in a proof tree for that atom. For this se-
mantics to be well-defined, any choice point in the program must be governed
by an msw.

We use the example below both to show the implementation of a HMM
in accordance with def. 4.2.1 and to explain further details about the PRISM
system.
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4.3.1 Lesson 1: First-Order HMMs in PRISM

Let us consider a play of heads-and-tails in which the cashier has two coins, an
honest and a dishonest one. At each time step, he will throw the current coin
and decide which next step to take, i.e., to pick one of the coins or close the
game. This may be described as a HMM whose states are,

{honest, dishonest, close}

where the initial one is honest and the final one close; the emissions are
{head, tail}. We can encode this HMM in the following msw declarations and
probability settings, written as they may appear in a PRISM source file.

values (trans (_CurrentState), [honest,dishonest,close]).
values(emit (_CurrentState), [head,taill).

:- set_sw(trans(honest), [0.4,0.5,0.1]),
set_sw(trans(dishonest), [0.2,0.7,0.1]),
set_sw(emit (honest),[0.5,0.5]),
set_sw(emit(dishonest),[0.7,0.3]).

Notice in the values declarations, that the names are parameterized by a variable
(starting with an underscore) meaning that for whatever term is substituted for
that variable, there exists an msw. The set_sw directives set up distributions for
the instances of trans(_) that appear in program below, i.e., trans(honest) and
trans (dishonest), and emission probabilities for the two non-final states. Initial
and final states can be defined in terms of Prolog predicates as follows.

initial (honest).
final (close).

As it may appear, the format shown so far can be applied to encode any individual
HMM according to def. 4.2.1. The following lines of PRISM code provide a general
definition of a HMM encoded in this way; i.e., if you want to work with another
HMM, you just need to change the values and set_sw declarations. It is tail recursive
and it can be understood as a generative specification of all possible runs and their
probabilities.

hmm(Sequence,Path) :- initial(S0), hmm(Sequence,SO,Path).
hmm([],Final, [Finall):- final(Final).

hmm ([A|As],S, [SISs]):-
\+final(S),
msw(emit (S),A),
msw(trans(S),Snext),
hmm(As,Snext,Ss) .

The top predicate hmm/2 defines a probability distribution for the runs of this HMM,
so for example P([head,head], [honest,dishonest,close]l) =0.5x0.5x0.1x0.7 =
0.0175, formed as the product of msw probabilities used for generating this particular
run. In fact, [honest,dishonest,close] is the Viterbi path for [head,head].

The PRISM system provides the necessary tools for inference.

Sampling is the simplest; the program is executed as a plain Prolog program with
the outcome of each msw determined by pseudorandom numbers. Time com-
plexity is linear in the length of the generated sample.
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Prediction can be made using one of PRISM’s built-in Viterbi algorithms. The call
viterbig(hmm([head,head] ,Path)) will instantiate the logical variable Path to
the path that provides the maximum probability for the call. Time complexity
depends on the details of the model; HMMs can run in linear time.?

Training: PRISM comes with several built-in algorithms for supervised and unsu-
pervised learning; supervised learning may, e.g., be performed from a large file
of ground atoms such as hmm( [head,head], [honest,dishonest, close]) and
this will replace the explicit set_sw directives shown above; we refer to the
PRISM manual for details [178]. Time complexity depends in a non-trivial
way on the complexity of the program and the size of the training data. All
examples shown in the present paper can be trained in reasonable time from
realistic training data.

The main advantage of using a system such as PRISM is that one and the same
specification, such as the few program lines shown above, implements the different
reasonings in one go.

4.3.2 Minor Variations: Silent States, Duration Modeling

Here we indicate a few local varieties of the basic HMM species that are often en-
countered in the literature. A silent state is one that does not produce any emission
symbol. Let us change the heads-and-tails model a little, so it also takes into account
that the cashier, when he is using the honest coin may decide to ignore an outcome
(that does not fit his interests). This is done as follows, using an additional outcome
of the msw for emit(honest) and modify the code a bit so the “interpretation” of
silent is to add nothing to the emission sequence.®* We have used here Prolog’s
conditional expression test -> if-true-action ; if-false-action.

values (emit (dishonest), [head,tail]).
values(emit (honest), [head,tail,silent]).

hmm(As1,S,[SISs]):-
\+ final(S),
msw(emit (S),A),
msw(trans(S),Snext),
(A=silent -> Asl=As ; Asl = [A|As]),
hmm(As,Snext,Ss) .

Duration in a HMM means that it can stay for a number of steps in a given state
before going to a next state, and with a certain distribution for this number. It is
well-known that basic HMMs have problems modeling duration® and the literature
is rich in contortions to the layout of the state machine to compensate for this using
duplicated states, etc.; see, e.g., [61]. In our framework, we can model duration in the
most natural way, namely by selecting a number in a probabilistic way, and iterate an

2A program transformation technique described in [40] is needed to have this Viterbi
computation for a HMM run in linear time; this is explained at our website [37] that con-
tains all program examples shown in the present paper. A forthcoming release of PRISM is
expected to incorporate this technique, cf. [228], so we ignore this issue for the remainder of
this paper.

3The current version of PRISM loops when using the silent state programs for prediction
due to the existence of infinite paths. A new, generalized Viterbi algorithm for PRISM is
under development which avoids this problem. The website for this paper [37] provides a
minor modification of the program that works also under the present system.

4Using a possible transition from a state to itself in a plain HMM gives a geometric
distribution of the possible durations.
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emission from the given state that number of times. For the heads-and-tails example,
we may like to model that the cashier uses a chosen coin about 6 times in a row with
a little variation, as follows. Notice that we need to prevent transition from a state
to itself after the loop.

values (duration, [4,5,6,7,8]).
values (trans (honest), [dishonest,close]).
values (trans(dishonest), [honest,close]).

:- ... set_sw(duration, [0.15, 0.2, 0.3, 0.2, 0.15]).

hmm(As,S,Ss) : -
\+final(S),
msw(duration,T),
iterateHmm(T,As,S,Ss).

iterateHmm(0,As,S,Ss): -
msw(trans(S), Snext),
hmm(As,Snext,Ss) .

iterateHmm(T, [A|As],S, [S|Ss]):-
T >0, T1 is T-1,
msw(emit (S),A),
iterateHmm(T1,As,S,Ss).

More sophisticated patterns can be defined with different length distributions for
different states.

4.4 Single Sequence HMMs with Dependencies on a
Portion of the Past

The term higher-order HMM refers traditionally to different varieties of a subspecies
that extends the conditioning of the transition and-or emission probabilities with
information about the past.

The basic HMM definition shown in section 4.3.1 can easily mutate into higher-
order, adding extra arguments to the hmm predicate and extra degrees of freedom in
the msw definitions. We illustrate this for a so-called 2nd order HMM in which the
transition probabilities are now conditioned, not only by current state, but also the
previous; the emissions are unchanged in this example but can also be conditioned in
a similar way. The symbol border imitates a dummy state before the initial state.

hmm(Sequence,Path) :- initial(S0), hmm(Sequence,SO,border,Path).
hmm([],Final,_, [Finall):- final(Final).

hmm([A|As],S,Sprevious, [SISs]) :-
\+final(S),
msw(emit (S),4),
msw (trans (S, Sprevious) ,Snext),
hmm(As,Snext,S,Ss) .

When, e.g., the HMM goes through a path sg, s1,..., the sequence of calls to the
recursive hmm predicate can be sketched as follows.

hmm( - - - so,border---),hmm(---s1,80---),hmm(---82,81 ),
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While the 1st order is suited to be trained to learn combinations of two emissions
letters in a row, an nth order is suited to learn patterns of n + 1 letters.

We expect the general principle to be clear by now, so that the reader may
experiment with his or her own varieties of higher order HMMs that utilizes different
portions of the past in various ways.

4.5 Multi-Sequence and Combined HMMs

4.5.1 HMMs for Sequence Alignment

A HMM can be used to align two or more sequences. This application of HMMs
have been particularly successful in computational biology, where an alignment of
biological sequences can be used to draw conclusions about the evolutionary process.
In the following we sketch a pair HMM [212] (see [61] for a presentation which is
easier to compare with other literature in the field), which aligns two sequences, A
and B, by simultaneously emitting them. Besides the silent end state, the pair HMM
has three states; the match state aligns the next two symbols from each sequence to
each other, the insert state aligns the current symbol of sequence A to a gap in
sequence B and the delete state aligns the current symbol of sequence B to a gap in
sequence A. The model is not fully connected as it is not possible to visit the delete
state immediately after the insert state and vice versa.

values (trans(match), [match,delete,insert,end]).
values (trans(delete), [match,delete,end]).
values (trans(insert), [match,insert,end]).
initial (match).

final (end) .

We consider here emissions over the alphabet {a, c, g, t}. For simplicity, we character-
ize emissions in a uniform way as pairs, with “-” representing a missing character, e.i.,
pair(a,a) is a typical emission from a match state and pair(a,-) a typical emission
from an insert state. In the set_sw directives, we set the probability of emit (z,y),
x # y, in the match state to almost zero, and the probability of emit(z,y), y # “-”
to exact zero for insert, and analogously for the delete state. We simplify the main
predicate using an auxiliary programmed in Prolog.

first(-,Ls,Ls):- !.
first(L,Ls, [L|Ls]).

The recursive specification of the pair HMM is now straightforward as follows.

hmm(Seql,Seq2,Path) :- initial(S0), hmm(Seql,Seq2,S0,Path).
hmm([],[],Final, [Finall):- final(Final).

hmm(As1,Bs1,S,[SISs]):-
\+ final(S),
msw(emit (S) ,pair(A,B)),
first(A,As,As1), first(B,Bs,Bsl),
msw(trans(S),Snext),
hmm(As,Bs,Snext,Ss).

4.5.2 Hierarchical HMMs

A hierarchical HMM [67] is similar to a 1st order HMM, but instead of emitting
probabilistically a letter from each state, a sub-model is selected. Each sub-model is
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an ordinary HMM, which produces a sequence of letters until the control is given back
to the top level. Thus a string produced by a hierarchical HMM is a concatenation
of strings produced by different sub-models. The following structure assumes that
the states in the different sub-models form disjoint subgraphs; in the choice among
sub-models, their initial states serve also the purpose of identifying them. Notice
that the subHmm predicate carries a state for the top level HMM which is “jumped to”
when a sub-model reaches its final state.

hmm(Sequence,Path) :- initial(S0), hmm(Sequence,SO,Path).
bmm([],Final, [Finall):- top_final(Final).

hmm(As, TopS, [TopS|Ss]): -
\+ top_final(TopS),
msw (submodel (TopS) ,SubInitS),
msw (trans (TopS), TopSnext),
subHmm(TopSnext,As,SubInitS,Ss) .

subHmm (TopS,As,S,Ss) : -
sub_final(S),
hmm (As, TopS,Ss) .

subHmm (TopS, [AlAs],S, [SISs]):-
\+ sub_final(S),
msw(emit (S),A),
msw(trans(S),Snext),
subHmm(TopS, As,Snext,Ss) .

The subHMM predicate is similar to the basic HMM definition of in section 4.3.1 with
the only difference that when it reaches its final state, it makes a recursive call to the
topHMM state referred to by the variable TopS, rather than stopping.

A nontrivial application of hierarchical HMMs defined in PRISM for testing gene-
finders has been made by [38].

4.5.3 Factorial HMMs

This term, introduced by [79], refers to a subspecies whose finite state machine is
defined as the product of two or more state machines. A factorial HMM can be
mapped into a plain HMM (whose state set is the product of the individual state
sets), but it has the advantages that there are fewer transitions and probabilities
that need to be specified: if two sub-machines has n, resp., m states, the factorial
HMM includes at most n? + m? different transition probabilities, compared with
the corresponding plain HMM that needs up to n? x m? transition probabilities. The
emissions are conditioned by the states of both sub-machines. This is straightforward
to incorporate into a PRISM specification, we just need to pass two state variables
around and determine the new state for both sub-machines in each step.

hmm (Sequence,Path) : -
initiall1(S10), initial2(S20), hmm(Sequence,S10,520,Path).

hmm([],Finall,Final2, [(Finall,Final2)]):-
finall(Finall) ; final2(Final2).

hmm([A|As],S1,582,[(S1,S2)18Ss]):-
\+finall1(S1), \+final2(S2),
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msw(emit (S1,82),4),
msw(trans1(S1),Sinext),
msw(trans2(S2),S2next),
hmm(As,Sinext,S2next,Ss).

4.5.4 Bayesian Coupled HMMs

Recent work on sequence analysis using PRISM for biological sequence analysis [43]
shows how PRISM models can be put together in a Bayesian network, such that the
resulting analysis from one model is used for conditioning the probabilities of other
models. This applies also to the special sort of PRISM models that are HMMs and
gives rise to yet another highly specialized HMM subspecies (symbiosis may be a
better term) called Bayesian Coupled HMMs. As an example, we consider a system
for weather analysis, put together as a network with only two nodes. We assume
sequences of observations being either sun, rain, or snow. This model composes two
HMDMs in the following way.

e hmmi is a plain HMM whose states represent temperature plus an end state
{minus, aboutzero, plus, end};

e hmm2 has states that represent wind speed plus an end state {quiet,breeze,
storm,end}; it extends the HMMs that we have seen so far by having the
transitions conditioned also by the states produced by another HMM, in this
example hmm1.

The PRISM code for such a conditioned HMM is as follows.

hmm2 (Sequence,Condition,Path) : -
initial2(S0),
hmm?2 (Sequence,Condition,S0,Path) .

hmm2([],_,Final, [Finall]):- final2(Final).

hmm2 ([A|As], [CICs],S,[SISs]):-
\+final2(8S),
msw(emit2(S) ,A),
msw(trans2(S,C),Snext),
hmm2 (As,Cs,Snext,Ss) .

The implementation described by [43], which is built on top of PRISM, applies a
principle for prediction that runs prediction with PRISM’s Viterbi algorithm for each
model at time, fixing the path produced before sending it on to the subsequent models.
For the example above, we can illustrate this by the following query.

?7- Seq=[snow,sun], viterbig(hmml(Seq,P1)),
viterbig(hmm2(Seq,P1,P2)).

P1 = [aboutzero,aboutzero,end]
P2 = [breeze,quiet,end]

The first model, hmm1, predicts a path given as P1, which then is given to the prediction
with hmm2; notice that hmm2 only makes sense as a probabilistic model when this
argument is given as a ground list.

Putting different PRISM models together as Bayesian networks in this way yields
both a way of decomposing complex models and a way to reduce computational
complexity. Bayesian Coupled HMMs can be formed from any number of sub-models
and conditioned in a variety of ways, including taking in signals produced by external,
not necessarily probabilistic analyses; see the referenced paper for details.



4.6. ADDING CONTEXT-SENSITIVE INFORMATION (0]

4.6 Adding Context-Sensitive Information

The use of Prolog as a backbone to tie together the different probabilistic choices
in our models makes it fairly straightforward to express also some context-sensitive
constraints: at any point in a sequence, information can be collected, passed further
on via predicate arguments to any other point in the string and applied to restrict, or
condition probabilistically, what can occur at that second point. We show here two
examples.

4.6.1 Copying Substrings: Pseudoknots

A pseudoknot is a phenomenon that may be observed in the tertiary structure of
an RNA molecule. It can be explained syntactically as a pattern in which a certain
subsequence, that we call the glue zone, appears later with inverted letters, but in
the same order. Inversion means to interchange any ‘a’ with a ‘t’ and any ‘c’ with
a ‘g’ and vice versa. The following is an example of such a pattern; the interesting
subsequence and its repeated, inverted version are indicated by boxes.

aaaaaaaaaaaaaa.‘ agat a‘aaaaa#t ctat ‘aaaaa

As is well-known from formal language theory, this language exceeds both regular
and context-free languages; it is a context-sensitive language. We can describe this
as a combination of HMMs and a deterministic predicate that inserts the copy string.
In order to keep the predicate arguments simple, we use separate predicates for each
indicated substring; the model is put together by the following predicates that are
applied in the given order.

hmm1, hmmGlue, hmm2, copyGlue, hmm3

The first predicate is like a usual 1st order HMM, with the exceptions that when it
gets to its final states, it continues with hmmGlue instead of stopping.

hmm1 (As,SFinal,Path):-
final (SFinal),
initialGlue (SGlueO),
hmmGlue (As,SGlueO,Path, []).

hmmi ([A|As],S, [SIPath]):- \+ final(S),

The second, hmmGlue, is structured in the same way, except that it builds a separate
list of the letters generated (in inverted form), as to have them ready for the copying
later.

hmmGlue (As,SGlueFinal,Path,Glue) : -
finalGlue(SGlueFinal),
initial(S0),
hmm2 (As,S0,Path,Glue) .

hmmGlue ([A|As],S, [S|Path],Glue): -
\+ finalGlue(S),
msw(emitGlue(S),A),
msw(transGlue(S),Snext),
addInvertedLetter (Glue,A,Gluel),
hmmGlue (As,Snext,Path,Gluel) .

The addInvertedLetter predicate adds the indicated letter in inverted form at the
end of the currently collected copy string; it can be defined in Prolog as follows.
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addInvertedLetter (Glue,A,Gluel) : -
invert (A,Ainvert),
append(Glue, [Ainvert] ,Gluel).

invert(a,t). invert(t,a). invert(c,g). invert(g,c).

There is no reason to show the predicate hmm?2 as it is a mere replicate of hmm1 except
that it continues to copyGlue, defined as follows, when it has done its job.

copyGlue(As,Path, [1):-
initial(S0),
hmm3 (As,S0,Path) .

copyGlue ([A|As], [copy|Path], [A|Glue]): -
copyGlue (As,Path,Glue) .

Note that there are no msw calls here as the predicate is deterministic, with the looping
controlled by the last arguments that contains the string to be inserted. Finally hmm3
is a standard HMM. A more sophisticated version of this model could allow mutations
in the inserted copy, using a model similar to the pair HMM used for alignment in
section 4.5.1.

The website [37] gives the full text of this extended HMM as well as an alternative,
and more elegant, version based on difference lists. We refrain from bringing the latter
here, as we do not expect our average Zoo guest be familiar with the programming
technique of difference lists. An earlier version of this pseudoknot program was given
in [35].

4.6.2 Constrained HMMs

The subspecies of Constrained HMMs (CHMMs) are defined as ordinary HMMs
with side-constraints on the runs. Such constraints are easily defined in PRISM; let
con(sequence, path) be a predicate considered as constraint which accepts some runs
and fails on others. When hmm represents an HMM, the following PRISM definition
defines a CHMM.

chmm(Sequence,Path) : - hmm(Sequence,Path), con(Sequence,Path).

CHMDMs have the interesting property that the sum of probabilities of the runs it
produce may be < 1, and the remaining probability mass considered as garbage
probability [36]. The disadvantage of the definition just shown is that prediction may
be very slow, as a breaking of the constraint is not seen before all msws have been in-
stantiated; furthermore, due to subtle technical reasons, PRISM’s Viterbi algorithms
cannot handle this sort of specification in a correct way in all cases. Constraints
that can be checked incrementally are better suited for prediction as shown in the
following example, and will actually work in the current PRISM system. We extend
the head-and-tail HMM with the constraint that the dishonest coin may be used at
most three times in a game; the new last argument of the recursive predicate counts
the number of dishonest states encountered so far.

hmm(Sequence,Path) :- initial(S0), hmm(Sequence,S0,Path,0).

hmm([A|As],S, [SISs], Count):-
\+final(S),
msw(emit (S),A),
msw(trans(S),Snext),
check_count (Snext,Count,Countl),
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hmm(As,Snext,Ss,Countl).

check_count (honest,Count,Count) .

check_count (dishonest,3,_):- !, fail.

check_count (dishonest,Count,Countl):- Countl is Count+1.
check_count(close,_,_).

The check_count written in plain Prolog takes care of the counting and fails when
the count would exceed 3. Constrained HMMs are treated in depth in [41].

4.7 Other Related Species

Probabilistic context-free grammars are another known model for sequences that
also can be described in PRISM; it is shown as an example in the PRISM User’s
Guide [178]. A probabilistic version of popular Prolog based Definite Clause Gram-
mars based on PRISM has been demonstrated by [88]. Such models describe a given
sequence using a tree-structured recursion, rather than the tail recursive style we have
used here, and it is natural to use the technique of difference lists. In this respect,
they are not natural descendants of HMMs but should be considered as their own
species.

Notice that PRISM’s language, being an extension of Prolog, is Turing-complete,
which means that PRISM can describe probabilistic versions of any recursively enu-
merable language (nothing said here about the efficiency of reasoning).

4.8 Related Work

Dynamic Bayesian Networks (DBNs) [141] are directed graphical models for modeling
sequential data. DBNs contain nodes for each time-slice, i.e., discrete time steps, and
edges between such nodes signify conditional probabilities. DBNs contain individual
variables for the nodes at each time step as opposed to the inductive definition of
HMMs where the same random variables are reused. DBNs cannot handle context-
dependencies as those we model in section 4.6.

There are various programming libraries available which support development of
HMMs, e.g., [191]. Such libraries suffice for a variety of tasks, but are limited to
express the kinds of models they were intended to.

PRISM is not the only language available that allows specification of HMMs.
Several probabilistic-logic programming languages, which have identical power to
PRISM, exist; see [55] for an overview. We have chosen PRISM because it is especially
convenient for characterization of recursively defined structures (such as sequences)
due to the Prolog backbone and its switches which are perfect for defining conditional
probabilities of discrete (interior) events. PRISM provides a good balance between
the ease by which HMMs can be expressed and the flexibility to model powerful
HMM subspecies and contains generic inference algorithms for working with these
models. A probabilistic version of regular expressions is described in [86] which also
uses PRISM for its implementation.

4.9 Conclusion

There are countless subspecies of Hidden Markov Models and in this paper we have
presented a few of them through probabilistic logic programs expressed in PRISM.
PRISM provides a language which caters for experimentation with HMM species
and the like and offers powerful inference algorithms that generalize to any model
expressed in the language. A general theme should be clear from the examples; the
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different subspecies of HMMSs can be represented with only minor variations of the
program code.
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Abstract

A Hidden Markov Model (HMM) is a common statistical model which is widely
used for analysis of biological sequence data and other sequential phenomena. In
the present paper we show how HMMs can be extended with side-constraints and
present constraint solving techniques for efficient inference. Defining HMMs with side-
constraints in Constraint Logic Programming have advantages in terms of more com-
pact expression and pruning opportunities during inference. We present a PRISM-
based framework for extending HMMs with side-constraints and show how well-known
constraints such as cardinality and all_different are integrated. We experimen-
tally validate our approach on the biologically motivated problem of global pairwise
alignment.

5.1 Introduction

Hidden Markov Models (HMMs) are one of the most popular models for analysis
of sequential processes taking place in a random way, where “randomness” may also
be an abstraction covering the fact that a detailed analytical model for the internal
matters is unavailable. Such a sequential process can be observed from outside by its
emission sequence (letters, sounds, measures of features, all kinds of signals) produced
over time, and an HMM postulates a hypothesis about the internal machinery in
terms of a finite state automaton equipped with probabilities for the different state
transitions and single emissions. A common inference for a given observed sequence
means to compute the “best” state transitions that the HMM may go through to
produce the sequence, and thus this represents a best hypothesis for the internal
structure or “content” of the sequence. HMMs are widely used in speech recognition
and biological sequence analysis [159, 61].

The efficiency of computations on HMMs heavily depends on the Markov prop-
erty. Decisions made during a process run depends only on a limited past. Dynamic
programming algorithms, such as Viterbi and Forward-Backward, are then used to
perform efficient inference. However, many problems would require more complex
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dependencies among elements of the process. For example, it may be interesting to
constrain an HMM to visit only different states or limit the number of visits to a given
state. It is possible to model the all_different constraint for the states visited by ex-
tending the underlying finite state automaton, but for the price of a factorial number
of new states and with an obvious impact on inference. As an alternative to modify-
ing the HMM structure, we extend instead the HMM with side-constraints [185, 168].
However, classical algorithms, such as Viterbi, must be modified to take care about
these side-constraints [30, 42].

In this paper, we extend HMMs with side-constraints, leading to what we call
Constrained HMMs (CHMMs). The concept of CHMMs was introduced by Sato et
al. in [185], although earlier and unrelated systems have used the same or similar
names (discussed in section 5.6). The contribution of this paper is to define CHMMs
as constraint logic programs extended with probabilistic choices and to show how
to employ this setting for more efficient Viterbi computation, i.e., computation of
the most probable explanation of an observation. Moreover, defining HMMs with
side-constraints in Constraint Logic Programming have advantages in terms of more
compact expression and pruning opportunities during inference. We show how to
implement CHMMSs in PRISM [179] and how to integrate well-known constraints,
such as cardinality and all_different, into this framework. We validate our
approach experimentally on the biologically motivated problem of global pairwise
alignment.

The paper is organized as follows: section 5.2 describes background on HMMs.
In section 5.3, we formally introduce the constraint model associated with a CHMM.
Section 5.4 describes our PRISM-based framework to define CHMMs. Section 5.5
presents an experimental validation. Finally, sections 5.6 and 5.7 present related
work and conclusions.

5.2 Background

Here we define Hidden Markov Models (HMM)s and illustrate their application to
the problem of pairwise global alignment.

5.2.1 Hidden Markov Models

For simplicity of the technical definitions, we limit ourselves to a discrete Hidden
Markov Model with a distinguished initial state.

Definition 5.2.1. A Hidden Markov Model (HMM) is a 4-tuple (S, A, T, E), where

e S ={s0,81,...,8m} is a set of states which includes an initial state referred
to as so;
o A={ei,ea,...,ex} is a finite set of emission symbols;

o T = {(p(s0351)s D505 5m))s -+ (P(Smi 1), (53 5m))} i @ set of tran-
sition probability distributions representing probabilities to transit from one
state to another;

o B={(p(s15e1),p(s1;€1))s- - (psmien)s-,plsmien))} is a set of emis-

sion probability distributions representing probabilities to emit each symbol
from one state.

We define a run of an HMM as a pair consisting of a sequence of states s(9 s .. s
called a path and a corresponding sequence of emissions e ...e™, called an
observation, such that

n

Y S(O) = So;



5.2. BACKGROUND 81

o Vi,0 < i < n—1,p(sD;s0+D) > 0 (probability to transit from s to
(i+1) )
S )

o Vi,0 <i<mn,p(sD;e®) >0 (probability to emit e from s ),

The probability of such a run is defined as [],_; p(s0=D: 50 . p(s(0); (),

5.2.2 Example HMM 1: a simple gene finder

As a first example of an HMM that we later extend with constraints, we consider
the problem of identifying protein coding genes in prokaryotes. A DNA sequence is
composed of molecules, called nucleotides, represented by the four letters a, c, t and
g. Some parts of a DNA sequence code for genes, called coding regions, while other
parts do not and are called non coding regions. Coding regions contain a number
of codons, triplets of nucleotides, each coding for an amino acid in a protein (to be
produced by the gene). For prokaryotes, a coding region is contiguous, and it begins
with a specific start codon, which is often atg, and ends with a stop codon, which is
one of taa, tga or tag.

0.997

aaa: 0.0335

atg: 0.82 [ coding aat: 0.0184

: 00219, | 00006 gtg: 0.08 e 0.0076 003

1 0.0146 taa: 0.07
non coding | 4%&: 1 1 stop codon | tag: 0.63
®_’ coding 00180 [+ tga: 0.30

aca: 0.0136

start codon

Figure 5.1: A simple HMM for Prokaryote genes prediction

Fig. 5.1 shows a simple HMM for prediction of genes; more advanced HMMs
are used in successful gene finders that have been reported in the literature, e.g.,
Genemark. HMM [128] and EasyGene [123], and they can also be handled by our
approach. The emission symbols of this HMM are codons, thus three letters form
one symbol. It has four states: start codon, non coding, coding, stop codon.
From non coding, any codon can be emitted. From state start codon, only start
codons ata, atg, att, ctg, gtg and ctg can be emitted. From coding, any codon can
be emitted except stop codons, taa, tga and tag. From state stop codon, only stop
codons taa, tga or tag can be emitted. A consequence of the simplification of only
emitting entire codons and not individual letters in this HMM is that we restrict to
non coding regions whose length measured in codons is divisible, which is not the case
in reality. Transition probabilities have been computed from an already annotated
genome, Escherichia coli, K-12 substr. MG1655 (Genbank access NC_000913).

We can illustrate the annotation process as follows; we consider a small piece of
E.coli from position 115 to 255.

ctt agg tca cta aat act tta acc aat ata ggc ata gcg cac aga cag ata aaa att aca gag tac
aca aca tcc atg aaa cgc att agc acc acc att acc acc acc atc acc att acc aca ggt aac ggt

gcg gec tea,

The Viterbi algorithm computes the most probable path which is indicated as follows:

ctt tcc atg aaa s ggc tga
non coding o non coding start codon coding cee coding stop codon
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From the indicated path, we can extract an annotation that states a non coding
region from position 115 to 189 and a coding region from position 190 to 255.

5.2.3 A Second Example HMM: Pairwise Global Alignment

As another example of an HMM that we later extend with constraints, we
consider the problem of aligning two sequences. Sequence alignment is among
the most common tasks in computational biology, where it is used to align
sequences assumed to have diverged from a common ancestor. Notice that we
here use a so-called pair HMM [61] which emits two sequences at the same
time, and which is a straightforward extension of the definition above.

In the global alignment problem, two sequences x and y must be aligned
optimally, based on a scoring scheme for comparison of different alignments.
In probabilistic modeling, a probability is associated with each pair of symbols
emitted from a state and similarly a probability for introducing gaps, J, and
extending gaps, €, in the alignment of the sequences is defined. The probability
of an alignment is then the product of probabilistic transitions performed to
recognize the alignment. In biology, these probabilities are defined to reflect
observed statistics about sequence mutations and conservation.

insert
Xi

Figure 5.2: A pair HMM for pairwise global alignment of sequences. States,
represented by squares for emitting states and circles for silent states, are con-
nected by arrows representing transitions labeled with probabilities.

A Hidden Markov Model for modeling global sequence alignment is depicted
in Fig. 5.2. A particular alignment corresponds to a distinct sequence of states
in this model. The initial state, begin, does not emit symbols. The match
state emits a pair of symbols (z;,y;), one for each sequence corresponding to
alignment of the symbol at position 7 in sequence x and the symbol at position
j in sequence y. Emitted symbols can be similar or different. A difference
represents a potential mutation between the two sequences. The insert state
emits only the next symbol of sequence z, effectively aligning position z; to a
gap in y. Oppositely, the delete state aligns a symbol y; to a gap in sequence
T.

This HMM is capable of generating a pair of aligned sequences. When given
two sequences to align, then a path from the start state, such that the model
emits the two sequences, will correspond to an alignment.

The following example shows an alignment of two short protein sequences,
where the third line indicates the state sequence of this alignment abbreviated
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with the first letter of the state name:

Sequence x: HGKKGA AQV
Sequence y: KGPKKARQA
alignment : biiimmmddmmm

In this context, a common task is to find the optimal alignment. This means
to find a state sequence that can recognize the two sequences and has maximal
probability. Another is to calculate the probability to observe an emission se-
quence, here representing an alignment. A third type of inference is parameter
learning, where we are given a set of alignments and estimate the “best” param-
eters for the model, where best usually means that they maximize likelihood
of the alignments.

5.3 A constraint model for HMM with side-constraints

In this section, we give a formal definition of CHMMSs and propose a constraint
model for CHMM runs. Then, the computation of the most probable path is
adapted for CHMM:s.

5.3.1 Constrained Hidden Markov Model

A CHMM extends an HMM with constraints that limit the set of valid runs
and leave fewer paths to consider for any given sequence.

Definition 5.3.1. A constrained HMM (CHMM) is defined by a 5-tuple
(S,A,T,E,C) where (S, A, T, E) is an HMM and C' is a set of constraints, each
of which is a mapping from HMM runs into {true, false}.

A run of a CHMM, (path, observation) is a run of the corresponding HMM
for which C(path, observation) is true.

Notice that we define constraints in a highly abstract way, independently
of any specific constraint language. In the following, constraints over finite
domains [217] are used, although other constraint languages such as CLP(Q)
and CLP(R) could have been used as well.

5.3.2 Runs of a CHMM as a constraint program

In this section, we propose to model runs of CHMM by a constraint program
over finite domains. In this context, a run of CHMM is a solution of the
constraint program.

Let (S,A,T,E,C) be a CHMM and n the sequence length. A constraint
program for runs is given by the following predicate.

run([s(o), Sty Sul, [Ery - ER))
where each variable S; and E; represents the state and the emission at the step

i. The domains of S; and E;, are given as dom(S;) = S\{so} and dom(E;) = E.
The run predicate is specified as follows.
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run([s?), Sy, ..., 8.],[E1, ..., Ey]) is true iff

35 e dom(Sy),...,3s™ e dom(S,) and
Je) € dom(E1),...,3e™ e dom(E,),
C(sOsM s M M) ig true, s = 59 and

p(s@;s0) - p(sM; M) p(s=D; 5 p(sM; ey > 0. (5.1)

Formula (5.1) states that s0s(M) ... s and e ... e(™ is a run of the HMM
that satisfies C. By the definition of run/2, (local) relationships between S; and
Si;4+1 and S; and FE; can be established, since the probability of a run must be
positive. Indeed, valuation of S; to sV and Sit1 to s(+1) is part of a solution
of the constraint program whenever p(s(i);s(”l)) > 0. These relationships
between variables of run/2 are modeled by the following constraints,

trans(Si—1, Si) and emit(S;, E;),for all i, 1 <i<mn

where S;, S; 11 and F; are the variables of run/2. These constraints are defined
as follows.

o trans(S;, Siy1) is true iff 35 € dom(S;) and sV € dom(Si11) such that
p(s';s0HD) > 0;

o emit(S;, E;) is true iff 35 € dom(S;) and e € dom(E;) such that
p(s9;e) > 0.

Section 5.4 below shows an implementation of this framework such that a
solution of the constraint program corresponds to a valid derivation of a PRISM
program.

5.3.3 Example 1: A constrained gene finder

We first illustrate the constraint model on the simple gene finder presented sub-
section 5.2.2. The HMM associated with the simple gene finder is constrained
to be in certain states at given positions. For instance, this CHMM allows
the inclusion of information about known coding regions during the Viterbi

computation.
Consider
run([s9, 81, ..., 8], [eD,...,eM™])
the constraint model associated with the simple gene finder where e, ... (™)

is a sequence of n codons. A set of variables S; is constrained to be equal to
State with the following constraint:

fix(State, Positiony, Positions)
where State € S\ {5}, Position, € {1,...,n}, Positiony € {1,...,n} and

Positiony < Positions.
fixz(State, Positiony, Positions) is true iff

3k € dom(Position,) and 3l € dom(Positions), Vi, k < i <1, S; = State.
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For example, fix a position of a coding region can be expressed as the
conjunction of

fiz(start codon, P;, P\) A P +1 = PaA
fiz(coding, P>, P3) A P3 + 1 = Py A fiz(stop codon, Py, Py).

These constraints on the simple gene finder oblige runs to be in a coding region
between the position P; and Pj.

5.3.4 Example 2: a Constrained Pairwise Global Alignment

We consider the HMM presented in section 5.2.3 and extend it into a CHMM
by the following set of constraints,

C = {cardinality atmost(Ny, [S1,...,S,],delete),
cardinality _atmost(N;, [S1,...,S,], insert)}.

A constraint cardinality atmost(N, L, X) is satisfied whenever L is a list of
elements, out of which at most N are equal to X. In a biological context, it
is reasonable to consider only alignments with a limited number of insertions
and deletions given the assumption that the two sequences are related.

As described above, we can consider this CHMM as a constraint program

run([s(o),Sl, ce s Snls [Bs -y Enl)

where dom(S;) € {match, delete, insert}, dom(E;) € {A,C,D,..., W,Y}! and
the constraints C are as described above.

5.3.5 Computation of the most probable path for a CHMM

The Viterbi algorithm [218] is a dynamic programming algorithm for finding a
most probable path corresponding to a given observation. The algorithm keeps
track of, for each prefix of an observed emission sequence, the most probable
(partial) path leading to each possible state, and extends those step by step
into longer paths, eventually covering the entire emission sequence. Here, we
adapt this algorithm for CHMMs.

Consider a given observation e ... e(™ a CHMM (S, A, T,E,C), and its
constraint program

run([s(o)’ Sl, ey Sn], [6(1)’ o e(n)]).

The most probable path is computed by finding the valuation s, ..., s(™ that
maximizes the objective function: the run probability.

Computation of the most probable path for CHMM is expressed as a rewrit-
ing system on a set of 5-tuples ¥. Each such 5-tuple is of form (s,i,p, 7, o)
where 7 is a partial path ending in state s and representing a path for the emis-
sion sequence prefix e - - - e(); p is the computed probability for the emissions
and transitions applied in the construction of 7, and o is the current constraint

IThis set of letters refers to the 21 different amino acids from which proteins are com-
posed.
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trans_ctr: X=X U{(s,i+1,p-p(s;s’) - p(s’;et D) w8 0 ASip1 = 8)}
whenever (s,i,p,m,0) €%, p(s; '), p(s';e*+D) >0
check constraints(c A S;11 = §) and prune_ctr does not apply.

prune_ctr: Y:=X\{(s,i+1,p',7,0')}
whenever there is another (s,i+1,p,m, 0) € ¥ with
p > p' and sol(¢’) C sol(o).

Figure 5.3: Rewriting rules for the computation of most probable paths for
CHMM

store seen as a conjunction of constraints. Any ground and satisfied constraint
will be removed from the constraint store, and true refers to the empty con-
junction. The set of solutions of a constraint store o is denoted by sol(o).

The two rewriting rules in Fig. 5.3 describe an iteration step of the compu-
tation of the most probable path.2 The computation starts from an initial set
of 5-tuples

{(s9,0,1,¢,C A trans(s?, S1)A
N\ trans(Si,Siz) A\ emit(Si )} (5.2)

1<i<n—1 1<i<n

The trans_ctr rule expands an existing partial path one step in directions
that preserve the satisfaction of the constraint store; this satisfiability check
is denoted check constraints (and depends thus on the particular C). The
prune__ctr rule removes partial solutions that are not optimal for the current
observation prefix and shares the same set of complete solutions with the better
partial solution. The second condition is necessary in case no partial path
contained in sol(o) can be extended into a full path without violating the
constraints. We take the following correctness property for granted.

Proposition 5.3.1. Assume a CHMM H with the notation as above and an
observation Obs = ¢ ... e™ . When the Viterbi algorithm in Fig. 5.3 is exe-

cuted from an initial set of 5-tuples given the formula (5.2), it terminates with
a set of o-tuples X tinar. It holds that

e For any (s,n,p,m,true) € Lyina, T is a most probable path for Obs
ending in s and with probability p.

o Whenever there exists a path for Obs ending in s, Xyina tncludes a 5-
tuple of the form (s,n,p,w, true).

Notice that all the variables of the constraint program are valuated when a
final state is reached, and thus any final constraint store is equivalent to true
(as trans__ctr prevents any inconsistent store to arise).

2When any reference to constraints and the constraint store are removed from Fig. 5.3,
we have a compact representation of one iteration step of the Viterbi algorithm for HMMs.
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The classical Viterbi algorithm is guaranteed to run in time linear to the
length of the given sequence, whereas our algorithm may in the worst case
run in exponential time; this may occur if prune ctr cannot be applied at
all. In other words, a representation of the constraint store that allows an
efficient comparison as in “sol(c”) C sol(o)” is essential for the practicability of
our algorithm. On the other hand, for those problems that can be formulated
as a CHMM with effective and eflicient definitions of check constraints and
the comparison test, the X states may stay of a reasonable size. Notice that
our algorithm is still correct if we use approximations of these tests, more
specifically, check constraints may occasionally return ¢rue when the correct
answer is false and the opposite for the comparison.

5.4 Implementation of CHMMs in PRISM

After briefly introducing PRISM, we propose a methodology to define CHMMs
in this framework.

5.4.1 A brief introduction to the PRISM System

PRISM [185] is a powerful system for working with probabilistic-logic models,
based on an extension to Prolog with discrete random variables, called multi-
valued switches. We illustrate this with a simple example HMM with two states
s0 and s1. A switch declaration,

values(x,0).

associates the named random variable x with a set of outcomes 0. Whenever
the goal msw(x,X) is called from the program, then a probabilistic choice will
be made unifying X with an element of 0. Switches can also be defined in a
parametric form,

values(emit(_),[a,b]). 7 symbol emission
values(trans(_),[s0,s1]). % state transition

where each declaration defines a family of switches, one for each possible in-
stance of emit(_) and trans(_) and each instance is given a distinct proba-
bility distribution. This parametrization can serve to model dependencies: in
our HMM example we define the parameters to be the states sO and s1 (plus
init for trans(_)), thus defining emissions and transitions for each state with
the Markov property. Finally, we define a logic program to implement the
probabilistic model,

hmm(L) : - run_length(T), hmm(T,init,L).
hmm (0, _, [1).
hmm(T,State, [Emit|EmitRest]) :-
T >0,
msw(trans (State) ,NextState),
msw(emit (NextState) ,Emit),
T1 is T-1,
hmm(T1,NextState,EmitRest) .
run_length(10).
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Here, a derivation of the goal hmm corresponds to what we define as a run in
section 5.2.1. As shown by [173], Prolog’s traditional Herbrand model seman-
tics generalizes immediately to a probabilistic semantics when probabilities are
given for each random variable (provided that a few restrictions are respected
on how msw is used in the program). Thus a PRISM program defines a prob-
abilistic model that provides a probability distribution for all goals that can
be formulated in the program’s logical language. PRISM assigns each possible
derivation of a goal a probability defined as the product of the probabilities of
the selected switch outcomes of switches used in the derivation. Under nor-
mal conditions, it will be the case that the sum of probabilities of all possible
derivations of such a goal is unity, but these conditions can be violated in a
constrained model. If a program attempts to unify the stochastically selected
outcome of a switch with some other value distinct from that outcome, this
unification will fail resulting in a failed derivation.

PRISM includes built-in mechanisms for efficient probabilistic inference
based on tabling. During inference, once a probabilistic goal has been solved,
its answers are put in a global table. Later calls to the same goal will simply
lookup the answer in the table in constant time. PRISM utilizes this to provide
an efficient generalized Viterbi algorithm that may be used for the computa-
tion of the most likely successful derivation for a large number of probabilistic
models including HMMs. PRISM also includes similar utilities for calculating
the probability of a derivation or set of such and machine learning algorithms
which produce the most likely probabilities for switch outcomes in order to
explain a set of observed goals.

5.4.2 A framework for Constrained HMMs in PRISM

We have implemented a framework for integration of side-constraints in a
PRISM program.® The framework has been used for adding constraints to
HMM based models, but it should be possible to extend to other kinds of
models. The underlying idea is that the program is augmented with a con-
straint store and a constraint checker goal is inserted in a few strategic places
of the PRISM program. This constraint checking is the direct implementation
of check constraints of trans ctr. The prune ctr implementation is not dis-
cussed as we use for free the tabling mechanism of PRISM to prune the search
space.

5.4.2.1 Integration of side-constraints in a PRISM program

This section describes how our framework can be integrated in a PRISM pro-
gram. As an example, we consider an implementation of the HMM from the
previous section. Below the central recursive predicate of the implementation
is shown extended with constraint checking,

hmm(T,State, [Emit |EmitRest],Storeln) :-
T >0,
msw(trans (State) ,NextState),
msw(emit (NextState) ,Emit),

3The current implementation of the  framework is available  via
http://akira.ruc.dk/~cth/chmm
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check_constraints([NextState,Emit],Storeln,StoreQut),
Tl is T-1,
hmm(T1,NextState,EmitRest,Storelut) .

Integration of side-constraint checking is done by extending relevant predicates
with an extra parameter (StoreIn,StoreOut in the code above) to accommo-
date a constraint store and a call to the check_constraints goal (line 5), after
each distinct sequence of msw applications.

If check_constraints fails during PRISM inference, then the correspond-
ing PRISM derivation fails, and further extensions of this derivation will not
be attempted since it does not constitute a valid run. In effect, inference by
PRISM will only consider runs which are guaranteed not to violate any of the
constraints declared for the model.

Declaration of constraints and implementation of constraint solvers are
conceptually decoupled from the PRISM model. The declaration of side-
constraints on the model is done by declaring facts of the form,
constraint (ConstraintSpec). The ConstraintSpec associates the constraint
with a constraint checker implementation and may contain some parameters
for this particular instance of the type of constraint.

A satisfiability checker maintains its own constraint store. A satisfiability
checker for a particular type of constraint consists of an init_constraint_store/2
rule and one or more check_sat/4 rules. The init_constraint_store/2 rule
is used to create a starting point for the constraint store of each declared con-
straint and is of the form,

init_constraint_store(ConstraintSpec, InitialStore).

It is given ConstraintSpec and must unify InitialStore with an initial
constraint store matching the ConstraintSpec. Additionally, one or more
check_sat rules of the form,

check_sat (ConstraintSpec,StateUpdate,StoreBefore,StoreAfter) : -

must be implemented to check the satisfiability of the constraint.
As an example, consider an implementation of a cardinality atmost con-
straint, called cardinality in our framework

init_constraint_store(cardinality(_,_), 0).

check_sat(cardinality(U,Max), U, VisitsIn, VisitsQOut) :-
VisitsOut is VisitsIn + 1,VisitsOut =< Max.

check_sat(cardinality(X,_),U,S,8) :- X \= U.

Each time check_constraints is called from the PRISM model, the relevant
check_sat goals are called for each declared constraint. If any of these fails,
so will check_constraints. StateUpdate and StoreBefore are given and
check_cons- traints is expected to unify StoreAfter to an updated con-
straint store. In our example HMM, the StateUpdate will consist of the
[State,Emit] pattern given to check_constraints.
The call to this rule must only succeed if the constraint given by

ConstraintSpec is not violated by the further information given by the
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StateUpdate. Constraints are checked incrementally and should only fail if
any further updates to the constraint store can only lead to failure.

The constraint stores of individually declared constraints are automatically
aggregated in the constraint store exposed to the PRISM model. Individual
constraint checkers are unaware of each other and cannot access the individual
constraint stores of other constraint checkers. The constraints are checked in
the order they are declared, so this order should be optimized to do pruning
as early as possible.

5.4.2.2 Efficient inference with a separate constraint store stack

PRISMs tabling mechanism makes Viterbi computation and EM learning effi-
cient, but when extra parameters such as the constraint store are introduced in
the probabilistic goals, PRISM considers these as goals with distinct derivations
and stores a tabled entry for each version of the goal. This behavior is unde-
sired when the extra parameters are used only for internal bookkeeping. The
effect of this excessive tabling is that the dynamic programming advantages
are lost with exponential time inference as consequence.

In [40] a related problem concerning tabling of annotations produced by
running Viterbi on PRISM programs is approached using a program transfor-
mation that removes non-discriminating arguments, which do not affect the
control flow. The annotation can be then recovered from the program deriva-
tion of the transformed program.

This approach is not applicable for the constraint store argument, because
the constraint store implicitly affects control flow by limiting possible future
derivation extensions. The constraint store has to be considered in the inference
process; otherwise it would be possible to produce invalid derivation paths.

B-Prolog, on which PRISM is based, supports table modes, but this is not
directly usable with probabilistic goals in PRISM. It is possible with these
modes to declare an argument of a tabled goal as an output argument, which
means that it will not be used as key in the table lookup, but will be unified with
the value of the argument stored in a tabled goal. For our purpose, declaring
the constraint store arguments as output arguments would not be feasible since
different derivations of the same goal may have differing constraint stores and
these determine possible derivation extensions.

As a way to deal with the tabling problem we have introduced a separate
constraint store stack, which avoids storing data locally in parameters of proba-
bilistic goals by maintaining the constraint store with assert and retract. This
stack is maintained in parallel to the to derivation stack of Prolog. PRISM
utilizes Prologs backtracking to explore possible solutions, so the constraint
store stack implementation is required to be able to restore a previous con-
straint store when PRISM encounters failures during inference and performs
backtracking to find alternative solutions.

To utilize this functionality, the user should use the goal
check_constraints/1, which omits the store arguments, rather than
check_constraints/3 as stated above. We then define check_constraints/1
as

check_constraints(StateUpdate) :-
get_store(StoreBefore),
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check_constraints(StateUpdate,StoreBefore,StoreAfter),
forward_store(StoreAfter) .

The new check_constraints/1 make use of the goal get_store/1 to retrieve
the current version of the constraint store and forward_store/1 is used to
assert the updated store,

get_store(S) :- !, store(S).
forward_store(S) :- asserta(store(S)) ; retract(store(S)),fail.

If a derivation fails, then PRISM will backtrack to the choice point in the
forward_store rule and retract the most recently asserted store. Then, when
exploring alternative derivation extensions, the previously asserted constraint
store will be used as expected.

5.4.2.3 Complexity analysis of our implementation

Due to tabling, PRISM guarantees familiar best known complexity bounds of
common inference tasks on a variety of the models that can be expressed in
PRISM, including HMMs [181]. This implicitly limits the number of
check_constraints calls to the same bound. The added complexity of doing
constraint checking depends on incremental constraint checking cost of indi-
vidual constraints checkers and the number of constraints expressed on the
model.

Space complexity is influenced by table space usage and maximal length of
a derivation at any given point. Since the asserted constraint store contains a
constraint store fixpoint for each step of the current derivation, the constraint
store stack is bounded by O(nmax(|c|)) where n is the length of the sequence
and max(|c|) is maximal size of the constraint store in any derivation step. Note
that, the space complexity of the separate constraint store stack is unaffected
by time complexity and the number of states in the model. With more complex
models like the pair HMM, the table space required for dynamic programming
becomes the dominating concern.

5.5 Experimental validation

In this section, we validate our CHMM implementation experimentally with the
pair HMM presented in section 5.2.3. The experiments was run on a computer
with 16 2.4 GHz, 64 bit Intel Xeon(R) E7340 CPUs and 64 GB of memory. All
of the experiments utilized only a single processor at a time.

Our experiments utilize implementations of some common constraints adapted
for the CHMM framework: cardinality(UpdatePatterns,Max) ensures that
entries from the list UpdatePatterns occurs at most Max times in the deriva-
tion sequence. alldiff ensures that all updates in a derivation are differ-
ent; lock_to_sequence(Seq) ensures that the sequence of derivation updates
is identical to the sequence represented by the list Seq; lock_to_set(Set)
ensures that all updates belong to members of the list Set. The operator
forall_subseq(L,C) applies the constraint C to every subsequence of length
L in the derivation sequence and for_range(From,To,C) applies C only the
range, To-From, both inclusive; state_specific(C) applies C only to the
State part of the update.
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5.5.1 Running time of constrained alignment

The addition of side-constraints to an HMM adds some computational overhead
in order to check the satisfiability of the constraints, but may also reduce the
number of possible solutions and in turn the amount of work required for
the Viterbi algorithm to find the optimal path. As a practical experiment to
demonstrate this we consider global alignment with the pair HMM discussed
in section 5.2.3.

The overhead of integrating the constraint checking machinery in the model
is demonstrated in the left part of Fig. 5.4, where sequences of increasing length
are aligned. It can be observed that the running time penalty is a constant
factor and that the polynomial time complexity of the pair HMM is preserved in
our framework. Obviously, polynomial time inference presupposes incremental
constraint checking to be a constant time operation, which may not be the case
for certain types of constraints.

In the right part of figure Fig. 5.5, two sequences of equal length (32) is
aligned, but with varying amounts of constraints being enforced: The global
cardinality constraint is used to enforce an upper limit, L, on the amount of
inserts or deletes in the alignment,

constraint (state_specific(cardinality([insert,delete],L))).

By constraining the alignment (allowing fewer gaps), the space of viable
solutions is reduced. The more constrained the alignment is, the more prun-
ing opportunities arise. With an large amount of pruning opportunities, the
running time is reduced quite significantly.

Note that, since the imposed constraint is state_specific, the number of
possible alignments, and hence running time, is unaffected by the structure of
the input sequences.

5.5.2 Efficiency of the separate constraint store stack

To verify the efficiency of our constraint store implementation, alignment with a
local cardinality constraint was measured for different sizes of input sequences.
From the measurements, which are reported in Fig. 5.6, it is apparent that
our implementation does not incur the same exponential overhead as the naive
implementation where the constraint store is maintained in the goals and hence
tabled.

Running times and memory usage for a range of different constraints are
reported in Table 5.1 and Table 5.2, respectively. For the sake for completeness,
the table also includes measurements for the version where the constraint store
is tabled.

In most cases the separate constraint store performs better in terms of
both running time and memory consumption. In the cases where performance
is worse, it can be attributed to a very small number of possible derivations or
a type of constraint which rarely produce changes to the store.

5.6 Related Work

The term “Constrained HMM?” is used in [169, 121] and refers to restrictions on
the finite automaton associated with an HMM but not as constraint on HMM
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Figure 5.4: Running time of alignment with a pure pair HMM compared to
alignment with a CHMM with no constraints enforced.

runs. In [185], CHMMSs were introduced to exemplify an EM algorithm, suited
for PRISM programs which allow the possibility of derivation failures. Our
approach differs, as we augment PRISM programs with side-constraints and
use constraint solving techniques to achieve efficient inference.

In [50] relationships between elements of a Bayesian Network are expressed
as a constraint logic program, which is similar to the way we define HMMs.
However, our paper focus differs as we study the interest of checking satisfia-
bility of side-constraints during inference.

In the natural language processing community, recent work on Constrained
Conditional Models feature an approach similar to ours. Indeed, Constraint
Conditional Models is a general framework that augments inference and learn-
ing of conditional models with declarative constraints [30]. However, inference
is expressed as an Integer Linear Programming problem [168]. In this context,
more expressive constraints, such as cardinality or all_different, can not
be added on an HMM run. Moreover, our PRISM-based implementation al-
lows us to define the HMM structure (and, e.g., adapt it easily to pair HMMs)
separately from the side-constraints and use advanced constraint solving tech-
niques.
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Figure 5.5: Right: Running time of alignment of two sequences of length 32
with varying amounts of allowed insertions and deletions.

Constraint Sequence Running time
lengths (in ms)
in goals | separate

cardinality ([insert|,20) 50 15460 3176
cardinality ([insert],40) 50 29557 3968
for _range(1,50, lock to_set([match])) 100 24649 4544
for _range(1,90, lock to_set([match])) 100 20 48
for _range(1,50, 100 24829 | 4544
lock to_sequence(|match,..,match]))

for range(1,90, 100 20 48
lock to_sequence(|match,..,match]))

alldiff 20 100442 28
forall subseqgs(5,alldiff) 10 1664 12

Table 5.1: Running time for alignment with different kinds of constraints.

5.7 Conclusions

In this paper, we propose a framework to define HMMs with side-constraints
as a Constraint Logic program extended by probabilistic choices. Constraint
Logic Programming have advantages in terms of more compact expression of
CHMMs. Inference computations are adapted for CHMMSs and conditions for
an efficient computation are described. An implementation based on PRISM
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Figure 5.6: A comparison of the running time (left) and memory usage (right)
of constrained alignment of two sequences with tabled constraints versus a
separate constraint store stack.

Constraint Sequence Memory usage
lengths (in kb)
in goals | separate

cardinality ([insert|,20) 50 42296 5723
cardinality ([insert|,40) 50 93845 6703
for _range(1,50, lock to_set(|match])) 100 105498 7137
for _range(1,90, lock to_set(|match])) 100 1641 1198
for range(1,50, 100 1641 1198
lock to_sequence(|match,..,match]))

for range(1,90, 100 105498 7137
lock to_sequence(|match,..,match]))

alldiff 20 85654 256
forall _subseqs(5,alldiff) 10 60098 137

Table 5.2: Memory consumption for alignment with different kinds of con-
straints.

is proposed and three well-known constraints and operators have been demon-
strated for defining CHMMSs. Finally, we experimentally validate our approach
with a constrained pair HMM used for biological sequence alignment.

As current work, we study how sampling and EM-learning can be adapted
for our CHMM framework. Indeed, sampling turns out to be problematic in
probabilistic models with a large probability of derivation failure. In [187], Sato
et al. address the problem of EM-learning with PRISM programs that can fail
and their methods are also applicable for our framework. A first experiment
on semi-supervised learning with our CHMM framework gives us encouraging
first result.

As further work, we plan to incorporate in the framework more advanced
constraint solving techniques such as those used in Weighted CSP [122]. This
approach would allow us to combine soft constraints solving and inference and
express this as an optimization problem. We also plan to deal with the re-
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striction that individual constraint checkers do not share information in our
framework, so that we can benefit from some of the optimization techniques
used by other constraint solvers. We are working on extending the library of
constraints that can be defined as side-constraints.
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Chapter 6

Constraints and Global
Optimization for Gene Prediction
Overlap Resolution

In Proceedings of Workshop on Constraint Based Methods for Bioinformatics,
2011.

Abstract

We apply constraints and global optimization to the problem of restricting
overlapping of gene predictions for prokaryotic genomes. We investigate exist-
ing heuristic methods and show how they may be expressed using Constraint
Handling Rules. Furthermore, we integrate existing methods in a global opti-
mization procedure expressed as probabilistic model in the PRISM language.
This approach yields an optimal (highest scoring) subset of predictions that
satisfy the constraints. Experimental results indicate accuracy comparable to
the heuristic approaches.

6.1 Introduction

Traditionally, gene finding has been considered as a classification task which
could be performed without much context [66]. This ignores the problem of
the constraints between the set of predicted genes and their placement in the
genome. A common problem occurs with overlapping genes. Overlapping genes
are rare in prokaryotic genomes, but they do occur [147, 74].

The traditional intrinsic gene finding methods have a tendency to predict
too many overlapping genes (particularly in GC rich genomes) because the
feature patterns of a gene predicted in one reading frame give rise to similar
feature patterns in other reading frames. This effect is known as shadow genes.

Several gene finders deal with the problem of overlapping genes by dis-
carding some of the overlapping predictions in a post-processing step. In this
paper we consider and compare such post-processing techniques and give uni-
fied presentation using Constraint Handling Rules [72]. We demonstrate how
such rules can be formulated as constraints and integrated with a global opti-
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mization procedure implemented as a constrained Markov chain in the PRISM
system [175].

We adopt a divide and conquer approach to gene finding, which can be seen
as composed of two steps:

1. A gene finder supplies a set of candidate predictions p; ... p,, called the
initial set.

2. The initial set is pruned according to certain rules or constraints. We
call the pruned set the final set.

The present paper is concerned with methods for the second step. The
purpose of this step is to repair effects of flawed assumptions in the first step,
i.e. leading to over-prediction of overlapping genes, and more specifically to
improve accuracy by pruning false predictions. We consider this step as a
Constraint Satisfaction Problem (CSP).

Definition 6.1.1. A Constraint Satisfaction Problem is a triplet (X, D,C). X
is a set of n variables, X = x1,...,2,, with domains D = D(x1),...,D(xy,).
The constraints C' impose restrictions on possible assignments for sets of vari-
ables. A solution is an assignment of a value v € D(x;) to each variable x; € X,
consistent with C'.

We introduce variables X = x;...x, corresponding to each prediction
D1 .. .DPrn in the initial set. All variables have boolean domains, Vz; € X, D(x;) =
{true, false} and x; = true = p; € final set.

If there are multiple solutions, then we are usually interested in the “best”
one. We interpret “best” as meaning a solution that contains as many real
genes as possible and as few incorrect predictions as possible. We do not know
in advance which predictions are correct, but optimize the probability (or a
similar measure) that the predictions are correct. This extends the problem as
a constraint optimization problem.

Definition 6.1.2. A Constraint Optimization Problem (COP) is a CSP where
each solution is associated with a cost and the goal is to find a solution with
minimal cost'.

6.2 Local heuristic methods

An approach taken by many gene finders is to employ local heuristic prun-
ing rules to post-process a set of gene predictions. These rules make pruning
decisions based on the context of only a subset of the predictions. Typically,
the rules consider overlapping predictions on a case by case basis and deletes
inconsistent predictions based on various criteria. The rules essentially work as
propagators that reduce the domains of variables, e.g. a deletion corresponds
to reducing the boolean domain of the corresponding variable to false. The
drawback is that the rules are generally not guaranteed to yield a globally op-
timal solution and that they may produce different solutions depending on the
order in which they are applied.

LOr equivalently, a solution with maximal negative cost (utility).
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These types of rules are conveniently expressed as simplification rules in the
Constraint Handling Rules (CHR) language. Such rules work on a constraint
store, which starts out as the initial set. The simplification rules remove predic-
tions from the constraint store, until no more rules apply. Then, the constraint
store represents the final set.

As example, consider the post-processing procedure of the Genemark frame-
by-frame gene finder [138] expressed as a single rule in CHR:

prediction(Leftl,Rightl), prediction(Left2,Right2) <=>
Leftl =< Left2, Rightl >= Right2
| prediction(Leftl,Rightl).

The head of the rule — the part before <=> — matches two predictions in
the constraint store. The rule replaces both predictions with the first prediction
if the first prediction completely overlaps the second prediction. This condition
is expressed in the guard of the rule — the part between the head and the |
character. The rule is applied for all predictions matching the head and the
guard, effectively removing all predictions which are completely overlapped
by another prediction. With this rule it does not matter in which order the
predictions are processed — the final set will be same. This is a consequence
since the program consisting of the unique rule presented is confluent [1], i.e.
it is not sensitive to the order of execution.

As an example of non-confluent rules, consider the scheme used in the
ECOPARSE gene finder [118] which addresses partial overlaps and the score
of the predictions:

prediction(Leftl,Rightl,Scorel), prediction(Left2,Right2,Score2) <=>
overlap_length((Leftl,Rightl), (Left2,Right2),0verlapLength),
length_ratio((Leftl,Rightl), (Left2,Right2),Ratio),
length(Leftl,Rightl,Lengthl), length(Left2,Right2,Length2),
OverlapLength > 15, Scorel > Score2
((Lengthl > 400, Length2 > 400) ; Ratio > 0.5),
| prediction(Leftl,Rightl,Scorel).

prediction(Leftl,Rightl,Scorel), prediction(Left2,Right2,Score2) <=>
overlap_length((Leftl,Rightl), (Left2,Right2),0verlaplLength),
length_ratio((Leftl,Rightl), (Left2,Right2),Ratio),
length(Leftl,Rightl,Lengthl), length(Left2,Right2,Length2),
OverlapLength > 15, Ratio =< 0.5, Lengthl =< Length2
| prediction(Leftl,Rightl,Scorel).

If two predictions overlap by more than 15 bases, then one of them is removed.
If the ratio between the longest and shortest of the predictions is more than
0.5, then the lowest scoring is removed (first rule) otherwise the shortest one is
removed (second rule). Note how this may lead to different effects depending
on the order in which predictions are considered, as illustrated in figure 6.1.

There are other approaches which employ more complex local heuristics.
An example is heuristics of the RescueNet gene finder [129] which has rules
considering scores, percent overlaps and local overlaps between up to three
predictions. These heuristics can be implemented with nine CHR rules (not
shown), but the resulting program is not confluent.
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P1: score=0.3, length=500 P2: score=0.6, length=220

| | L]
| |

P3: score=0.25, length=480

Figure 6.1: ECOGENE post processing: We have two predictions P1 and P2
that overlap each end of a third prediction P3 by more than 15 bases. If P1
and P3 is are considered before P2 and P3 then P3 will be removed by the
first rule. Consequently P2 does not overlap and is kept. If they are considered
in opposite order, however, then P2 will be removed by the second rule and
subsequently P3 is removed by the first rule.

It is a general theme for the heuristics to be based on two central character-
istics of overlapping predictions — the score of the predictions and the (relative)
lengths of the predictions and the overlap.

6.3 Global optimization

We would like the final set to reflect the relative confidence scores in the pre-
dictions assigned by the gene finder and at the same time be consistent with
the overlap constraints. To accomplish this we reformulate the problem as a
constraint optimization problem.

Let the scores of py...p, be s1...5, and s; € RT. The scores are the
confidence scores given by the underlying gene finder, i.e. they reflect the
supposed probability that a prediction constitutes a real gene. Such scores are
commonly expressed as probabilities, but need not be.

We would like to maximize the sum of the scores Y., s; since it is directly
related to the criteria of the model that produced the initial set. With this
criteria, the inclination to prune a prediction in the final set is inversely pro-
portional to the score which is expected to reflect the underlying models belief
that the prediction is a real gene.

To perform global optimization with a set of constraints, we propose to
use a constrained first-order Markov chain. We assume that a gene finder
has produced initial set of predictions, p; ...pn, and further require these to
be sorted by the position of their left-most base, such that Vp;,p;,¢ < j =
left-most(p;) < left-most(p;). The variables z; ...z, of the CSP are given the
same ordering.

The Markov chain has a begin state, an end state and two states for
each variable x; corresponding to its boolean domain D(x;). The state cor-
responding to D(z;) = true is denoted a; and the state corresponding to
D(z;) = false is denoted B;. In this model, a path from the begin state
to the end state corresponds to a potential solution of the CSP. The Markov
model is illustrated in figure 6.2. The begin state has transitions to a; with
probability P(aq|begin) = o1 and 5y with probability P(81|begin) = 1 — o;.
The last two prediction states, a,,, 3, can only transit to the end state, i.e.
P(end|ay,) = P(end|B,) = 1. For all other states, we have the transition
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probabilities,

P(ojilai—1) = P(ey|Biz1) = 0 and P(fBilai—1) = P(BilBic1) =1 — 0y

Figure 6.2: Illustration of the Markov chain used. The transitions are marked
with their corresponding probabilities. Only the first few and the last states
are included - the dotted transition arrows symbolize the omitted asg...a,_1
and f3...0,_1 states and their transitions, which follows the same principle
as the previous.

We normalize the scores to the interval (0.5,1], yielding the normalized
probability scores o7 . ..oy, in the following way,

(0.5 —=X) x (8; — min(sy...s,))
max(sy ...s,) —min(sy...sy,)

o; =05+ X+

A is a small pseudo-count to ensure that all o scores are above 0.5. Since
« probabilities are always larger than 0.5, the model prefers a states over
their corresponding [ states. Hence, a most probable path from the begin
state to the end state will not include any [ states. The predictions that
maximize the product of the o scores will also maximize the sum of the original
scores, since the normalized o scores are monotonic to the original scores,
0; > 05 < S; = 8.

For inference with the model we use the Viterbi algorithm [218], which
returns a most probable state sequence {begin, S1, S5 ... Sp,end}|S; € {a, B;}.

Constraints are defined on states that are not allowed to occur together in a
path. These constraints force the Viterbi algorithm to choose a most probable
path, consistent with the imposed constraints, i.e. this path may include
states. The constraints are formulated as CHR rules similar to those of the
local heuristics, but instead of removing predictions they define conditions for
inconsistency. We call these inconsistency rules. Inconsistency rules match
predictions corresponding to « and [ states in the head of the rule. The guard
of the rule ensures that the additional criteria for rule application are met
and the implication of the rules is always failure. Note that such rules are
necessarily confluent.

As example, version 3 of the Glimmer gene finder [56] use a similar approach
with a constraint that enforce a maximal length of overlaps (110 for E.coli).
In our system, this constraint is formulated as,
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alpha(Left1,Right1), alpha(Left2,Right2) <=>
overlap_length((Leftl,Rightl), (Left2,Right2),0verlapLength),
OverlapLength > 110
| fail.

The Genemark heuristic rule is represented as two inconsistency rules,

alpha(Left1,Right1), alpha(Left2,Right2) <=>
Leftl =< Left2, Rightl >= Right2 | fail.
beta(Leftl,Rightl), alpha(Left2,Right2) <=>
Leftl =< Left2, Rightl >= Right2 | fail.

The first rule states that one prediction may not completely overlap another
and the second says that we cannot include a prediction if a pruned prediction
completely overlaps it. Since the heuristic is confluent it may also be applied to
the initial set as a filtering algorithm before the process of global optimization.
We can reformulate the two ECOGENE rules in the same fashion (guard is
omitted, but it is the same as in the heuristic rules),

alpha(Leftl,Rightl), alpha(Left2,Right2) <=> ... | fail.
beta(Leftl,Rightl), alpha(Left2,Right2) <=> ... | fail.

Note that the Score arguments have been removed. They are now implicitly
integrated in the optimization algorithm. The confluence issue is resolved due
to the optimization procedure. In effect, the execution strategy that maximizes
the score is applied.

6.3.1 Implementation in PRISM

A PRISM program that implements the constrained Markov chain is created
from the initial set of predictions and constraints expressed as CHR rules.
PRISM is an extension of Prolog with special goals representing random vari-
ables. A derivation of the PRISM program corresponds to a path through
the Markov chain. The Markov chain is implemented as a recursive predicate,
such that in the i'th recursive call, the (random) variable x; is assigned a value
corresponding to a Markov chain state; «; or f3;. After each recursion — an
attempted transition in the Markov model — the constraints are checked.

Relevant recent states As part of a derivation we maintain a list of recent
states (m;) sorted by the right-most position of the corresponding predictions.
Constraints are only checked for predictions corresponding to elements of m;.
In step ¢, we construct m; as the maximal prefix of z; + m;_1, such that
xz; € m; <= right-most(p;) > left-most(p;). If the constraints propagate
fail, then the PRISM derivation fails and the (partial) path it represents is
pruned from the solution space.

The most probable consistent path is found using PRISMs generic adapta-
tion of the Viterbi algorithm for PRISM programs [181].
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6.4 Evaluation

In lack of a true golden standard, we use an accepted reference set to define
the set of "correct" genes. A slight complication of this approach is that the
reference set itself may have incorrect and missing annotations. True positives
are gene predictions in the final set which are included (exactly) in the reference
set and false positives are those predictions that are not.

Traditionally, in gene finding, accuracy is measured in terms sensitivity
and specificity. Sensitivity measures the fraction of reference genes exactly
predicted by the approach and specificity measures the fraction of predicted
genes that are correct. Since the starting point is the initial set of predictions
(which may omit some potential genes) we cannot improve on sensitivity. The
goal of a pruning approach is then to improve on specificity with minimal
impact to sensitivity.

We consider a pruning approach successful wrt. to an initial set when
it prunes false positives at a higher rate than it prune true positives. This is
reflected by the difference in sensitivity and specificity of the final set compared
to the initial set.

We consider constraints safe when the constraints prune only false positives.
Neither of the examined constraints are safe with respect the RefSeq annotation
of E.coliy NC' _000913. Three of the reference genes are completely overlapped
by another reference gene. These would be removed by the genemark heuristic
and hence it is not safe, although the negative impact of sensitivity would
negligible. Similarly with the Glimmer constraint — the reference annotation
have four overlaps longer than 110 bases which would be removed by this
constraint. There are 93 overlaps longer than 15 bases. All of these would be
removed by the ECOGENE constraints, which is therefore expected to have a
noticeable negative sensitivity impact.

6.4.1 Experimental validation

We compare the different approaches using the predictions from a very simple
codon preference based gene finder — the simplest model described in [43]. The
gene finder has been trained on F.coli NC 000913 and applied to predict genes
in the same genome. It overpredicts quite a lot — a total of 10799 predictions
for the genome, which has 4145 known genes.

We ran the constrained Markov chain using the gene finder predictions as
initial set, applying our adaptations of the both the Genemark constraint, the
ECOGENE constraint and the Glimmer3 constraint. We also tested the local
heuristic versions of the Genemark and ECOGENE constraints. The results
are summarized in table 6.1.

Both the Genemark and ECOGENE heuristics achieve quite impressive
improvement compared to the initial set. Our global optimization achieves
better sensitivity than ECOGENE and better specificity than Genemark, but
seen as a combination of the measures, the result is not significantly better.

Note that the optimal or highest scoring set of predictions subject to the
constraints is not necessarily the most successful, but it is the one that most
faithfully reflects the confidence scores assigned by the gene finder.

The purely declarative CHR implementations of genemark or ECOGENE
rules are quite slow (hours), e.g. it essentially considers each pair of constraints
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Method #predictions | Sensitivity | Specificity | Time (seconds)
initial set 10799 0.7625 0.2926 na
Genemark rules 5823 0.7558 0.5379 14
ECOGENE rules 4981 0.7148 0.5947 1.7
global optimization 5222 0.7201 0.5714 75

Table 6.1: Accuracy of predictions using different overlap resolution ap-
proaches. Note that the results for the ECOGENE heuristic may vary de-
pending on execution strategy - in case of above results, predictions with lower
left position are considered first.

resulting in O(n?) complexity, n being the number of predictions in the initial
set. However, with proper control in place (using the relevant recent states
optimization described in section 6.3.1), they can be made to run very fast
(less than two seconds). The running time for the global optimization is slower
— it takes a little more than one minute. This is still acceptable.

6.5 Conclusions

We presented a novel way to post-process gene prediction results based on
constrained global optimization. Contrary to the heuristic approaches our ap-
proach provides an optimality guarantee — the final set of prediction will be
the maximally scoring set that satisfies the imposed constraints. We have in-
corporated existing heuristic methods with the optimization procedure using
inconsistency rules implemented in CHR. Currently, the approach has simi-
lar accuracy to the heuristic methods. The results indicate that maximizing
the sum of scores have the effect of including more short predictions. This
could be addressed weighting the scores by prediction length. We also plan
to experiment with different constraints to achieve better accuracy. Our ap-
proach is limited to local overlap constraints and is not well-suited for global
or long-distance constraints.

We are not the first to use dynamic programming based approaches to post-
processing of gene predictions. Version 3 of Glimmer [56] use a custom dynamic
programming algorithm which is similar to the present approach, but incor-
porates only the maximal overlap constraint. Another difference is that our
approach is expressed as a declarative PRISM program and can therefore uti-
lize the generalized Viterbi algorithm. Our approach is similar to constrained
HMMs in PRISM, which has previously be applied to other biological sequence
analysis tasks [42, 41]. A main difference is that we express constraints with
CHR rules.

CHRiSM][196] already combines CHR and PRISM and is to our knowledge
the first system to do so. CHRiSM assigns probabilistic semantics to CHR rules,
which are interpreted as chance rules — e.g. even if a rule head is matched the
rule is only applied with a certain probability. The main difference with our
approach is that we use ordinary CHR rules in conjunction with a PRISM pro-
gram, although ordinary CHR rules may be seen as a special case of CHRiSM
rules, where the probability of invocation is one. Additionally, the form of the
CHR rules we use is restricted (inconsistency rules) and they are only used in
the constraint checking part of the PRISM program. It would be interesting to
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use CHRiSM as a method of incorporating soft constraints with our approach,
e.g. redefining the inconsistency rules as CHRiSM chance rules.

Acknowledgement This work is part of the project “Logic-statistic model-
ing and analysis of biological sequence data” funded by the NABIIT program
under the Danish Strategic Research Council.
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Abstract

The Viterbi algorithm is a classical example of a dynamic programming al-
gorithm, in which pruning reduces the search space drastically, so that an
otherwise exponential time complexity is reduced to linearity. The central
steps of the algorithm, expansion and pruning, can be expressed in a concise
and clear way in CHR, but additional control is needed in order to obtain the
desired time complexity. It is shown how auxiliary constraints, called trigger
constraints, can be applied to fine-tune the order of CHR rule applications in
order to reach this goal. It is indicated how properties such as confluence can
be useful for showing such optimized programs correct.

7.1 Introduction

Hidden Markov Models (HMMs) are probabilistic finite state machines that
for each transition emits a symbol from a finite alphabet, also by probabilistic
choice. HMMs are commonly used for modeling and analysis of, e.g., biological
sequence data and for speech recognition; see, e.g., [61, 104]. Given a spe-
cific HMM and an observed sequence over the alphabet, prediction means to
find the most probable path, i.e., sequences of states, by means of which the
sequence may have been produced; such a path is called a Viterbi path. Infor-
mally speaking, a Viterbi path represents the most feasible interpretation or
explanation of the given sequence; in the biological case, the sequence may be
DNA and the Viterbi path indicates the most believable shifts between coding
and non-coding regions, and perhaps details concerning introns and exons [61].

HMDMs owe much of their popularity to the existence of efficient algorithms
for training and, as we consider here, prediction in terms of the classical Viterbi
algorithm [218]. It is a dynamic programming algorithm that gradually extends
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optimal paths so they cover a longer and longer prefix of the sequence, and
eventually the entire sequence. The algorithm keeps track of one optimal path
ending in each state s for the sub-sequence seen so far; call this set of partial
paths X. Any non-optimal path is discarded. In the next step, a new set
of optimal paths is found among the possible extensions of any o € ¥ with
one more state. The time complexity is O(n - k?) and the space complexity is
O(n - k) where n is the sequence length and & the number of states.

In this paper, we investigate how well the Viterbi algorithm can be ex-
pressed in CHR, considering both conciseness and efficiency. CHR, or Con-
straint Handling Rules [70, 71|, was introduced as a declarative language for
writing constraint solvers, but has shown to be very useful for a variety of au-
tomated reasoning tasks, and attempts have been made to use it as a general
language for describing algorithms.

We show that the fundamental steps in the Viterbi algorithm can be exposed
very clearly in CHR, but to reach the optimal time complexity, we need to
introduce some techniques. We suggest to use trigger constraints, by means
of which a program’s operational behavior can be fine-tuned. For confluent
programs, this can be analyzed in a systematic way, and as a more general
case, we put forward informally the notion of “relative confluence” based on a
more flexible state equivalence (as compared with the usual logical equivalence
of states). However, in order to reach the optimal time complexity, we need
to make additional transformations that reflect the underlying CHR system’s
search and matching. This may be less satisfactory from the point of view of
declarative programming, but may inspire to the development of new automatic
analyses and transformations to be included in CHR, implementations.

7.2 A concise Viterbi-like algorithm in CHR

The fundamental parts of the Viterbi algorithm can be expressed in CHR as
shown in fig. 7.1; the specific HMM is encoded as a set of constraints of the
forms

trans(q;,q2,p1) and emit(qs,¢,ps2), where p; is the probability to transit
from state ¢; to g2, and ps is the probability to emit the letter ¢ in state gs.
For simplicity and wlog, we assume a unique initial state, consistently called
q0, and that any state serves as a final state. The intuitive meaning of a con-
straint path(E,q,p,n) is that there exists a partial path starting in q0 and
ending in ¢ with probability p, and E is the remaining part of the sequence
that needs to be analyzed in order to complete a full path; for ease of pro-
gramming, the argument 7 represents this partial path in reversed order. The

:- chr_constraint path/4, trans/3, emit/3.

expand @ trans(Q,Q1,PT), emit(Q,L,PE), path([L|Ls],Q,P,PathRev) ==
P1 is P*PT*PE, path(Ls,Q1,P1, [Ql|PathRev]).

prune @ path(Ls,Q,P1,_) \ path(Ls,Q,P2,_) <=> P1 >= P2 | true.
Figure 7.1: A naive Viterbi-like algorithm in CHR
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initial query should be stated as “:- HMM, path(L,q0,1,[]1)” where HMM
is an encoding of the particular HMM and L a sequence to be analyzed.

Termination follows from the fact that the expand rule always reduces the
length of the first argument in the involved path constraint. A correctness
proof, which is left out due to space limitations, can be made by induction
showing that prune will eventually remove any non-optimal path, but always
leaves an optimal one for any prefix of the sequence, and that expand produces
all possible extensions of an optimal path (for any proper prefix). This proof
does not need any assumptions about the order in which the rules are applied.’

Let us informally analyze the time complexity of this program. For sim-
plicity we count only the number of constraints that are created during the
derivation; for a detailed analysis, we may refer to the methods of [75, 54].2
Assuming a naive, nondeterministic semantics, we may observe derivations that
are exponential in the length of the sequence to be analyzed; this is the case
when, e.g., expand is applied as long as possible, before any application of
prune. Our benchmarks (see appendix) confirm the exponential behaviour;
interestingly, when swapping the order of the rules (i.e., prune first), our tests
seem to indicate® a time complexity of O(n?*), although we cannot present a
proof for this hypothesis. This is of course far too slow for any interesting
application, and also unsatisfactory as it is known that the algorithm can run
in linear time when written in an imperative language.

7.3 Fine-grained control by trigger constraints

Linear time complexity requires an optimal interleaving of the expand and
prune rules, so that any path constraint, which will be pruned sooner or later,
is not expanded. We can sketch a class of derivations of linear size by the
pseudo-code shown in fig. 7.2. As an attempt to obtain a similar flow of con-

seq:= L;
while seq # [1 do
1) apply expand as long as possible to constraints of
form
path(seq,q,p, ), for any ¢, p and m;
2) apply prune as long as possible;
3) seq:= tail(seq);

Figure 7.2: Pseudo-code for optimal control.

trol in CHR, and we introduce what we call trigger constraints by means of
which we can control the detailed procedural semantics of the underlying im-
plementation. Fig. 7.3 shows an adaptation of the previous version with trigger
constraints. The initial query should be stated as

“:- HMM, path(L,q0,1,[]),trigger(L)”. During execution, the trigger

INotice that the program of fig. 7.1 is not confluent, although intuitively very close; we
consider this in more detail in section 7.5 below.

20ur simplified time complexity measure abstracts away the cost of search and matching
performed by the CHR system.

3This and other estimates for time complexity are made by inspecting higher order dif-
ferences for the measured runtimes.
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:- chr_constraint path/4, trans/3, emit/3, trigger/1.

expand @ trans(Q,Q1,PT), emit(Q,L,PE),
path([L|Ls],Q,P,PathRev), trigger([L|Ls]) ==>
P1 is P*PT*PE, path(Ls,Ql ,P1,[Q1|PathRev]).

prune @ path(Ls,Q,P1,_) \ path(Ls,Q,P2,_) <=> P1 >= P1 | true.

step @ trigger([_|Ls]) <=> trigger(Ls).

Figure 7.3: Viterbi with trigger constraints, version 1.

constraint will refer to decreasing remainders of the sequence, and for each such
iteration provide the relevant applications of expand and prune. This preserves
the logical meaning of the original program, since 1) the trigger constraints are
added only in the head of the original rules, 2) new rules concerning triggers
only, e.g., the step rule, do not unify any arguments, and 3) no derivation
is stopped in a state where the original program would be able to extend the
derivation. Notice that such a proof would need to refer to the operational
semantics of the underlying implementation as well as to the order of the con-
straints in the initial query.

We sketch an analysis of the time complexity based on the operational
semantics of standard CHR implementations. No rule will execute before
trigger (L) is called in the initial query, and when this happens, expand will
apply as long as possible for any path constraint referring to L similarly to
what is expressed in line 1 in fig. 7.2, however, interleaved with prune (line 2).
When this phase is done, the constraint trigger (L) reaches the step rule and
mutates into trigger (tail(L)) and the process repeats for tail(L), and so on,
a thus leading to derivations of linear length, as the number of steps in each
such iteration is independent of the sequence length. For a fully connected
HMM with k states, k? new path constraints are created in each iteration, so
the length of the entire derivation becomes O(n - k?). However, the actual time
complexity may become higher as we did not count the time for matching of
list arguments in the expand and prune rules, which may, in the worst case,
add another factor n to the time complexity, thus O(n? - k?). In fact, our
runtime tests shown in the appendix suggest O(n?) for both for a randomly
generated sequence and a worst case sequence that repeats a single letter. The
latter implies that the comparison of two list arguments always traverses the
shortest sequence to the very end; the benchmarks indicate a huge constants
factor between the two.

In order to reduce time for matching, we may add a new argument repre-
senting the length of the sequence to path constraints and let the trigger depend
on this length only; the resulting program is shown in fig. 7.4. Assuming an im-
plementation that applies a suitable indexing on the first argument, we would
expect this to lead to a linear algorithm in the length of the sequence. How-
ever, benchmarks indicate worst case and average complexity of O(n?), which
we may hypothesize relates to a non-optimal search for path constraints. Swap-
ping the expand and prune rules only changed the figures with a few percent.
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:- chr_constraint path/5, trans/3, emit/3, trigger/1.

expand @ trans(Q,Q1,PT), emit(Q,L,PE),
path(N, [L|Ls],Q,P,PathRev), trigger(N) ==>
P1 is P*PT#PE, N1 is N-1, path(N1,Ls,Q1,P1,[Ql|PathRev]).

prune @ path(N,_,Q,P1,_) \ path(N,_,Q,P2,_) <=> P1 >= P2 | true.

step @ trigger(N) <=> N > 0 | N1 is N-1, trigger(N1).

Figure 7.4: Viterbi with trigger constraints, version 2, with length arguments.

To finally overcome these problems and to reach the theoretically best time
complexity for Viterbi in CHR, we needed to add explicit passive declarations*
and additional code to remove non-current path constraints; our experiments
showed that both additions were necessary. Such a program is shown in fig. 7.5.
We expect that a detailed analysis can prove linear complexity. Indeed, our

:- chr_constraint path/5, trans/3, emit/3, trigger/1, zap/1.

expand @ trans(Q,Q1,PT) # Idl, emit(Q,L,PE) # Id2,
path(N, [L|Ls],Q,P,PathRev) # Id3, trigger(N) ==>
P1 is P#PT#PE, N1 is N-1, path(N1,Ls,Q1,P1,[Ql|PathRev])
pragma passive(Idl), passive(Id2), passive(Id3).

prune @ path(N,_,Q,P1,_) \ path(N,_,Q,P2,_) <=> P1 >= P2 | true.

step @ trigger(N) <=> N > 0 | zap(N), N1 is N-1, trigger(N1).
zap(N) \ path(N,_,_,_,_) # Id <=> true pragma passive(Id).
zap(_) <=> true.

Figure 7.5: A linear time Viterbi algorithm in CHR; passive declarations and
removal of non-current path constraints.

benchmarks indicate that it does stay linear until sequence lengths of more than
10,000 and increases significantly from around 20,000 and upwards. While a
sequence of length 10,000 can be analyzed in 30 sec., it takes 45 minutes for
length 100,000. We expect that this is related to the memory being exhausted
due to extreme stack sizes.

7.4 Benchmarks

The different variants of the Viterbi algorithm have been tested for a fixed, fully
connected HMM with 4 states (plus a start state that cannot be re-entered)
and an emission alphabet of 4 letters. We have measured runtimes as functions

4Passive declarations are a low-level device that suppresses certain firings of rules; for
details, see, e.g., a manual for any of the major CHR versions in Prolog.
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of the sequence lengths. In most cases, we test on a randomly generated se-
quence, considering it as “typical” or “average”. Tests were made with SICStus
Prolog 4.0.4 on a Macintosh 2.4 GHz Intel Core 2 Duo with 4GB RAM, and
runtimes have been measured using SICStus Prolog’s statistics(runtime,
...) device that ignores any time spent on garbage collection and other mem-
ory management tasks. Runtimes below 10 seconds were taken as average of
10 runs, whereas higher ones were measured by a single run. Space complexity
was not considered.

Fig. 7.6 shows runtimes for the naive algorithm (fig. 7.1) for the two alter-
native ordering of its rules. The top curve to the left, for the expand rule first,
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Figure 7.6: Naive algorithm with different rule orders; x-axis n, y-axis ms
log-scaled.

confirms our expectation of exponential complexity. Swapping the rules so that
prune comes first, reduces the complexity drastically. We have measured for
random sequences (the “typical”) plus the worst case for this algorithm, which
are sequences that repeat a single letter. The right part shows the prune first
version for the two sorts of sequences for n up to 150. An inspection of higher
order differences made from the actual figures indicates that O(n?) is a rea-
sonable hypothesis for both typical and worst case; the worst case is about 3
times slower than the typical for n = 150.

Fig. 7.7 shows runtimes for the versions that use trigger constraints. The
two top curves to the left shows typical and worst case for the version where
triggers use lists, cf. fig. 7.3. In both cases, differences seem to indicate O(n?);
for n = 150 there is a factor 24 between typical and worst case. The measure-
ments when triggers use the list length, as opposed to the actual list, is shown
as the lowest curve in the left part and continues as the top curve to the right.
Differences suggest O(n?); the typical and worst case used above provides the
same runtimes and swapping the expand and prune rules changes only a few
percent. Finally, the right part of fig. 7.7 shows also runtimes for the fully op-
timized version of fig. 7.5 with passive declarations and removal of non-current
path constraints. It stays linear up to above n = 10,000, and for larger values,
20,000 and upwards (not shown), the time grows higher, most likely because
memory begins to be exhausted due to stack sizes. For n = 10,000, the time
is about half a minute and for n = 100, 000, 45 minutes.
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7.5 Conclusion: Methodological considerations, future
and related work

We have shown an implementation of the Viterbi algorithm in CHR, starting
from an abtract and concise specification expansion and pruning. Systematic
extensions by triggers and other techniques lead to an implementation with
ideal time complexity. The Viterbi algorithm represents a larger class of dy-
namic programming algorithms for which we believe that our techniques can
be applied.

The naive program of fig. 7.1 is not confluent due to the fact that, when two
paths exist for the same sub-sequence and with the same probability, prune may
nondeterministically get rid of an arbitrary one of them, leading to different
new states that are not logically equivalent. However, it satisfies a requirement
that we may call relative confluence based on an application specific state
equivalence relation. If, for example, two states differs only by the exchange of
path(L,p,q,m) for path(L,p,q,7), we consider these states equivalent.

Our plans for future work include the formalization of relative confluence
and to generalize known results for confluent programs [71, 1] accordingly. We
believe that this can be very useful as many interesting non-confluent programs
are relatively confluent. For confluent programs, it is possible to show as a gen-
eral result, that the addition of trigger constraints — satisfying the requirements
noticed above for the program of fig. 7.3 — preserves the logical meaning of the
program as concerns its original constraints.

Additional optimizations were needed in order to obtain the best time com-
plexity, based on detailed knowledge about the underlying machinery. Our
experience in doing the exercise for the Viterbi algorithm may inspire to more
advanced, automatic analyses and transformations being applied in CHR im-
plementations in order to promote declarative programming with competitive
execution times. We may also consider the ideal of a true separation of logic
and control, so that we might do with the naive program of fig. 7.1, comple-
mented by an additional control specification, which may resemble our abstract
algorithm in fig. 7.2.
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An attempt to obtain such a separation have been done by rule priori-
ties [112]. The priority of each rule is expressed in terms of an arithmetic
expression referring to variables in the head of the rules. While the control
mechanism appears as decorations to the rules, rather than infiltrating the
code as our triggers do, it is also clear that the rules need to be designed in the
first place so that the rule heads actually contain the necessary information.
For the Viterbi algorithm it seems obvious that the sequence length needs to be
present in order to express relevant priorities. We have not tried to express the
Viterbi algorithm in CHR, with rule priorities, but it seems to require advanced
algebraic skills to encode the desired control pattern.

There has been other work studying CHR for expressing algorithms [111].
We will emphasize [197] that gives a detailed analysis of how Dijkstra’s short-
est path algorithm [59] can be implemented in CHR; specifically, the authors
studied the use of priority queues. Similar techniques have been employed
by [36] for probabilistic abductive logic programming in CHR, by [19] for soft
constraints and by [134] to express imperative control constructs in CHR. We
have not seen any earlier, systematic approach for adding detailed procedu-
ral control to confluent (or relatively confluent) programs in order to get the
best out of the pruning rules. The Viterbi algorithm has been formulated as a
constraint problem by [41, 50], but not in CHR.

Finally, we notice that CHR is suited for describing the fundamental steps
of interesting algorithms, but it is difficult to consider it as a serious imple-
mentation language at present. While the theoretically best complexity often
can be reached in CHR, there is typically a huge constant factor due to the
overhead in the underlying CHR and Prolog runtime systems. For the Viterbi
algorithm, it is thought provoking that it can be implemented very efficiently
by a handful of lines of imperative code.
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Abstract

Regular expressions is a familiar and widely used formalism which is integrated
in many modern programming languages. Contemporary versions of regu-
lar expressions are typically extended variants whose expressive power goes
beyond regular languages. Extended regular expressions are inherently non-
deterministic and require procedural control such as backtracking. We propose
a probabilistic version of extended regular expressions, where the affinity for
strings and matches can be learned from examples. The procedural control se-
mantics are replaced by a probabilistic semantics, where the possible matches
are ranked by their probability and the most probable match is the one re-
turned. In the present paper, we show how probabilistic extended regular ex-
pressions can be used to model repeats in DNA. To deal with cases where the
expressive power of probabilistic extended regular expressions is insufficient, we
extend the syntax to integrate external functions, which may be deterministic
or probabilistic.

8.1 Introduction

Regular expressions are specifications for matching strings of regular languages,
i.e. they are compact grammars.

Implementations of regular expressions are available as syntactic extensions
in many popular scripting languages such as Perl, Python and Ruby in which
they are widely used because they conveniently and compactly allow construc-
tion of adhoc parsers for various purposes. Because of their convenience and
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accessibility, regular expressions have enjoyed a lot of success in both the bioin-
formatics and natural language processing communities.

Similarly, Markov models — in particular Hidden Markov Models — have
become ubiquitous in biological sequence analysis. It is, however, still a con-
siderable task to specify a probabilistic model for a particular purpose, even
using one of the available off-the-shelf implementations.

In this paper we propose a new formalism which is a probabilistic variant
of regular expressions, combining the convenience and expressivity of extended
regular expressions with the power of probabilistic models. In our probabilistic
variant, choice operators are given a probabilistic semantics, such that a prob-
abilistic regular expression — in addition to defining the language it recognizes
— defines a probability distribution over all strings belonging to this language.
Our probabilistic regular expression formalism embraces the operators found
in extended regular expressions [29] and extends the syntax to invoke external
functions.

We exemplify probabilistic regular expressions by demonstrating how they
may be applied to modeling and matching repeats in DNA. Repeats in DNA
play a variety of biological roles and can have major phenotypical effects. This
makes repeats an important area to study.

8.1.1 Organization of the paper

Section 8.2 introduces regular expressions and extended regular expressions.
Section 8.3 describes our probabilistic variant of extended regular expressions.
Section 8.4 describes how probabilistic extended regular expressions may be
used to model repeats in biological sequences. Section 8.5 presents related
work and section 8.6 presents conclusions and perspectives.

8.2 Regular Expressions

Regular expressions date back to Kleene [109] where they were initially used
as a formalism to describe a language of inputs to nerve cells. Regular ex-
pressions transited from being a mathematical curiosity to being a practically
applicable tool for sequential pattern matching due to a compiler written by
Ken Thompson [211]. Regular expressions and automata have had a large in-
fluence on compiler theory and have been part of computer science curriculum
almost as long as the field has existed [49]. For a large part, regular expressions
have been popularized through the Unix grep utility [98] and via integration
in popular editors and scripting languages.

The syntax of regular expressions have been relatively standardized through
the POSIX specification [157], but there are many flavors of regular expressions
each with their own idiosyncrasies. Besides syntactic differences there are also
semantic differences, and the various implementations do not all have the same
expressive power. A distinction which we emphasize is the difference between
reqular expressions which can be compiled to finite automata and extended
reqular expressions which includes backreferences. We borrow this terminology
from [29]. It should not be confused with the POSIX distinction between basic
and extended regular expressions. By our definition, both POSIX classes are
extended regular expressions.
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The brief account of regular expressions provided in the following is based
on the syntax and functionality of our own implementation, which is in turn
based on the POSIX specification [157].

In the simplest form, regular expressions are sequences of symbols to be
matched in the order they are specified. Such strings may, however, contain
(possibly parenthesized) subexpressions and special symbols called operators.
These operators make it possible to match a large set of sequences using a
relatively compact regular expression. The operators are divided into wild-
cards, repetition, alternation, anchors and backreferences. Regular expressions
are composeable, i.e. the concatenation of two regular expressions is itself a
regular expression.

Repetition is usually specified using the Kleene star * which implies that
the preceding expression should be matched zero or more times. For instance,
the expression a* matches {e, a,aa,aad, . . . }, where € is the empty string.

Variants include the + operator which implies that the preceding expression
should be matched one or more times and the ? operator which implies that
the preceding expression should be matched zero or one time. Finally, it is also
possible to specify a custom range of the number of times an expression should
be matched with the {m,n}, where m is the minimum number of times and n is
the maximum.

Wildcards are substitutes for a range of different characters. The dot wild-
card operator matches any symbol. Range operators, encapsulated by brackets,
can be used to specify a range of different symbols to be matched. For instance,
[a-z0-9] matches a lower case letter or a digit.

The alternation operator — embodied by the bar character | — implies
matching either the regular expression to the left of the bar or the regular
expression on the right. All variants of wildcards can be specified using the
alternation operator and all repetition operators can be expressed using the
Kleene star and the alternation operator.

In addition to this, anchors include ~ which matches any prefix and $ which
matches any suffix. Note that ~ can only occur in the beginning of a pattern
and $ can only occur at the end of a pattern.

8.2.1 Extended Regular Expressions

Parenthesized sub-expressions that do not have an operator following the ex-
pression are called capture groups. They are normally used to indicate which
parts of the match of a regular expression should be extracted from the se-
quence being matched.

The matches captured by such a group can also be referenced from within
the regular expression using a backreference. A backreference is an expression
\\n where n is an integer referring to the n’th capture group. The backreference
serves to match the same characters that was matched by the capture group.

This extension to regular expressions is essential to model repeats. Repeats,
e.g., of the kind rr, belong in the of group context-sensitive of languages. We
can model a limited set of such languages using the backreference operator.
For instance, the language rr can expressed using the expression (.*)\\1. The
first part (.*) specifies a capture group; The substring that this capture group
matches must then be matched again when we encounter the backreference
\\1. The addition of capture groups and backreferences does not, however,
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add capability to recognize all context-free languages [29].

The cost of increased power is exponential rather than linear computational
complexity in the worst case. Regular expression engines with support for
these operators usually implement them using backtracking which potentially
explores an exponential number of solutions.

With capture groups and backreferences, the declarative specification of
regular expression may become ambiguous and this necessitates procedural
control — i.e. the order in which matches are tried becomes relevant.

Usually, a deterministic regular expression engine provides you with only
one match (which match depends on the semantics). Most engines have greedy
semantics where sub-expressions match as much of the input sequence as pos-
sible before attempting to match the rest of the string with the next sub-
expression. Upon failure, the engine backtracks only as little as necessary.
Hence, in the matching returned by such an engine, the left-most sub-expressions
will have matched as much of the input sequence as possible. Oppositely, in
engines with reluctant semantics, left-most sub-expressions match as little of
the input string as possible.

This can make it very difficult to understand the precise meaning of a
regular expression, since the expression may can be quite complex and the
implementations have different procedural semantics which are often not well-
documented.

8.3 Probabilistic Extended Regular Expressions

In addition to defining language membership, a probabilistic regular expression
(extended or not) assigns a probability to each string belonging to the language
it defines. The probability of a string is defined as the sum of the probabilities
for all possible ways to match that string. In the following, a match is taken to
mean a particular way to match a string. By giving each match a probability,
probabilistic regular expressions provide a way to resolve non-determinism of
regular expressions, i.e. to rank ambiguous matches of the expression in a
string. This is useful for queries beyond mere language membership, e.g., to
extract the part of a string which is matched by a capture group.

In the face of non-determinism of a (non-probabilistic) regular expression,
the procedural semantics of implementation determines what part of the string
is extracted as matching the capture group. This implies that the user needs
to know this procedural semantics and craft the regular expression in some
ingenious way, exploiting the procedural semantics to extract the relevant part
of the string.

Probabilistic regular expressions present an alternative to the usual proce-
dural semantics by making it possible to choose between ambiguous matches
by selecting the most probable match for a sequence. For this to make sense,
the probabilities must be assigned in a sensible way, e.g. maximizing likelihood
of observed examples of strings of the language.

An other benefit of the probabilistic semantics is that is allows random
sampling of strings of the language it represents even if the language is infinite.
Such sampling does not fit well with a traditional deterministic semantics,
where strings much be generated in a particular order.

Any (non-extended) regular expressions can be compiled to a Deterministic
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Finite Automaton (DFA). The probabilistic variant of the regular expression
can be compiled to a first order Markov chain by labeling each of the transitions
in the DFA with probabilities. A Markov chain is a probabilistic automaton
which is a characterization of a process with the Markov property; Markov
chains have limited (fixed-order) memory of visits to past states, e.g. in a first
order Markov chain, the probability of the next state depends solely on the
current state.

Since the matching of backreferences requires memory for the capture group
visited in the past, extended regular expressions cannot be represented as sim-
ple Markov chains, but require unbounded memory of the past.

8.3.1 Implementation

Our implementation of probabilistic regular expressions translates a given ex-
pression into a recursive data structure which is used to guide a probabilistic
grammar. The implementation is based on the probabilistic logic programming
language PRISM [175], which is an extension of Prolog with random variables
and efficient algorithms for probabilistic inference.

The regular expression is compiled to a tree structure representation using
a Definite Clause Grammar [153]. An internal node in the tree structure cor-
responds to an operator of the regular expression and the children of the node
are the sub-expression(s) to which the operator apply. The leaves of the tree
are either concrete symbols or epsilons, i.e., matching the empty string. The
nodes contained in the internal grammar representation is alternation, Kleene
star repetition (augmented with counters), capture groups and backreferences.
All other operators are translated into these prior to constructing the internal
representation. Choice operators (alternation and repetition) are labelled with
a unique identifier in the internal representation which is later used to associate
it with a particular random variable governing the choice represented by the
operator.

The internal representation is used to guide a probabilistic grammar imple-
mented in PRISM. Inferences with this probabilistic grammar are performed
using the mechanisms provided by the PRISM system.

The choice operators are implemented using special rules, in which proba-
bilistic choices are made in the rewriting process.

8.3.2 Probabilistic Semantics

Probabilistic choices are assumed to be independent and hence the probability
of a match is the product of the probabilities of the individual probabilistic
choices made.

A Kleene star is interpreted as a boolean probabilistic choice, either match-
ing the preceding expression and performing the choice again; or matching the
empty string e:

€ with probability P(e)

FBXPRA { EXPR EXPR* with probability 1 — P(e)

(8.1)
This defines a geometric probability distribution over the number of times that
EXPR is matched and implicitly a geometric length distribution over the strings
matched by EXPRx.
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Similarly, an alternation is also modeled as a boolean probabilistic choice:

EXPR1 with probability P(EXPR1)

EXPRI|EXPR2 { EXPR2 with probability 1 — P(EXPR1)

(8.2)

Note that this rule recursively covers expressions with multiple alternations, e.g.
al|blc which may be interpreted as al (b|c), and that such expressions defines
valid probability distributions, i.e. where the probabilities of alternatives sum
to one.

Backreferences are matched symbol by symbol in a non-probabilistic way
as in usual extended regular expressions.

Note that in the usual interpretation of regular expressions, the two ex-
pressions (alblc)* and (alb)*(alblc)* would be equivalent, i.e., they would
reduce to the same minimal DFA. In the probabilistic interpretation they are
different: While both of the models are able to generate the same strings as
the DFA, they define distinct distributions over these strings. Each occurrence
of a choice operator is modeled using a distinct random variable.

8.3.3 Inference with probabilistic regular expressions

Several forms of probabilistic inference are available using the underlying PRISM
system.

Prior to performing any inference, the regular expression must be compiled.
In our implementation, this is done using the goal regex_compile (Regex),
where Regex is a regular expression. In the inference examples below, we
assume that the regular expression >~ (.*) (\\1*)$’ has been compiled.

Training is the process of learning the probabilities associated with the prob-
abilistic choice variables from examples. In the supervised setting, the training
algorithm is provided with a few examples of string that the probabilistic reg-
ular expression matches and specification of what parts of the string matches
which capture groups.

For instance we train our regular expression on the simple sequence tatatata:

regex_learn([tatatatal, [[ta,tatatall).

The predicate is given a list of strings as first argument and a corresponding
list of expected matches as the second argument. In this case, the first of these
matches corresponds to the repeat unit and the second corresponds to what
is matched by the group with the backreference. Note that the expression is
ambiguous; the matches list could also have been [[tata,tatal] in which case
the probabilities learned would be different.

We can also train in an unsupervised setting, where we do not assume
knowledge about exactly how the expression matches, but only that it matches,
by calling the regex_learn with only the strings as argument.

PRISM provides several learning algorithms including the well-known EM
algorithm which derives probabilities as to maximize the likelihood of the ex-
amples.
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Matching using probabilistic regular expressions is done using the general-
ized Viterbi algorithm provided by the PRISM system. Given a pattern and a
string, the Viterbi algorithm selects a particular matching such that the prod-
uct of the probabilities of probabilistic choices made is maximal. Matching is
done by calling one of the variants of the regex_match predicates. For instance,

regex_match(tatatata,M,P).

will unify M to a list containing the most probable matches for the string,
e.g., either the list [ta,tatatal] or the list [tata,tatal] depending of the
parameters of the model.

Sampling which means generating matching strings of a specified regular
expression is usually not possible with non-probabilistic regular expression im-
plementations. The obvious barrier is the procedural control of the generation
process. Regular expressions may match an infinite number of different strings.
Which of these strings should be generated? With probabilistic regular expres-
sions, this issue is addressed by deciding what string to generate according to
its probability. Repeated sampling will result in a collection of different strings
from the language, which, in the limit, are representative of the probability dis-
tribution of the probabilistic regular expression. Sampling is done by calling
the regex_sample goal:

regex_sample(S,M)

This will unify S to a repeat sequence matching the regular expression band
M to a list of matches of the capture groups of the regular expression on that
string. It is also possible to do constrained sampling, where the matches M are
given. Notice, that in this case, the generation process can fail and several
attempts may be necessary to sample a string.

8.4 Modeling Repeats in Biological Sequences

Finding repeats is an important task in biological sequences analysis. There
are countless variations of the problem depending on the type of repeats, the
distance between repeats and any combination of such constraints. In addition
to this, there are several classification schemes with overlapping terminology.

The term repeat is used here to mean multiple — in some sense similar —
sub-sequences, which we call repeat units, occurring in a sequence.

To avoid confusion, we briefly mention the satellite terminology which seems
quite common in biology textbooks, e.g. [24], although in the following the
variations of repeats we address is based mostly on the categorization in [103]
where that terminology is avoided. The term satellite DNA is refers to long
repeated sequences of the DNA that when centrifuged form small satellite bands
in around the main band, since the repeats have distinct, but monotone GC
content and hence weight. Mini- and microsatelittes are usually too small
to form visible centrifugation bands, but the name has stuck. Microsatellites
have repeat units of less than 13 bp and total length of less than 100kbp and
minisatellites are longer repeats of up to 20kbp with repeat units up to 25 bp
[24].
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A simple repeat is a oligonucleotide pattern repeated consecutively in a
stretch of DNA. The terminology used describe these is somewhat overloaded,
since they are also called tandem repeats, short sequence repeats or microsatel-
lites.

Simple repeats may occur through a mutational event — often, a replication
slippage — called tandem duplication, in which the pattern is copied a number
of times. The mechanisms leading to such mutations are still subject to study.
Simple repeats have a diverse number of effects in various organisms [215].
Tandem repeats in genes are associated to a range of diseases, and repeats in
non-coding DNA play key roles in gene regulation. In bacteria, they are known
to mediate frameshifts.

Tandem repeats, for repeat units of a certain length, may be identified using
the regular expression, where we assume a repeat unit of length two:

Regex 1. (..)\\1x

The first capture group identifies a dinucleotide and the second capture group,
which contains a backreference to first, may be repeated zero or more times,
e.g., this pattern recognizes strings like CT and TATATATA.

The simple tandem repeat is a special case of a direct repeat — a repeat
which occurs on the same DNA strand. We can model the general case of
non-interrupted direct repeats with arbitrary oligonucleotide lengths using the
expression:

Regex 2. (.#)\\1x

In this expression the first capture group matches a substring of any length
and the backreference in the following capture group matches repetitions of
the matched sequence.

Direct repeats may also be separated by spacers. Spacers may be any length
of bases and may vary between repeats. A spacer is a modest addition to the
previous expression:

Regex 3. (.*) (.¥\\1)*

There is a distinction between local repeats and global repeats. In a local
repeat the spacer is short and in a global repeat it is much longer, say thousands
of bases. However, the distinction somewhat is arbitrary as there are no agreed
upon limit on the length of the spacer in local repeats. We may then choose
such a limit ourselves; the following expression looks for global direct repeats,
where we take global to mean separated by at least a 1000 bases:

Regex 4. (.*)(.{1000,1000%}.*\\1)*

The expression .{1000,1000} matches 1000 consecutive bases and is followed
by the .* expression which matches any number of bases following that.
Repeats may also be be inverted, e.g. for instance:

5...GACTGC...GCAGTC...3

The reverse of the complement® of the first substring occurs later in the string.
Note that this is inherently palindromic and require the power of a context-
free grammar. Regular expressions extended with backreferences only cannot

n the double-helical DNA structure A pairs with T and C pairs with G. Complemented
means substituting the original base for the base it pairs with.
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match such repeats if they are of arbitrary length. If the length of the repeat
unit is known in advance, e.g. say four, then this limited palindromicity can
be modeled using a somewhat clumsy expression:

Regex 5. (.)(.)(C) ) \\1\\2\\3\\4

This, however, quickly becomes bothersome and it would be even more bother-
some, although possible, to construct an expression which also deals with the
situation where second half of the repeat is complemented.

As a way to add additional expressive power to the probabilistic regular
expression with only minimal syntax extensions, we have added convenient
way for users to integrate their own functions in regular expressions. The
function integration operator #{. ..} calls a user defined function. It can, for
instance, be used to reverse and complement a sequence:

Regex 6. (.*) .x#{revecmpl(\\1)}

In this expression the revmpl goal is called using the match represented by \\1
as argument. The function returns the reversed and complemented sequence,
which is matched in its place.

A not so common type of repeat is mirror repeats — also called everted
repeats — in which the repeat element is copied in the 3’ — 5’ direction
rather than the 5 — 3’ in which DNA is processed. Such repeats may lead
to biologically important tertiary structures. Naturally, we can model such
repeats like the usual types of repeats by reversing the sequence.

A complication of repeats in biological sequences is that they do not always
occur in integer multiples [10]. For instance, a series of repeated elements may
be flanked by a prefix or suffix of the repeat unit. Such half-repeats can also
be straight-forwardly modeled using probabilistic regular expression:

Regex 7. (.*) (%) A\\1\\2) *\\17

In this expression we assume the repeat unit to consist of two parts, each
identified by a separate capture group. The third parenthesized expression
matched the repeat unit a number of times and finally the fourth sub-expression
(\\1) ? matches a possible flanking prefix.

8.4.1 Approximate Matching

All the examples given above assume that the sequence of repeats is without
errors. In real biological data, mutations, insertions and deletions do occur and
we would be like to be able to model repeat sequences containing such errors.
We accommodate the need for modeling this by using the function integra-
tion operator to call a non-deterministic, probabilistic function noisy, e.g.

Regex 8. (.x)#{noisy(\\1)}x*

The function noisy probabilistically maps the input argument \\1 to a "noisy"
sequence in which symbols of \\1 may be mutated, deleted and additional
symbols may be inserted. The probabilities of point mutations, deletions and
insertions are learned from the examples provided for training the entire prob-
abilistic regular expression.
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repeat element spacer
gttcactgccgtacaggcagcttagaaa  aacctaccgtcttggctageggttgecagegaac
gttcactgccgtacaggcagcttagaaa  ggaacaatcttgcaaaggectgtgaaagttgge
gttcactgccgtacaggcagcttagaaa - ttcacaggtaacatactccacccaccat
gttcactgccgtacagacagataaaatg

Figure 8.1: The CRISPR NC_ 009800 _1, region 985984-986188.

Folding a (Free energy -7.90) Folding b (Free energy -8.00)
guucacugccguacaggeagcuuagaaa guucacugecguacaggeageuuagaaa
..... CCC(END DD ) N (N (CC T DD DD RS DD I

Figure 8.2: Minimal energy foldings of the CRISPR repeat element. Note that
u (Uracil) is the RNA equivalent of the DNA t (Thymine).

Note that without constraints on the maximal number of mismatches, in-
sertions and deletions this expression matches any sequence. This leads to an
infinite number of ways to match the element which is obviously unfeasible. To
avoid this, the noisy function implicitly limits the maximal number of each
type of mutation be equal to the length of the element.

8.4.2 Example: CRISPRs

CRISPRs, short for Clustered Regularly Interspersed Short Palindromic Re-
peats [200], are regions of bacterial or archaeaic DNA with short direct repeats,
with repeat elements of 24-28 basepairs and interupted by a spacer of around
30 basepairs. The repeat element itself exhibit some palindromic structure, i.e.
contains a (noisy) inverted repeat.

The function of CRISPRs is to remember past exposure to exogenous ele-
ments such as phages; A CAS protein intercepting viral DNA creates a novel
spacer and inserts it into to the genome at a CRISPR locus. Once this CRISPR
is transcribed as RNA it interacts with proteins which target and inactivates
the viral DNA.

We consider creating probabilistic regular expression model of a particular
case of a CRISPR in a the HS strain of Escherischia Coli (RefSeq: NC _009800).
The CRISPR region we consider is located at 985984-986188 and according to
the CRISPR database [82] it contains three inserted spacers and the repeat
element is 28 bases long. It is shown in figure 8.1. The online RNA fold server
[232] was used to predict two secondary structures for the repeat element, which
are shown in figure 8.2.

From the two foldings we can observe two distinct inverted repeats.

The palindromic repeat element We model the repeat element with the
expression
Regex 9. .x(.x).x#t{revempl(\\1)}.*

This only matches one inverted repeat, i.e. a hairpin structure. The in-
verted repeat may be interrupted by bulges — short regions that do not base-
pair — as is evident from folding b in figure 8.2. This expression is not specific
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enough to capture inverted repeats with bulges, but it is general enough to
match all CRISPR repeat elements since an inverted repeat with a bulge may
also be seen as two separate inverted repeats. For instance, we can model an
inverted repeat with at most one bulge by slightly extending the expression of
regex 9:

Regex 10. .*x(.*).*x(.*) . *#{revempl (\\1)}.*#{revempl (\\2) }.*

A different — and perhaps more elegant way — is by composing the noisy
function and the revcmpl function:

Regex 11. (.*).x#{noisy(revempl(\\1))}

This expression matches hairpins with an unbounded number of bulges.

Unfortunately, in our probabilistic regular expression implementation, match-
ing and parameter learning with either expression 10 or expression 11 is cur-
rently is only feasible for very short sequences. We are working on optimizations
to improve this.

Parameter learning Using supervised learning we can incorporate what we
have observed from the minimal energy foldings. We train regular expression 9
on the sequence and the repeat element of each of the two distinct inverted
repeats observed from the minimal energy foldings as captures.

S = gttcactgccgtacaggcagcttagaaa,
regex_learn([S,S], [[ctgecl, [ttcl]).

We verify that the learned parameters of the model corresponds to our expec-
tation, i.e. that it matches the repeats that we expect. With the following goal,

we extract the five most probable matchings of probabilistic regular expression:

7- n_regex_match(5,gttcactgccgtacaggecagettagaaa,M,P).

|

M = [ctgccl , P = -41.257125721684069 7;

M = [ttc] , P = -42.609269626583213 7;

M = [ctgc] , P = -43.014481540778561 7;

M = [tc] , P = -43.861233634891093 7;

M = [tgec] , P = -44.173164286287403 7;

It can be observed that the repeat element ctgcc — which occurs in both

minimal free energy foldings — is also the most probable repeat element of
according to our model. The second match ttc is the other repeat element
observed in the folding b. The last three matches are subsequences of the
repeat elements and represent suboptimal matches from our perspective. Note
that the probabilities P=. . . are given in log-space. Matching with an untrained
version of the probabilistic regular expression will give a different ranking of
matches and assign significantly lower probabilities to the best matches.

If we do not have an authoritative source of correct matches such as the
minimal free energy foldings then we need to consider unsupervised learning;:

regex_learn([gttcactgccgtacaggcagettagaaal ) .

The resulting matches are shown below:
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7- n_regex_match(5,gttcactgccgtacaggcagettagaaa,M,P).
[ctgee]l , P = -33.642109806576016 7;

= [ctgc] , P = -36.4356138969029 7;

[ctg] , P = -39.229117987229785 7;

= [ct] , P = -40.945418474610648 7;

[ctgee]l , P = -41.020430465464123 7;

EEEER—
o

In this case, ctgcc is given much more higher probability and the ttc
element present in the second best folding is not among the best matches. Note
that the learning procedure (Expectation Maximization) does not guarantee
that the parameters are not only a local maximum and hence the matches
are also not guaranteed to be optimal even the matching procedure (Viterbi)
guarantees the match with highest possible probability given the parameters.

The CRISPR repeat element containing inverted repeats is only part of
the story; A CRISPR is a sequence direct repeats of such elements separated
the inserted spacer elements. Disregarding the palindromicity we can use an
expression like expression 3. However, usually it would be of interest to the
biologist to extract the spacers between repeat elements. So instead we con-
sider the rather general expression for matching a CRISPRs spacer and its
surrounding repeat elements is:

Regex 12. (.*)(.*)\\1

This expression serves as a very general description and does not attempt to
describe any particular CRISPR. Given this (perhaps too) general description
we may attempt to learn the parameters characterizing a particular CRISPR
or set of such. Subsequently we may attempt to find (match) similar CRISPRs
using the parameters learned from using our examples. However, even though
parameter learning will increase the probability that the expression matches
the particular type of CRISPR, such an overly general model is likely to have
spurious matches. In fact, it matches any direct repeat — for instance a short
tandem repeat — and even any sequence, but will assign lower probability to
such matches.

Regex 13. (.{24,28}) (.{25,35})\\1

Note, that here we have arbitrarily chosen to interpret "around 30" as the
range [25 — 35]. The resulting expression is more specific as it for instance
does not match spurious short tandem repeats and similar unwanted matches.
Adding length constraints reduces the number of possible matches. This has
two beneficial effects; It potentially reduces running time of inference signifi-
cantly and since the probabilistic parameters do not have to include probability
mass associated with irrelevant solutions, a learning procedure may fit the pa-
rameters better. Given that we know the length of the CRISPR we can make a
more specific repeat element matcher — i.e. we can specialize the first capture
group to instead say .{28,28} or we could use 28 dots in its place. These
type of constraints are different; The first one assume a common distribution
of the symbols in the repeat element whereas each dot of the second method is
modeled with a distinct distribution.

After training expression ??7 we can match and extract spacer elements,

e.g.:
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| 7- regex_match(...ctgccgtacaggcagcttagaaa... ,M,P).

M = [gttcactgccgtacaggcagcttagaaa,
aacctaccgtcttggetageggttgeagegaac]

P = -93.480553848575966

yes

Note that neither expression 12 or ?7 is capable of matching the last spacer
because the last repeat element is noisy. Hence, is necessary to model such
sequences with an expression using the noisy function:

C.x) (o) #{noisy (\\1) }

8.4.2.1 Why not a complete CRISPR model?

We have sketched how elements of a CRISPR may be modeled using proba-
bilistic regular expressions but no expression for a complete model has been
devised.

It is not possible to create an extended regular expression capable of match-
ing and extracting all spacers from CRISPRs of arbitrary size, since the number
of capture groups within a regular expression bounded by the size of regular
expression.

A similar observation may be made about expression 10 which uses some-
what clumsy way of modeling only a single bulge in a hairpin structure. Using
the revempl function we are not able to model a hairpin loop with unbounded
number of bulges. This is a context-free language. So even though we add
the capability of modeling palindromicity with the revempl function, it does
not have the capability to model certain context-free languages. Composing
revcmpl with the non-deterministic noisy function as done in expression 11
adds the power to model an unbounded number of bulges, but does not enable
us to capture the repeats or bulges in the hairpin.

8.5 Related Work

8.5.1 Probabilistic regular expressions

Ross [167] presents an approach for evolving stochastic regular expressions
using genetic programming. The semantics of the stochastic regular expressions
they use are similar to those presented in this paper. A notable exception is that
their formalism is restricted to regular languages, whereas ours pragmatically
embrace some more expressive languages.

The stochastic regular expressions are implemented as an interpreter using
the Prolog based DCTG grammar formalism [3]. The implementation aug-
ments the grammar with a stochastic semantics and provides a means of in-
ferring the probability of a match of a sequence. Other forms of probabilistic
inference, such as finding an optimal match or learning from examples, are not
explored in the paper. An interesting feature is that the formalism supports
the probabilistic choices in addition to the usual non-deterministic regular ex-
pression operators.

An other probabilistic regular expression language is defined in [76] with
the purpose of modeling and reasoning about discrete-event systems. Their
language is a regular automaton based language, similar to that in [167].
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8.5.2 Pattern Matching in Biological Sequences

There are many tools for matching biological sequences using regular expres-
sions, but to our knowledge, none of the surveyed tools employ probabilistic
regular expressions.

PatScan [60] employs a special kind of regular expressions with operators for
specification of base-pairing. The pattern syntax is a bit different from usual
regular expression syntax, but seems quite powerful as it allows the matching
some context-free and context-sensitive languages. Additionally, it supports
approximate matching and the number of allowed substitutions, insertions and
deletions may be specified for individual sub-expressions.

The tool tage [130] is designed to match motifs in sequences. It uses a
combination of regular expression patterns, proximity rules (which specified
exact distance between matches) and logical rules which model more complex
relationships between several matches. The semantics of these rules seems to
be similar to — but perhaps more powerful than — the {n,m} operator in
regular expressions.

Due large size of genomic data, the computational complexity of finding
repeats is an important issue. Biogrep [102] takes the approach of utilizing the
well-known GNU grep engine in parallel to increase performance. A consid-
erable effort has be invested in building specialized efficient tools for finding
repeats, e.g. [15, 110, 81]. Such tools, however, sacrifice flexibility in terms of
modeling capabilities in order to gain high efficiency. In particular, there are
very efficient tools and algorithms for finding small tandem repeats, and there
are databases of such repeats for various organisms, e.g. [216]. Prosite [97] is
an other popular database containing known protein motifs and which provides
limited regular expression search for such motifs. The database also contains
repeat motifs and regular expressions for searching for these. An other online
repeat database for specific for CRISPRs is CRISPRdb [82].

8.6 Conclusions and Future Work

We have presented an account of how repeats in DNA can be modeled using
probabilistic extended regular expressions and provided a flavor of our imple-
mentation of this formalism. Through the underlying PRISM system we gain
access to advanced probabilistic inferences on probabilistic regular expression
models of repeats.

It has been shown that regular expressions extended with backreferences
comprise a proper subset of context-sensitive languages which is disjoint from
context-free languages [29]. The limited context-sensitive power of extended
regular expressions is sufficient for modeling direct repeats, whereas inverted
repeats require context-free power and cannot be modeled without resorting
to an extension of the formalism. In our implementation, a means to integrate
external functions provides the extra expressive power. Non-deterministic and
probabilistic functions can also be integrated, and we have demonstrated how
this can be used to support approximate matching.

We have demonstrated using examples that probabilistic extended regular
expressions are applicable to model biological sequence phenomena. That does
not imply that they are the best suited for the job. They can be likened to a
swiss-army-knife — it is applicable, practical and suffice for a lot of tasks, but
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is almost never the optimal tool. The appeal of regular expressions is in their
succinctness and availability.

Probabilistic extended regular expressions, and probabilistic grammar mod-
els in general, add an dimension beyond language membership that models
affinity for strings in the language. This extra dimension is useful to quantify
effects that we do not yet understand or which is too complex to model exactly.
It allows us create models which abstract away the uncertainty of the details
of the biological processes, while still providing useful results.

The application to modeling and matching CRISPR is usable, but it is
terribly inefficient compared to existing techniques. In particular matching
of noisy CRISPRs presents some challenges with regard to efficiency. Our
current implementation — which is a prototype — has many unexploited po-
tential optimization possibilities. We are investigating techniques for making
this matching more efficient. One of the techniques that we are exploring is to
infer constraints from the regular expression and the input string which may
be used to further prune the search space early on.

The current viterbi-based matching scheme finds a best match and provides
a probability for that match. The scheme does not attempt to estimate the
significance of finding a match with some probability or a means to select a
sensible threshold. In the future we plan to incorporate ways of estimating the
significance of a match based on comparisons with null models.

An application that would be interesting to explore is to use sampling to
generate test data other repeat finding methods, as done for gene finders in
[38]. Such an approach could potentially be used to uncover weaknesses in
existing approaches and provide insights into what kind of repeats they may
have missed.
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Abstract

Probabilistic models that associate annotations to sequential data are widely
used in computational biology and a range of other applications. Models
integrating with logic programs provide, furthermore, for sophistication and
generality, at the cost of potentially very high computational complexity. A
methodology is proposed for modularization of such models into sub-models,
each representing a particular interpretation of the input data to be analysed.
Their composition forms, in a natural way, a Bayesian network, and we show
how standard methods for prediction and training can be adapted for such com-
posite models in an iterative way, obtaining reasonable complexity results. Our
methodology can be implemented using the probabilistic-logic PRISM system,
developed by Sato et al, in a way that allows for practical applications.

9.1 Introduction

Analysis of DNA is an important example of a complex sequence annotation
task which has motivated our approach. The sheer size of data instances and
the degree of ambiguity in such tasks pose great challenges for efficient proba-
bilistic analysis. Furthermore, most systems for DN A-analysis used in practice
are implemented in low-level programming languages, optimized and tweaked
for very specific procedures, thus leading to systems with an unclear seman-
tics and lack of flexibility for the modeling part. A possible shift to using
probabilistic-logic systems and languages provides obvious benefits in terms of
clear semantics and flexibility, but also introduces potential problems concern-
ing complexity and scalability. We present here a modular approach, in which
complex probabilistic-logic models are defined in terms of separate sub-models,
each representing a particular interpretation (or “signal”) of the input data to be
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analyzed. The dependencies among the results of analyses performed by these
sub-models are described in terms of edges in a Bayesian network. This allows
for an implementation based on incremental application of standard methods
for prediction and training, one sub-model at a time, thus possibly leading
to acceptable complexity. We refer to such modularized models for sequence
analysis as Bayesian Annotation Networks. We demonstrate an implementa-
tion based on PRISM [175], which is a probabilistic extension of Prolog.

9.2 Probabilistic Annotation Models

Probabilistic-logic models for sequence annotations will be presented in two
steps, first the logical part, and then probabilities are added. Notice also, that
we abstract away the details of any actual modeling language and the format
of probability parameters.

Definition 9.2.1. An annotation program, or just a program, is a logic pro-
gram prog, that defines a set of atoms, each of the form:

prog(s, a, parents),
where

- s 1s called the sequence, and represents the data sequence to be annotated
by the program.

- a is called an output annotation, and
- parents represents zero or more conditioning annotations.

The name “parents” anticipates the introduction of Bayesian Annotations
Networks in section 9.3 below. They represent annotations produced by other
sub-models, serving as conditions for the analysis associated with prog.

Definition 9.2.2. A probabilistic annotation model
m = (prog,0)

consists of a probabilistic annotation program prog and a parameter 6. The
parameter is element of some data domain which is not specified further, but
which gives rise to a well-defined conditional probability distribution for atoms
prog(s, a, parents) as follows:

P(a| s, parents, 8)

The intuition is that 6 that associates probabilities to the detailed choices
made within prog to produce the output annotation a, given a specific sequence
s and parent annotations. Notice that our framework captures also analyses
that are not necessarily written in a probabilistic-logic language. Notice that
our framework captures also analyses that are not necessarily written in a
probabilistic-logic language.
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Definition 9.2.3. A deterministic annotation model is a program
prog(s, a, parents)

where, for specific sequence s and parents®, there exists exactly one output
annotation a°, i.e.,

P(a®| 5%, parents®,0) = 1,
where 0, in this case, refers to an (empty) parameter which is ignored.

The empty parameter is included for uniformity of notation only. A de-
terministic annotation model with empty parents may represent an analysis
provided by an external tool that, e.g., searches for similarities in a database
of related sequence data.

9.3 Organizing Annotation Models as a Bayesian
Network

Our overall idea for prediction is to evaluate one model at a time, fix its out-
put annotation to a single “best” one which, then, is used as parent for sub-
sequent analyses. This is very similar to the way forward analysis takes place
in Bayesian networks, which we thus take as our central paradigm for putting
sub-models together to a whole. A Bayesian Network (BN) is defined as a
directed acyclic graph as follows [170].

e Its nodes are random variables.

e An edge from node A to node B indicates that B is directly dependent
on A, and A is called a parent of B; the notation parents(B) refers to the
sequence of parent nodes of B.

e Each node A has an associated conditional probability distribution, CPD,
P(A| parents(A)).

For many applications of BNs, the CPDs are given in the form of tables,
but since the random variables in our case range over huge sets of alternative
annotations, this is infeasible, and we use probabilistic models instead.

Definition 9.3.1. A Bayesian annotation network (BAN) is a set of probabilis-
tic annotation models {M;|i = 1,...,n}, with M; = (m;(s, a;, parents;), 0;),
numbered in such a way that parents; C {a1,...,a;-1}.

The model M, is a designated top model, and it is assumed that the parent
relationship induces a path from any other M; to M,.

A BAN in itself is not a BN, but it induces a BN in the following way.
e Nodes are labelled a;, ¢ = 1,...,n and s.

e Whenever a; € parents;, there is an edge from a; to a;, and there is an
edge from s to any a;.

e The CPD associated with a; is given by the model M;, i.e., P(a; | s, parents,, 6;).
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For ease of terminology, we refer to a suitable set of annotation programs as a
BAN, when below, we talk about training a BAN, i.e., finding parameters such
that it actually becomes a BAN, as per the present definition. When presenting
a BAN as a graph, we typically leave out s and the n edges going out from it.
When doing predictive inference below, the sequence is always fixed, so we can
leave it out, assuming instead a particular BN for each sequence.

9.4 Predictive inference

Predictive inference refers here to the process of identifying a best proposal for
top output annotation that characterizes a given sequence. The fundamental
assumption when using probabilistic models is that quality of a solution is
intimately coupled to its probability, in other words, we should be searching
for a top output annotation with a relatively high probability, ideally the one
with highest probability.

Below, we give first a precise, declarative characterization of the best top
output annotation, and then an approximative calculation method which, un-
der certain circumstances, may reduce computational complexity drastically.
Examples and detailed arguments for this claim will be given later.

We assume a BAN {M;|i = 1,...,n} with M; = (m;(s, a;, parents,), 0;)
and a fixed sequence s to be analysed. We use © to refer to the set of all
parameters in the BAN, {6y, ...,0,}. Considering the BAN as an entire model,
we can describe the best solution as follows.

ideal,,(s°, ©) =qof argmax P(ay, | s°,0)

Qn

where the term inside the argmax can be unfolded as follows.

P(a,|s,©) = > Play,...,a,]s",0) (9.1)

(a1,...,an—1)

= Z H P(a;| 5", parents;, 6;) (9.2)

(a1,...,an—1) i=1

Standard methods for reasoning in Bayesian networks, see, e.g., [68], is of very
little use here due to the unmanageable size of the random variables’ outcome
spaces, which in practice are impossible to iterate over.

We are not aware of any reasonable way to reduce this formula, although
we do not have a formal proof that this is not possible. Instead, we propose
an approximative, iterative algorithm that fixes one particular best annotation
a; = approz,;(so,©) for each sub-model and applies it subsequently in the
prediction of those a; with a; € parents(a;).

approz,;(s°, ©) = argmax P(a; | s°, approx (s°,0),0),i=1,...,n (9.3)

s

parents;

where approz g, ens (8,©), for some sequence s, stands for the sequence of
parent annotations approz (s, ©) for all a; € parents;.

Specifically, we take approz,,(s°, ©) as an approximated value for ideal,, (s°, ©);
the possible conditions under which this may be considered a good approxima-
tion will be discussed among our conclusions, section 9.8.
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Notice, that there is no circularity in this definition and approz, (- --) can
be calculated in a single sweep calculating approz(---), approzy(---), ... in
that order. The “argmax” in (9.3) may be calculated by existing algorithms as
we demonstrate below.

In practical applications of our methodology, we expect the number of sub-
models in a BAN to be a relatively small number (say, arbitrarily, < 10), but
lengths of sequences and their annotations are expected to be huge. Measured
in sequence length, the complexity of approximate prediction with the entire
BAN coincides with the complexity for the most complex sub-model.

9.5 Training the network

In order to obtain the probabilistic parameters © for a BAN, we rely on existing
training algorithms for supervised learning, e.g., as built into the PRISM sys-
tem [106], [186]. Such algorithms require a sufficiently large and representative
collection of ground atoms for each sub-model, each representing a sequence
with its correct annotation, which in our motivating application domain means
annotations verified in the lab by the biologists.

To this end, we assume the availability of some state-of-the-art training
algorithm T'svPervised  described as a function mapping a particular program
together with its training data into a parameter. Notice that we are not inter-
ested here in the actual details of how the training algorithm works.

For doing supervised training of any sub-model in a BAN, we need in prin-
ciple ground data that exemplifies the relation between sequence, parent an-
notations, and output annotation. We define, thus, a conditional training data
set for program m; as a set

CTD; = {mi(sg,a{,parentsz) |7=1,...}.

It is called “conditional” since it includes parent annotations parentsg for each
output annotation ag .

In practice, however, we cannot expect such conditional training sets always
be available as this assumes that the signals represented by the different sub-
models has been analyzed consistently for the same set of sequences. In other
words, we can only assume that the following sorts of training data are available
in a more traditional format without explicit parent annotations.

TD; = {(sj,a;) | j=1,...}
However, if we train the different models one by one in the order My, Mo, ...,
we can use the already trained models to supply parent annotations. We can
thus specify an iterative BAN training algorithm as follows.

01' _ Tsuper'uised (mi; CTDZ)
where

CTD; = {m(s!,a’ APPTOT 1) (s7,{61,...,0;11) | (s],al) € TD;}

1?7 1?7

There is no circularity in these equations which may be evaluated in one sweep 6,
01, ....
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This strategy can be adapted to handle cases where training data T'D;
are unavailable for some non-top model M;, i.e., i < n. Here we may use
unsupervised training, or even set the parameters manually, and still hope
for good results. It is not essential that model M; is a faithful mirror of
some physically measurable signal (call this M}/™¢): the necessary property is
whether M; represents some annotation that can help the models M; of which
M; is a parent to discriminate the details of the sequence under consideration.
To see this, notice that such an M; consistently applies annotations produced
by M; (rather than M}™“¢) for its own training and prediction.

We postulate the following rule of thumb for checking the relevance of a
specific model M; within a given BAN.

(*) — Whether a model M; contributes an interesting signal to M; can be
checked by inspection of the parameter to check whether different val-
ues for a; provide any significant variation in the magnitude of P(a; |

0 1
S ,al,...,ai,...,aj_l).

However, we expect that models designed according to biological expert knowl-
edge, that are trained using a sufficient set of authoritative data, and whose
position in the hierarchy is based on the same biological expert knowledge, will
have the best chance to constitute an interesting signal according to (*). In
case of a biologically justified model, for which sufficient amounts of data are
available, it will be natural also to check it with standard precision and recall
methods.

We can summarize some of the practical consequences of these arguments
as follows.

e M; may for reasons of performance, or to avoid over-training, be pro-
grammed in a rather coarse way, which gives only a very rough approxi-
mation of M;.

e We may introduce an arbitrary sub-model in a BAN, be it based on only
little or no biological insights; it may be trained unsupervised or the
parameter may be set by hand, and we can apply (*) to check whether
it is of any use.

e We may introduce alternative models for the same biological signal, and
use another model as a voting mechanism to combine the different signals
and check its contribution according to (*).

e Having a collection of candidate sub-models, we can experiment with
different topologies for dependencies, and validate it internally according
to (*) as well as using precision and recall tests for the top model.

We will discuss some these points below in relation to our experiments.

LFor a trained PRISM model, we may compare the different conditional msw probabilities
produced by the training of Mj.
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9.6 Implementation in PRISM — the LoSt Framework

The methodology described so far is supported by an implementation built on
top of the PRISM system [175], which is a probabilistic extension to Prolog
which provides a wide range of learning and prediction algorithms.

In this section, we first explain our own system, called the LoSt-framework
[39], which is basically a collection of scripts that control the ordering of differ-
ent runs of PRISM for prediction and training plus a file management system
that keeps track of the different models, their parameters, the connections that
tie them together to a BAN as well as all data files involved (catalogues of se-
quences, training data, files of predicted annotations, etc.). We also show a sim-
plified, implemented example that illustrates different aspects of our method-

ology.

9.6.1 Embedding BANs in PRISM

The PRISM system [175] realizes a probabilistic extension to Prolog and is
equipped with a comprehensive collection of facilities for prediction and train-
ing.

The PRISM language extends Prolog with so-called multi-valued switches:
a call msw(name, X) represents a probabilistic choice of a value to be assigned
to X.2 The semantics of a PRISM program is given as a probabilistic Herbrand
model, determined by a parameter which is a file of probability declarations
for the individual switches. For this semantics to be well-defined, any choice
point in the program must be governed by an msw.

The program part of a sub-model m(s, a, parents) may be represented by
a PRISM program with a main predicate

m(s, a, parents)

where parents are a arguments corresponding to the number of parents of m,.
A typical sequence model is implemented as a recursive predicate which relates
the s and a arguments in a probabilistic fashion conditioned by given parent
annotations and involving myriads of msw calls.

PRISM contains algorithms for training based on suitable generalizations
of EM learning and Variational Bayesian learning [186] which can be used for
both supervised and unsupervised learning; the LoSt environment keeps track
of training data and generated parameter files for the individual sub-models.

Prediction using a PRISM program, representing a trained sub-model, can
be performed using one of PRISM’s generalized Viterbi algorithms. Specifically,
we use a minor extension to PRISM, described in [40], which makes it possible
to analyse longer sequences in reasonable time. The following call,

S=..., Al= ..., A2= ..., viterbiAnnot( m(S,A,A1,A2, ---)),

will instantiate A to the annotation that provides the highest probability of
the goal m(S,A,A1,A2, ---), thus implementing the argmax in equation (9.3)
above.

2To be exact, a switch introduced by a declaration values(name, [--- outcomes ---1)
defines a family of random variables, one for each execution of msw(name, ---) in a program
run.
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The scripts in the LoSt environment implement the correct ordering of
sub-model processing as prescribed by our incremental prediction and training
algorithms described in sections 9.4 and 9.5 above, however, avoiding compu-
tations that have been made before and whose results are available on files.

9.6.2 Example: Gene-finding in DNA

We illustrate our methodology showing experiments with BANs that repre-
sent gene-finders for DNA sequences. A piece of DNA is a sequence of letters
{a,c,g,t}; it can be viewed as a sequence of triplets, each called a codon.
Codons are separated into specific start-codons, stop-codons and other codons;
a gene is a specific subsequence matching the codon structure such that it must
begin with a start codon and it will definitely end at the next stop-codon; such
a syntactic pattern is called an open reading frame (ORF). Our BAN mod-
els are designed to annotate ORFs, where the annotation task is to find out
whether an ORF contains a gene and, if so, where in the sequence the gene
starts.

We define sub-models for different signals — codon preference, gene length
and conservation — which are are expected to have influence on whether a
sequence is a gene or not. The resulting annotation from such models is a
sequence that for each position in the original sequence contains a 1 if the
position is predicted as part of a gene and a 0 if it is not.

All our probabilistic models are output HMMSs with a gene-state and a non-
gene state, which can emit symbols of the annotations of the parent nodes. The
transitions between the states reflect the described ORF pattern.

The codon preference model m1 reflects preferential codon usage in the gene
and non-gene state. The states can each emit one of the 64 possible codons.

The gene length annotation is obtained by using a deterministic model
m2 that annotates each potential start codon with a symbol representing the
distance to the upstream stop codon.

Conservation describes a degree to which the codons of a DNA sequence
are conserved across species. To detect conservation, each ORF matched to a
database of genome sequences of distantly related organisms  using the tblastn
tool, which produce a gapped alignment of the matches. Only statistically
significant matches (evalue < 1073%) and only one match per organism are
reported. The conservation model m3 emits identity positions of reported
matches to ORFs.

In the following we discuss and assess a number of BAN topologies built us-
ing these three signals as basic building blocks. The considered models are m1,
m3, m1 conditioned on m2 — m1(m2), m1 conditioned on m3 — m1(m3),
and m1 conditioned on both m2 and m3 — m1(m2,m3).

We train and predict on the well-annotated Escherischia Coli genome and
its curated gene annotations from refseq (NC_000913). We have randomly
divided the ORFs of the genome into a training and a test set. Supervised
training is done using only the former and the method for supervised train-
ing algorithm described in section 9.5. We report prediction accuracy re-

sults for both sets. Accuracy is measured as Sensitivity(SN) = Tﬁ_ﬁ and

3The sequences are from refseq: NC 004547, NC_ 008800, NC 009436, NC_ 009792,
NC 010067, NC_ 010694 and NC_011283.
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Specificity(SP) = %, with respect to annotation of start and stop codons.

The results are summarized in table 9.1.

Training set (114429 ORFs, 2075 genes)

BAN SNstart SPsta'rt SNstop SPstop
ml 0.7701 0.2935 | 0.9711 0.3701
m3 0.0636 0.0322 | 0.8255 0.4183

ml(m2) 0.6723 | 0.5011 | 0.9345 0.6965

ml(m3) 0.4405 0.2243 | 0.8255 0.4204
ml(m2,m3) | 0.4361 0.2228 | 0.8255 0.4217
Test set (114404 ORFs, 2065 genes)

BAN SNstart SPstart SNstop S-Pstop
ml 0.7564 | 0.2920 | 0.9719 0.3751
m3 0.0140 | 0.0072 | 0.8412 0.4298

m1(m2) 0.6489 | 0.4896 | 0.9433 | 0.7117
m1(m3) 0.4315 | 0.2216 | 0.8416 | 0.4323
m1(m2,m3) | 04174 | 0.2149 | 0.8416 | 0.4333

Table 9.1: Accuracy of predictions using different BAN topologies.

It can be observed from table 9.1 that all our models have good general-
ization capabilities, since the performance is very similar on both the training
and test set.

The best model seems to be m1(m2), which achieve a significant increase
in specificity with only slightly degraded sensitivity, e.g. it predicts fewer genes
but its predictions are more reliable. By them selves, both m1 and m3 have
reasonable stop specificity, but m3 has consistent tendency to predict too long
genes, leading to severely decreased start specificity. Interestingly, condition-
ing m1 on the conservation additional signal m3 does not improve prediction
accuracy much. It does lead to slightly better stop specificity but it tends to
degrade the start specificity. Additionally, conditioning on the length signal as
done in m1(m2,m3) does not seem to help, even though the impact observed
in m1(m2) was quite significant. It seems that the m3 signal dominates deci-
sions about which ORFs should be predicted as coding. This effect is apparent
from model parameters and it is possible to get an intuition of the problem
from inspection of the prediction accuracies.

The m3 model has a (stop) false negative rate of 1 — SPy,p, = 1—0.4183 =
0.58. The vast majority of ORFs ~ 98% does not contain genes. The prob-
ability that an ORF contains a gene but m3 classifies it as non-gene is thus
relatively small, 1 —0.98 x 0.58 = 0.11. In the conditional distribution defined
by m1(m3) (given predictions of m3), it becomes virtually impossible for the
viterbi algorithm to classify an ORF as a gene if m3 has not, since the prob-
ability of the gene hypothesis is scaled by ~ 0.11 and the non-gene hypothesis
by ~ 0.89.

Part of the explanation is that maximizing the likelihood of observed data
(as we do in training) is not equivalent to maximizing prediction accuracy;
it may have an adverse effect when selecting predictions as most probable
explanations as done by the viterbi algorithm. An other part of the explanation
is in our model assumptions; namely, m1(m3) is an output HMM that has joint
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emissions of both codon and the signal from m3, and these are dominated by
m3 as explained above. Alternative HMM structures with different constraints
and independence tradeoffs might avoid the dominating effect of m3. We are
still investigating how this is best done.

9.7 Related work

Our method is closely related to Dynamic Bayesian Networks (DBNs) of [142].
By our definition of a BAN, the detailed dependencies between individual mod-
els in the network are left abstract, but a concrete instantiation of a BAN may
indeed be a DBN. However, as the nodes in a BAN may be arbitrary proba-
bilistic models, for instance context-free grammars, not all BAN instantiations
can be represented as DBNs. Oppositely, we only define BANs for discrete
models but DBNs may include continuous-valued nodes.

In the realm of classification techniques, it is common to combine the results
of different classifiers of the same phenomena in ways such that the combined
classifications outperform the individual constituent classifiers. Such methods
are generally known by the name ensemble methods, which covers a wide range
of different ways to the combine classifiers [166]. Our method is related but
quite different; this is not just because we consider sequence annotation rather
than classification, but also because constituent models of a BAN may model
very different phenomena.

In biological sequence analysis, the most successful genome annotation pro-
grams are combiners [83]; programs which combines different sources of anno-
tation evidence using some sort of weighting scheme. Evidence may come in
diverse forms, including comparative analysis sources [156], but are typically
predictions (e.g. annotations) from other annotation programs (e.g. gene find-
ers). Brent [22] makes a distinction between combiners and joint models, where
joint models are described as models which consider the full joint probability
distributions evidence and combiners as probabilistic models of the the relative
accuracy of evidence sources they are combining. Using our approximate in-
ference algorithm we have a situation similar to combiners in that predictions
of parents are combined by child nodes.

While many combiners use non-probabilistic combinations methods, several
are explicitly based on principles of (dynamic) Bayesian networks [152, 126].
A main difference is that our framework allows multi-layered and branching
topologies where the combiners are usually just single layered probabilistic
models.

Our approach also has analogies to annotation pipelines [158, 28] where a
complex sequence of analysis steps are performed in a possibly branching topol-
ogy and perhaps synthesized (e.g. by a combiner) in a final annotation as the
last step. Opposed to combiners, such pipelines usually allows complex topolo-
gies like our framework. However, such pipelines are usually just practical
and pragmatic ways of combining existing tools and incorporate probabilistic
modeling only to a very limited degree.

There are other declarative approaches to combining evidence in biologi-
cal sequence analysis. In GAZE [96], a configurable XML-based specification
describes a particular composition of evidence sources. However, GAZE inte-
grates existing tools, where our PRISM based approach allows for much more



9.8. CONCLUSIONS 141

modelling flexibility and have clear and well-defined semantics.

9.8 Conclusions

We have proposed a Bayesian framework, Bayesian Annotation Networks, which
allows the representation and composition of models for complex sequence anal-
ysis. In a modular way, it supports experimentation with and evaluation of
models and signals and it is a practically useful tool for modeling and analyz-
ing sequences. In particular, its applicability to biological sequence analysis has
been motivated. We have shown that reasonable complexity can be achieved by
the use of tractable, incremental algorithms for inference and training, which
can be implemented by successive calls to PRISM, and shown that these algo-
rithms may produce useful annotations.

In general, we have no good analytical or sampling-based principles for ana-
lyzing the quality of the approximated annotations compared with the ideal
ones. By assumption, the ideal annotations provided by a BAN for a given
sequence is too complex to be evaluated, so we need to rely on standard vali-
dation techniques based on authoritative test data. However, we will list a few
observations which may be used as guidelines.

The crux in our approximate inference algorithm is, in each iteration step, to
select a most probable annotation approz, for each annotation node a; and
take it as a representative for the distribution of all possible a; values. In the
detailed calculations, this means that we use P(q; | s, - - approz, - - - ), for some
a; with a; € parents;, as a replacement of a weighted sum over all possible a;
values of P(a; | s,---a;---).

In the trivial case, where all freedom of choice is implemented in the top node
of the Bayesian Network, the approximate algorithm coincides to the ideal.
Beyond the trivial case, however, it is difficult (impossible in general) to give
sufficient conditions for which the approximate inference method will yield good
results.

The relation between the quality of an annotation and its probability is assumed
implied by the purpose of a probabilistic annotation model; e.g. it should as-
sign high probability to good annotations. In our definitions of BANs, we
define a child model to be dependent on its parent model. In a concrete BAN,
however, individual models typically have more fine grained interdependencies,
e.g. enforce their inherent independence assumptions. If these assumptions are
not faithful to the actual data dependencies, a discordance between annota-
tion quality and probability may arise. Similarly, in the case of approximate
inference, we are concerned in particular with the degree of validity of the as-
sumption about independence of parent distributions given the most probable
individual elements of those distributions.

Perhaps surprisingly, the annotation quality achieved by the approximate method
may be positively affected by correlation between assumed independent nodes
of the network. Redundant (correlated) signals does not generally result in
better annotations, if the ideal inference method is used. However, such over-
lapping signals may indeed compensate for the information lost due to the
(possibly) unjustified independence assumptions imposed by the approximation
method or inherent in constituent models. For instance, information contained
in the distribution of a particular parent node, but not reflected by the best an-
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notation from that distribution, may be reflected through the best annotation
of some other (correlated) parent.

In practice, we are satisfied with the approximation if the annotations are
judged as good using an external measure of quality (e.g. sensitivity /specificity)
and we have used cross-validation to build confidence about generality, as
demonstrated in section 9.6.2. Obviously, this may require a considerable
amount of, possibly unavailable, labelled training data. A second consequence,
also observed in section 9.6.2, is that the measure optimized by the training
algorithm does not necessarily coincide with the external measure of quality.
Model constraints and independence assumptions play a key role affecting the
correlation between these measures.
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Abstract

We introduce BANpipe — a logic-based scripting language designed to model
complex compositions of time consuming analyses. Declarative semantics are
described together with alternative operational semantics facilitating goal di-
rected execution, parallel execution, change propagation and type checking.

10.1 Introduction

Computations for biological sequence processing are often complex composi-
tions of time consuming analyses, including calls to external resources and
databases. The expected output, intermediate results and original input data
are often huge files. To facilitate such computations, we introduce a new
declarative scripting language called BANpipe. The language supports com-
plex pipelines of Prolog programs, PRISM [179] models and other types of
programs through rules which specify dependencies between computations.
BANDpipe is a general pipeline programming language, but it is designed to
support a special kind of annotation pipelines which we call Bayesian Anno-
tation Networks (BANSs) [43, 124]. A Bayesian Network is a directed acyclic
graph where the nodes are conditional probability distributions and the edges
represent conditional dependencies. A BAN is a Bayesian Network where nodes
are instead (probabilistic) annotation programs and edges are input/output de-
pendencies between programs. Inference in BANs is performed iteratively by
evaluating each program at a time and using its output annotation as input
for dependent programs. This is not only similar to the way forward analysis
takes place in Bayesian networks, but also a nice fit to the pipeline paradigm.
Existing pipeline scripting languages, however, are not designed for the in-
tegration of Prolog and PRISM programs. As consequence, integration would
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have to rely on shell commands rather than providing a smooth integration
at the language level. An other reason for designing a new language is that
existing pipeline languages lack the desired balance between declarativity and
expressiveness, cf. section 10.7. Declarative pipeline languages typically sac-
rifice expressiveness, resulting in verbose languages with limited capabilities
for modeling dynamic aspects of pipelines. Inversely, languages which favor
expressiveness are often locked into a procedural semantics which exclude pos-
sibilities for automated parallelism, change propagation and management of
result files.

BANpipe rules express dependencies between symbolically represented files
that are automatically mapped to the underlying filesystem. The symbolic
filenames may include logic variables which enables advanced control mecha-
nisms, leading to compactly expressed pipelines. The declarative semantics of
the language allow for useful extensions.

Execution of a pipeline script is goal directed, where only the desired result
is specified and the system then executes programs necessary to achieve the
result as entailed by the dependencies in the script. Computations entailed by
multiple goals are only performed once and subsequently shared by the goals.
The language enables incremental change propagation, where all depending
files are recomputed recursively after a change to a component in the pipeline.

The language also lends itself to parallel execution; programs which can run
in parallel are inferred from the conditional independencies in a script.

Additionally, many aspects of scripts can be statically checked, e.g., the lan-
guage is extended with a type system which can be used to infer compatibility
between file formats of intermediate files.

10.2 Syntax and informal semantics of BANpipe

The BANpipe language consists of scripts for controlling collections of programs
that work on data files. We add another layer on top of the traditional file
system, so that an arbitrary ground Prolog term can be used for identifying a
file. We assume a (local) file environment that maps such file identifiers into
files, via their real file name in the local file system or a remote resource. The
syntax is embedded in Prolog so we inherit its notions of terms and variables'
(written with capital letters). Our implementation use a convention that a
Prolog constant whose name indicates a protocol is treated as an URL, and
the files for terms are determined through the local file environment. For
example:

e ’file:///a/b/c/datafile’: refers to the file with the real name datafile
in the /a/b/c directory in the local file system,

e ’http://a.b.c/file’: refers to a file referenced using the http protocol.
e £(7): may refer to a file in the local file system.

For ease of usage, we refer to Prolog terms expected to denote files as file
names.

ITerms with variables may become ground through a substitution as result of execution
a script.
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The programs referred to in BANpipe scripts are placed in modules, and
a program defines a function from zero or more file to one or more files; a
program may take options as additional arguments that modify the function
being calculated. Programs are referred to in the body of BANpipes dependency
rules, exemplified as follows.

filel, file2 <- m::prog([file3,filed],opl,op2). (10.1)

Here prog is a program in module m, taking two files file3 and file4, plus
options opl and op2 as input. The rules explains how two output files filel
and file2 depend on file3, file4, namely being the result of applying the
function (or task) given by m: :prog([—,—1,0p1,0p2).
The sets of input files, output files and options are fixed for a given program.
File names in rules can be parameterized as shown in this rule:

£(N) <- m::prog(g(N)). (10.2)

For any ground instance of N, this rule explains the dependency between two
files, e.g., between £(7) and g(7) or f(h(a)) and g(h(a)). Rules can be
recursive as shown in the following example.

f(0) <- file::get(’file:///data’). (10.3)
f(N) <- N> 0, N1 is N-1 | m::prog(£(N1)). (10.4)

Here, rule (10.3) applies a built-in module that takes care of simple file handling
including the get facility that provides a copy of a file as shown; rule (10.4)
includes a guard, which may precede the program call and is used for rule
selection and for instantiating variables not given by the matching in the head.
The recursion works as expected, and the evaluation of a query f(2) involves
the calculation of files named £(2), £(1) and £(0) from the local file with the
real name data.

A BANpipe script is a sequence of rules defined by the following syntax, per-
haps extended with definitions of Prolog predicates to be used in rule guards.

(rule) ::= (head) <- (body) (10.5)

(head) ::= (file)y, ..., (file),, m>1 (10.6)

(file) ::= any Prolog term, as described above (10.7)

(body) ::= { (guard) |} (program call) (10.8)
(guard) ::= sequence of one or more Prolog calls (10.9)
(program call) ::= (module) : : (program name) ( (10.10)

(file)y, ..., (file),, options) n >0
The following syntactic restrictions must hold for any BANpipe script.

e File names given as URLs are only allowed in program calls and cannot
occur in rule heads.

e When a rule head contains file names with variables, any file name in
that head must contain the same variables.
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We assume that any predicate call in the guard of rule r is terminating, when-
ever the variables in the head of rule r are ground.

The selection of a rule for the evaluation of a query (a ground file name)
must be unique. We capture the essential properties in the following definition
and explain afterwards how such a selection function is implemented in practice.

Definition 10.2.1. A selection function for a BANpipe script S is a partial
function og from non-URL ground Prolog terms to ground instances of rules
of S such that if

os(f) =(f{", ., f2" <~ guard | m:: prog(f{", ... fi)) (10.11)
then guard evaluates to true, and it holds that

f=f2 for somei=1,...,n, (10.12)
os(ff*) = os(f) foralli=1,...,n. (10.13)

i
Any such instance is called a selection instance for S.

To simplify notation later, we may leave out the guard when referring to a
selected instance, as it has made its duty for testing and variable instantiation,
once the selection is effectuated.

Condition (10.12) states that the chosen rule is actually relevant for f,
and condition (10.13) indicates that whenever a rule is applied, it calculates
the unique results for all files mentioned in its head, independently of which
request for a file that triggered the rule.

In the implemented system, the rules are checked in the order they appear
in the script and the file names in their heads from left to right. If such a
head file name unifies with the given f, and the guard succeeds, the rule is a
candidate for selection. However, if the execution of a guard leads to a runtime
error or does not instantiate all remaining variables in the rule, the search stops
and no rule is selected. Condition (10.13) of def. 10.2.1 is undecidable, but it is
straightforward to define sufficient conditions that can be checked syntactically;
we do not consider this topic further here.

The evaluation of a query ) can be done in a standard recursive way, which
will be described in more detail in section 10.4.

10.2.1 Defining programs and modules

As mentioned, the tasks activated from a BANpipe script are defined by pro-
grams that are grouped into named modules. How these modules are structured
is not important for the understanding of the BANpipe script language, so we
give here just a brief overview.

A module m must contain a designated interface file that defines each task
through a Prolog predicate of the following form,

task (Lin-file,, ..., in-file,, ], opts, Lout-file, ..., out-file,,1) (10.14)

that will be matched by a program call m: :task(---) in a script as described
above. In accordance with the precise semantics specified below, the file names
(whether URLs or arbitrary Prolog ground terms) encountered by the script are
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mapped into references to actual files, which then are given to task predicates
that access the files through standard input/output built-ins.

The interface file may contain all the code that implements the tasks but,
typically, a module contains a number of source files, which may be shared by
the different tasks. The execution of a task is done by the PRISM system,
which is an extension to B-Prolog, and thus PRISM probabilistic inference and
ordinary Prolog code is readily available. Calls to programs in other languages
or web services are facilitated as well.

The system includes a sort of dynamic types that are specified in the in-
terface files and not visible in the BANpipe scripts. This is described in more
details in section 10.5.

10.3 Declarative semantics of BANpipe

Raw data and results of analyses are represented as data files. The language
relies on no assumptions about the detailed structure of those files. We assume
an unspecified domain

DataFile (10.15)

including a | element, which has the intuitive interpretation of a recognized
unsuccessful result (rather that no results). Notationwise, we consider a tuple
(L,..., 1) equivalent with L.

Program calls in a script denote tasks that are mappings from a (perhaps
empty) sequence of data files into another sequence of data files. Thus

Task = > Task; (10.16)
i=0,1,.3j=1,2,...
Task; ; = DataFile’ — DataFile’ (10.17)

Tasks are assumed to be strict in the sense that if any component of an input
argument is |, the result is 1. A task may also result in L reflecting a runtime
error or a Prolog failure.

Definition 10.3.1. A program semantics is a function [—] from triples of
module name, program name, and ground values for possible option parameters
into tasks. For module mod, program prog (with n input and m output files),
and option values opts, this function is indicated as

[mod :: prog(opts)] € Taskm, m. (10.18)

Ground file names are used as synonyms for variables ranging over the
domain DataFile; for a ground file name f, the corresponding unique variable,
called a file variable, is denoted f, and this notation is extended to sets, F' =
{f | f € F}; whenever f is an URL, f is called an URL wvariable. (Partial)
answers to queries are represented below as substitution for file variables into
DataFile and are typically indicated by the letter ® with possible subscripts.
We recognize a special form of URL substitutions for URL variables only. For
ease of notation, an URL substitution is assumed to provide a value for any
URL variable which might be L. The notation ®( typically refers to an URL
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substitution. A substitution @ is considered equivalent to the set of equations
{f=dle(f)=d}?

The declarative meaning of a BANscript is given by a recursive systems of
equations defined as follows.

Definition 10.3.2. Given a BANscript S, a defining equation for a non-URL
file name f is of the form

(f/l(;zt, cee f/nopf> = [mod :: prog(opts)]](fﬁ, cey f}:”) (10.19)
where [ = J{O\“t for somei=1,...,m, and S has a selection instance for f,
Ut oM <om prog(FiT, . fE. (10.20)

Given such S and [—], the defining set of equations for a query @, denoted
Eq(Q,S) is defined as the smallest set E of defining equations such that

e FE contains a defining equation for any q € Q,

e for any equation in E whose righthand side contains a non-URL variable
f, E contains a defining equation for f.

We say that a BANscript S is well-behaved for a query @ if Eq(Q,S) exists,
is finite, and contains no circularities.

Notice that FEq(Q,S) is defined independently of program semantics, so
this definition is equally relevant for a standard semantics (i.e., the intended
computations on real data files) as for different abstract semantics reflecting
different program properties.

The solution to a set of equations is given as usual, as a substitution that
maps variables to values, such that the left and right hand sides of each equation
become identical when all functions are evaluated. Whenever a script S' is well-
behaved for a query @, and ®( is an URL substitution for the URL variables
of Fq(Q,S), there exists a unique solution for Fq(Q,S) U ®y. To prove this,
first convert each equation on tuples into equations of the form fz = ... by
projections, and then notice that all variables in the righthand sides can be
eliminated in a finite number of steps. Condition (10.13) of def. 10.2.1 ensures
that the resulting set of equations with variable-free righthand sides is unique.
We can thus define:

Definition 10.3.3. Let [—] be a program semantics, S a BANscript which
1s well-behaved for a query Q and ®9 an URL substitution, and let ® be the
solution to Eq(Q,S) U ®y. The answer to Q (with respect to S, [—] and ®¢)
is the restriction of ® to @; the substitution ® is referred to as the full answer
to Q.

The query is failed whenever the solution assigns L to any variable in @

2We use symbol “=” to distinguish equations that are explicit syntactic objects from the
normal use of “=" as meta-notation.

3“No circularities” can be formalized by separating variables into disjoint, indexed strata,
such that for an equation ---V .- = ... V’/... that the stratum number for V' is always
lower than the stratum number for V.
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Alternatively, this semantics could have been formulated in terms of a fixed
point or a least model, which is straightforward due to the well-behavedness
property.

Well-behavedness is obviously an undecidable property as an arbitrary Tur-
ing machine can be encoded through recurrence of variables in the terms that
represent file names. In practice, however, we expect the recursion patterns
through file names to be rather simple, so a straightforward depth-first algo-
rithm for calculation of Fq(Q,S) is sufficient. The error message “(perhaps)
not well-behaved” is then issued if this algorithm exceeds a certain recursion
depth, or the selection of a defining equation for a particular file name fails.

10.4 Operational semantics

We present a number of alternative operational semantics for BANpipe as
abstract algorithms. A script is executed in a state that contains a substitution
mapping file variables into the DataFile domain, and which grows during the
execution of a query.

10.4.1 Bottom-up operational semantics with memoization

The following algorithm defines an operational semantics that works in a bottom-
up fashion, calculating all involved files from scratch. It ensures that any inter-
mediate file needed to obtain the final results is evaluated exactly once, even
if used in different program calls.

Algorithm 1: Bottom-up operational semantics for BANscript

Input: A4 query @, a BANscript S, program semantics [—]
and initial substitution ®g;

Output: A substitution;

P = Py;
while Eq(Q,S) contains an equation

L

(f, - foet) = TPICA™ - i)
for which ®(f"") is undefined for all i = 1,...,m,
and ®(f;") is defined for all j =1,...,n
do & := ®[feu /dfy,. .., [out [df]

where (df1, - ,dfm) = [PI{®(FI), ..., ®(fn)):
return P;

Theorem 1. Given a program semantics [—], a BANscript S which is well-
behaved for a query @Q and an URL substitution ®q, Algorithm 1 returns the
Jull answer ® to Q. The solution to Q is a found as a the restriction of ® to

Q.

Having the algorithm to return the full substitution produced, makes it
possible to use it also for incremental maintenance of solutions, as we will see
below in section 10.4.2.
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Sketch of proof. Each step performed in the while loop in Algorithm 1 corre-
sponds to a variable elimination step in Eq(Q, S)U®y. Furthermore, each such

step that processes an equation of the form (f%, ..., J@) = [P]{fir, ..., f;?’),
will bind variables f%, ..., f24 to their final values in the resulting solution. [J

This algorithm provides an abstract operational semantics for BANscripts
which can be transformed into a running implementation by adding suitable
data structures for representing the defining equations and the file environment
(appearing in the algorithm as substitutions).

Algorithm 1 can also be applied for symbolic program executions in which
the standard program semantics is replaced by one that calculates program
properties, but the evaluation of the guards and patterns of recursion will be
the same. Such symbolic executions are expected to run essentially faster than
runs with a standard semantics. This principle is used below for predicting
change propagation, section 10.4.2, and type inference, section 10.5.

10.4.2 Operational semantics for incremental change
propagation

Our BANpipe language is intended for time consuming computations and will
be used by researchers in an experimental style, with frequent modifications
of the involved programs and data files. We describe here an extension of
the operational semantics that accomodates such changes, and which reuses
previous results where possible.

It involves an alternative program semantics for measuring change propa-
gation, based on the domain DataFile?™" = {changed, unchanged, L} and pro-
gram semantics [—]""? defined as follows: whenever the program prog (with
n input and m output files) in module mod has been modified, or one of its
input arguments (z; below) has the value changed, we set

[mod :: prog(opts)]*" " (x1,...,z,) = (changed, ..., changed); (10.21)
m times
otherwise (i.e., program not modified, input = (unchanged, ..., unchanged)),
the program call returns (unchanged, ..., unchanged).

We consider the difference between two substitutions ®’°¢ and @ofter,
intended to represent correct values for all file variables before and after the
modification. This is characterized by a propagation substitution defined as
follows.

-~ ~

Diff (@Vore, pafter)(F) = unchanged Whenev.er before(f) = pafter(f)
changed otherwise

(10.22)
Changes in the set of URL files (i.e., where the ultimate input comes from) is
characterized by a propagation substitution for URL variables.

We can now define an algorithm that predicts which files that need to be re-
evaluated to obtain a consistent state following particular modifications of the
programs and URL files. It is used as a helper in the algorithm for incremental
re-evaluation later.
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Algorithm 2: Change prediction for BANscript
Input: A query @, a BANscript S and URL change substitution ®5™7;
Output: A substitution of variables into {changed, unchanged};

¢r™P ;= run Algorithm 1 for Q, S, [-]""" and ®}"";
return PP

We state the following weak correctness statement for Algorithm 2.

Theorem 2 (Soundness of the change prediction algorithm). Let Qgefore and
" be URL substitutions for the same set of variables into DataFile, and

assume two program semantics [—]°°™ and [=]*"". Let, furthermore,

L7 be the full answer for Q wrt S, [<]"7°™ and ®LT,
S the full answer for Q wrt S, [-]“"" and eI and
®Y™P the result of running Algorithm 2 for Q, S and Diff (B, ®atr.

~

Then it holds for any ground file name f, that if ®7"°P(f) = unchanged, then
I (F) = @),

Sketch of proof. According to theorem 1, @i’eﬁm (resp. @Tfter) can be
characterized as the result of running Algorithm 1 for @, S, [-]"¥°™ and

DLl (resp. [-]**" and ®Y*"). We can thus construct three synchronized
runs of algorithm 1, calculating @i’efom, CIJ‘fﬂET and ®7"” selecting the same
equations in the same order. The theorem is easily shown by induction over
these runs. [J

Due to the sort of complex programs and data involved in our intended appli-
cations, we find it unlikely that an output of a program accidentally happens
to be the same after a modification of input data or program text. It can be
shown that algorithm 2 is optimal under this assumption, in the sense that if
PP (f) = changed, we will indeed have ®2°™(f) # L (F).

We can now give the algorithm for incremental maintenance of the solu-
tion for a given query and a script, when input data and programs called are
modified. It uses algorithm 2 to identify which files that must be recomputed;
their values are set to undefined in the current file substitutions, and a run
of Algorithm 1 starting from this substitution leads to correctly updated file
substitutions, i.e., the full answer for the query under the new circumstances,
with as few program calls as possible.

Algorithm 3: Incremental maintenance for BANscript

Input: A query @, a BANscript S, a substitution ®; produced
by Algorithm 1 from some @, S, some [—]"“*"“and phefore
and an URL substitution @gﬁ”;

Output: A substitution;

b
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®P7op .= run Algorithm 2 for Q, S and Diff (B2 d*");
Dy := @1\ { (f/®1(f)) [ @777 (f) = changed};

¢3 := run Algorithm 1 for Q, S, [-]*" and ®,;

return Pj;

We leave out the correctness statement, which is straightforward to formulate
and follows easily from the previous theorems.

10.4.3 A parallel operational semantics

BANpipe scripts are obvious candidates for parallel execution, as we can illus-
trate with this fragment of a script.

fO <- mO::p0(£f1,£2,£3).

f1 <- mil::p1(°file:///data’).

£2 <- m2::p2(°file:///data’).

£3 <- file::get(*http://server/remoteFile’).

Here £1 and £2 can be computed independently in parallel, and at the same
time £3 can be downloaded from the internet. When they all have finished,
m0: :p0 can start running, taking as input the files thus produce, but not before.

Here we describe the structure of a parallel operational semantics as modi-
fication of Algoritm 1. We assume a task manager that maintains a queue of
defining equations waiting ready to be executed. Whenever the sufficient re-
sources are available, e.g., a free processor core plus a suitable chunk of memory,
it can take an arbitrary equation from the queue and start its evaluation in a
new process. When the processing of an equation is finished, it sends a signal
about this, returning the result. Seen from the calling control algorithm, the
task manager can receive messages of the form

enqueue(e), e being a defining equation,
and sends messages back of the form
finished(e, df1, dfa, . . .), e being a defining equation, df, dfs, ... € DataFile.

Such a message should guarantee that the task referred to in e has been applied
correctly in order to produce the resulting file values df1, dfs, ... according to
the standard semantics [—]. A parallel operational semantics can now be given
by the following abstract algorithm.

Algorithm 4: Parallel operational semantics for BANscript

Input: A query @, a BANscript S, program semantics [—]
and initial substitution ®g;

Output: A substitution;

D;
Eq(Q,S); // Equations not yet enqueued
0; // Equations that have been processed

RRSES
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whilgF #+ FEq(Q,S) do
while there is an e € F of the form
( "“t7...,f"“t>i[[ ﬂ( ,...,f )

for which ®(f£*") is undefined for all i = 1,...,m,
and ®(f/") is defined for all j =1,...,n

do | enqueue(e);
E:=FE\{e};

await message finished(¢’, df1, dfs, . . .);

D= 9| "’“t/dfl,.. f! "“t/dfm/}
where ¢/ = ((f] ’O”t LI "“t> =...);
F:=FuU{e};
return o;

Correctness is straightforward as this algorithm performs exactly the same file
assignments as algorithm 1. We refrain from a formal exposition.

This algorithm is implemented in our system for a multicore computer, but
it should also work for other architectures such as grids and clusters. We are
considering an enhanced implementation that combines Algorithms 3 and 4
such that each time a resource is reported modified, the maximum number
of processors are put to work to restore consistency. This may involve stop-
ping active processes, or removing them from the queue, when input files are
outdated.

10.5 Types and type inference for BANpipe scripts

The system includes a dynamic type system such that, for a given program
call, the output files are assigned types based on the types of the input files.
These types are programmer-defined and may not indicate anything about the
internal structure of the file. It is up to the programmer to associate a meaning
with the types, and they are only used by the system for checking the overall
sensibility of a script. Types are not visible in a script, but are managed
through optional declarations in the interface files (cf. section 10.2.1) and are
checked separately by a symbolic execution of the program as explained in the
following.

A type can be any Prolog term. An URL file has a default type file, which
may be coerced into a more specific type by a variant of the file: :get task,
illustrated as follows.

f <- file::get([’http:://server/file.html’],type(text(html))).

A task specified as in (10.14) may have an associated, polymorphic type decla-
ration of the following form, specifying requirements for its input and output
files.

type(prog, (L Type'™, ..., Typei™1, options, [ TypeS™, ..., Type®™1) (10.23)
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Each Type;n/ o and options are Prolog terms, possibly with variables, and
any variable in a Type?“t must occur in some Typei” or options. Thus, if
the types for m actual input files plus actual option values simultaneously
unifies with Typei”7 ey Type;”, opts, unique ground instances are created for
TypeS™, ..., TypeS™, which are then assigned as types for m output files.
Correct typing of a well-behaved BANscript S with respect to a given query
Q are formalized through a type semantics [—]"*?¢. For each task with n input

and m output files, assuming a type declaration as in (10.23) above, we define,

[mod : : prog(opts)] P (x1, . .., x,) = (Types™, ... TypeSt)p
where p is the unifier of (x1,...,x,, opts) (10.24)

and (Typel", ..., Typel™, options)

If the mentioned unifier does not exists, the result is instead L.

We can now use Algorithm 1 with this semantics for type checking a BAN-
pipe script with respect to a given query as a symbolic execution of the program.
The initial substitution ®{* maps any URL variable to the type file.

Algorithm 5: Type inference for BANscript
Input: A query @, a BANscript S,
Output: A substitution of variables into types;

®Pe .= run Algorithm 1 for Q, S, [-]""* and &,
return &re;

If, in the resulting substitution, any file is mapped to 1, we say that type
checking of S failed for Q; otherwise type checking succeeded. Taking [—]"¢
as definition of correct typing, correctness of this algorithm is a consequence
of theorem 1.

10.6 Examples

We exemplify BANpipe using examples drawn from biological sequence analysis
and machine learning. In the first example we present a simple gene predic-
tion pipeline and in the second example we show how such a pipeline can be
extended with recursive rules used to implement self-training.

10.6.1 A basic gene prediction pipeline

The following is an example of a simple gene prediction pipeline, corresponding
to experiments previously reported [43]. The premise is to train a gene finder
expressed as a PRISM model using some of the known genes of the FEscherischia
Coli genome (the training set) and verify its prediction accuracy on a different
set of known genes (the test set). First we get some initial data files; namely a
genome sequence (fasta_seq) and a list of reference genes (genes_ptt),

fasta_seq <- file::get([’ftp://ftp.ncbi.nih.gov/.../NC_000913.fna’]).
genes_ptt <- file::get([’ftp://ftp.ncbi.nih.gov/.../NC_000913.ptt’]).

The fetched files are parsed into suitable format (Prolog facts),
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genome <- fasta::parse([fasta_seq]).
genes (reference) <- ptt::parse([genes_ptt]).

We then extract all open reading frames (orfs) from the genome, and divide
them into a training set and a test set,

orfs <- sequence::extract_orfs([genome]).
orfs(training set), orfs(test_set) <- file::random_split([orfs],seed(42)).

Slightly simplified, open reading frames are subsequences of the genome which
may contain genes. The random_split program divides the orfs randomly
into the two files orfs(training_set) and orfs(test_set). The process is
deterministic due to the seed(42) option, i.e. it will split orfs in the same
way if it is rerun. Next, we extract known genes corresponding to each set,

genes(Set) <- ranges::intersect([genes(reference),orfs(Set)]).

The ranges module contains tasks which deal with a files containing particu-
lar facts which besides representing sub-sequences also includes their positions
in a genome. The intersect task finds all facts from genes(reference)
where the represented sub-sequences are completely overlapped? by a mem-
ber of orfs(Set). It is used here to find the reference genes that belong to
some Set, i.e., either the training_set or the test_set. This concludes the
preparation of data files and we turn to the rules for the gene finder,

params <- genefinder::learn([genes(training set)]).
predictions <- genefinder::predict([orfs(test_set), params]).
report <- accuracy: :measures([genes(test_set), predictions]).

The genefinder module contains a PRISM based gene finder and the learn
task bootstraps and invokes PRISMs machine learning procedure from the facts
in the file genes(traning_set). The resulting params file is a parameteriza-
tion for the PRISM model. Using this parameterization, the task predict
probabilistically predicts which orfs in orfs(test_set) represent genes, re-
sulting in the file predictions. Finally, the accuracy of the predictions are
evaluated with regards to the reference genes, genes(test_set), by the task
accuracy: :measures which calculates, e.g., sensitivity and specificity.

10.6.2 Self-training

Self-training has been demonstrated to yield improved gene prediction accuracy
[18]. A self-training gene finder can be expressed by mutually recursive rules,

known_genes <- ...

self_learn(1l) <- genefinder::learn([known_genes]).

self _learn(N) <- N > 1, N1 is N-1 | genefinder::learn([predict(N1)]).
predict(N) <- genefinder::predict([self_learn(N)]).

To elaborate: known_genes (obtained somehow) is the starting point for
training and self_learn(1) is the parameter file resulting from training on
known_genes. The second self_learn(N) rule is the recursive case, which
learns parameters from the predictions of the the previous iteration. The goal

4For the biologically inclined; we require this overlap to be in the same reading frame.
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predict (N) produces a set of gene predictions based on the parameters of ob-
tained from self_learn(N). For instance, the goal predict (100) corresponds
to predictions after 100 iterations of self-training.

It is straight-forward to extend this example to more advanced self-training,
e.g., co-training [20] where multiple models generate training data for each
other.

10.7 Related work

Computational pipelines are ubiquitous. The classic example is Unix pipes,
which feed the output of one program into another. Declarative pipeline lan-
guages with non-procedural semantics goes back at least to the make utility
[65].

The importance of pipelines for biological sequence analysis has been ac-
knowledged [146] and there are a variety of biological pipeline languages to
choose from, e.g., EGene[62], BioPipe[95], DIYA[202], and SKAM][139]. The
first three are configured using a static XML format with limited expressivity.
DIYA targets annotation of bacterial genomes which has also been a motivat-
ing case for us. SKAM is a Prolog based pipeline with a syntax that resembles
makefiles, but which borrows Prologs expressive power and provides built-in
support for iteration. Dependencies are realized through nesting of functors,
but are specified between tasks rather than files.

The family of concurrent logic languages [193] have syntactical and semantic
similarities to BANpipe. Rules have guards and the successful execution of
a guard implies a committed choice to evaluate the body of a rule. In flat
variants of the these languages, guards are restricted to a predefined set of
predicates as opposed to arbitrary used defined predicates. BANpipe allows
user defined predicates, but for the semantics to be well-defined, these are
subject to obvious restrictions, e.g. they should terminate. BANpipe rules
have a single goal in the rule body, whereas concurrent logic languages typically
have conjunctions of goals. These languages execute in parallel and synchronize
computations by suspension of unification, which may be subject to certain
restrictions. For instance, in Guarded Horn Clauses [214], the guard is not
allowed to bind variables in the head and the body may not bind variables in
the guard. BANpipe have more restricted assumptions; the guard never binds
variables in the head and the body never binds variables in the head or the
guard.

10.8 Conclusions

BANpipe is a declarative logic-language for modeling of computational pipelines
with time consuming analyses. We gave abstract and operational semantics for
BANpipe, which was extended for change propagation and parallelism and
type checking. The language was illustrated with examples inspired from gene
finding.

Our implementation of BANpipe supports all the concepts and extensions
presented in this paper. The language is implemented as an interpreted do-
main specific language in B-Prolog/PRISM and the implementation is mature
enough to handle pipelines of considerable size. Future versions may support
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other Prolog systems and adapt to a distributed setting by realizing tasks as
web services.
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Abstract

Tabling of structured data is important to support dynamic programming in
logic programs. Several existing tabling systems for Prolog do not efficiently
deal with structured data, but duplicate part of the structured data in different
instances of tabled goals. As a consequence, time and space complexity may
often be significantly higher than the theoretically optimal. A simple program
transformation is proposed which uses an indexing of structured data that elim-
inates this problem, and drastic improvements of time and space complexity
can be demonstrated. The technique is demonstrated for dynamic program-
ming examples expressed in Prolog and in PRISM.

11.1 Introduction

Tabling in logic programming systems is an established technique which can
give a significant speed-up of program execution and make it easier to write
efficient programs in a declarative style. Basically, tabling means that the
system maintains a table of calls and their answers and each time a new call is
entered, it is checked if it (or a perhaps more general call, cf. [208]) is stored
in the table already; if so, there is no need to execute it again and a previously
found solution is used. It is included in several recognized Prolog systems such
as B-Prolog [226], XSB [205] and YAP [164].

However, we can demonstrate that these systems may waste unnecessary
time and space for copying and matching structures in situations where oper-
ations on single pointers could have been used instead. This can be the case
when a program is called with a huge, ground structure as one of its argu-
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ments, and this argument is decomposed into sub-structures which are tabled
independently.

In addition to pointing out the problem, we can show how it can be bypassed
by a straightforward program transformation and a few auxiliary predicates
that can be written in plain Prolog. A significant speed-up is demonstrated for
selected test programs. In a longer perspective, we advocate such techniques
be incorporated into logic programming systems with tabling such as those
mentioned, where it can be implemented at a lower level where machine address
pointers are available rather that using a high-level “simulation” of pointers as
we do here.

Our own background for working with this problem is work on analysis
of biological sequence data using the probabilistic-logic system PRISM [180]
which is implemented on top of B-Prolog and which is heavily dependent on
its tabling mechanism. Together with another general program transformation
based technique that we have developed [40], which improves the performance
of tabling in the presence of non-discriminatory arguments, the technique de-
scribed in the present paper increases significantly the size of sequences that
can be meaningfully analyzed by means of PRISM programs.

Section 11.2 introduces the problem with tabling of structured data through
an example. Section 11.3 describes an indexed representation of structured
data that circumvents the problem, and section 11.4 demonstrates the effect
for two problems, a dynamic programming problem in Prolog in section 11.4.1
and a PRISM program in section 11.4.2. Section 11.5 describes a general and
automatic program transformation. Section 11.6 discuss limitations of our
approach. Section 11.7 describes related work and section 11.8 sums up and
discuss future work.

11.2 The Trouble with Tabling Structured Data

In this section we empirically demonstrate that all major Prolog tabling sys-
tems have a problem with structured data. Through the benchmarking of an
implementation of the last/2 predicate — which traverses a list to find the
last element — we observe that when this predicate is tabled, time and space
complexity is far worse than without tabling.

The following is a straight-forward implementation of the last/2 predicate.

last ([X],X).
last([_IL],X) :-
last(L,X).

If last/2 is called with a list L of length N, e.g. last(L,_), then the
expected time-complexity of this implementation is clearly O(N). However, if
the predicate is tabled, then the tabling system may have to store IV partial
copies of the list, e.g. the first copy will be the full list, the second copy will
just store N — 1 elements, and so on until every possible tail down to the last
element of the list has been tabled. This results in O(NN?) tabled list elements.

Naive copying of the lists hence make the tabled version of last/2 (at
least) quadratic — with regard to both time and space consumption — rather
than linear as in the non-tabled version. Tabling systems do employ some
advanced techniques to avoid the expensive copying and which may reduce
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memory consumption and/or time complexity. For instance, B-Prolog uses
hashing of goals [230], XSB uses a trie data structure [205] and Yap [164] uses
a trie structure, which in [160] is refined into a so-called global trie which
applies a sharing strategy for common subterms whenever possible. This can
reduce space consumption, but since there is no sharing between the trie and
the actual arguments of an active call, each execution of a call may typically
involve a full traversal of its arguments.

Nevertheless, as can be witnessed from Figure 11.1, all tabling systems pay
a price for structured data in either time or space. The figure shows time and
space consumption for last (L, _) with varying sizes of L, where L is either a list
of consecutive ones or a list of random numbers generated using the following
simple random number generator.

random_list(0,_, [1).
random_list (N,Prev, [X|L]):-
B is (9381x*Prev + 12345) mod 32768,
X is B mod 12,
N1 is N-1,
random_list(N1,B,L).

The nature of the data seems highly relevant. For instance, YAP and XSB
performs better with repeated data and B-Prolog performs better with random
data. As can be observed from Figure 11.1 plots a and c, time complexity is
larger than linear in all cases, but varies depending the type of data. Space
consumption is linear for repeated data in XSB and YAP, but for B-Prolog it
is linear regardless of the type of data. The best time complexity is observed
for B-Prolog with random data but as can be observed in plot c it is still super-
linear. XSB and YAP show a different pattern where the time complexity seems
to be more closely coupled to space complexity. For repeated data they are
more time-efficient than B-Prolog but still significantly slower than B-Prolog
with random data and still distinctively super-linear.

11.3 A Workaround and Its Implementation in Prolog

We present here a workaround that results in O(1) time and space complexity
for table lookups for programs with arbitrarily large ground structured data
as input arguments. A term is represented as a set of facts, each represent-
ing a subterm which is referenced by a unique integer serving as an abstract
pointer. Matching related to tabling is done solely by comparison of such point-
ers, independently of the underlying system. The representation is given by
the following predicates which all together can be understood as an abstract
datatype.

store term( +ground-term, pointer)
The ground-term is any ground term, and the pointer returned is a unique
reference (an integer) for that term.

retrieve term( +pointer, ?functor, ?arg-pointers-list)
Returns the functor and a list of pointers to representations of the sub-
structures of the term represented by pointer.
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Figure 11.1: Plot a) shows the time consumption of different Prolog engines
for running tabled last/2 with lists of length N and plot b) shows the table
space usage. Table space usage is measured using the statistics/1 predicate
(which is different for each Prolog). In Yap it includes no specific measurement
of “table space” and we measure instead the “program space” which is taken to
include the table space. Random data means that the list contained random
integers and in the repeated data means that the lists containing the same
integer repeated N times. Plot c¢) and d) shows time and table space usage
for the curves in a) and b) that looks flat because of the scale, but expanded
for larger values of N. The curve of B-Prolog for repeated data in plot d) is
truncated at 5000 due to its long running time for larger values.
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full retrieve term( +pointer, ?ground-term)
Returns the term represented by pointer.

More precisely, it must hold for any ground term s, that the query
store_term(s, P), full_retrieve_term(P, S),

assigns to the variable S a value identical to s. Furthermore, it must hold for
any ground term s of the form f(s1,...,s,) that

store_term(s, P), retrieve_term(P, F, Ss),

assigns to the variable F' the symbol f, and to Ss a list of ground values
[p1,...,pn] such that additional queries

full_retrieve_term(p;, S;),i=1,...,n
assign to the variables S; values identical to s;.

Example 11.3.1. The following call converts the term f(a,g(b)) into its
internal representation and returns a pointer value in the variable P.

store_term(f(a,g(b)),P).
After this, the following sequence of calls will succeed.

retrieve_term(P,f, [P1,P2]),
retrieve_term(Pl,a,[]),
retrieve_term(P2,g, [P21]),
retrieve_term(P21,b,[]),
full_retrieve_term(P,f(a,g(b))).

Example 11.3.2. One possible way of implementing the predicates introduced
above is to have store_term/2 asserting facts for the retrieve_term/3 predi-
cate using increasing integers as pointers. Then the call store_term(f(a,g(b)),P)
considered in example 11.3.1 may assign the value 100 to P and as a side-effect
assert the following facts.

retrieve_term(100,f,[101,102]).
retrieve_term(101,a,[]).
retrieve_term(102,g,[103]).
retrieve_term(103,b,[]).

Notice that Prolog’s indexing on first arguments ensures a constant lookup time.

Example 11.3.3. In an application for which large numbers of identical sub-
terms are expected, the representation can exploit this for sharing, so for ex-
ample the term h(very(large,sub(term)), very(large,sub(term))) may
be represented by the pointer value 200 and the following facts.

retrieve_term(200,g, [201,201]).
retrieve_term(201,very,[...]).
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This will increase the time complexity for store_term/2 but the advantages are
i) storage consumption is reduced, and more importantly ii) an additional — and
for the right sort of application programs drastic — speed-up may be obtained
from the improved utilization of tabling that this automatically implies.

Finally we introduce a utility predicate which may simplify the use of the
representation in application programs. It utilizes a special kind of terms, called
patterns, which are not necessarily ground and which may contain subterms of
the form lazy (variable).

lookup pattern( +pointer, 4 pattern)
The pattern is matched in a recursive way against the term represented
by the pointer p in the following way.
— lookup_pattern(p,X) is treated as full_retrieve_term(p,X).
— lookup_pattern(p,lazy (X)) unifies X with p.
— For any other pattern =.. [F,X1,...,X,] we call
retrieve_term(p, F, [P1,...,P,])
followed by lookup_pattern(P;,X;),i=1,...,n.

Example 11.3.4. Continuing example 11.3.2, we get that
lookup_pattern(100, f(X,lazy(Y)))
leads to X=a and Y=102.

The lookup_pattern/2 predicate simplifies the program transformation in-
troduced in section 11.5 although further efficiency can be gained by compiling
it out for each specific pattern.

11.4 Examples

The impact of indexing for ground arguments with tabled execution is evaluated
through two experiments. Firstly, we compare the performance of existing
Prolog systems with tabling for a simple edit distance problem. The second
experiment is related to our driving motivation — biological sequence analysis
in PRISM, exemplified for probabilistic inference with Hidden Markov Models.
All experiments were run on a MacBook Pro with a 2.53 GHz Intel core 2 Duo
processor, 4 GB memory and Mac OS X version 10.6.8 (Snow Leopard).

11.4.1 Example: Edit Distance

We consider a minimal edit-distance algorithm written in Prolog which is de-
pendent on tabling for any non-trivial problem. Time and space consumption
are measured for increasing problem sizes in the three major tabling systems
with and without our indexed representation.

Edit-distance is the textbook example dynamic programming. In the classic
imperative formulation of the problem, a matrix with N? values is calculated,
such that the calculation of the value for each cell is a constant time oper-
ation that depends on at most three other cells. The theoretical best time
complexity of edit distance has been proven to be O(N?) [222]. Dynamic pro-
gramming problems exhibit optimal sub-structure which implies that partial
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solutions can be reused rather than recomputed [14]. Tabling supports dy-
namic programming since resolved goals are kept in a table and reused rather
than re-derived if the tabled goals are called again. The following Prolog pro-
gram implements minimal edit distance between two lists; given two lists Lq
and Lo, the call edit (L1, Lo,D) will return the minimal number of edits (sub-
stitutions,insertions and deletions) needed to change one of the lists into the
other.

:- table edit/3.
edit([]1,[1,0).

edit([1,[Y|Ys],Dist) :-
edit([],Ys,Distl),
Dist is 1 + Distl.

edit([X|Xs],[],Dist) :-
edit(Xs, [],Distl),
Dist is 1 + Distl.

edit([X|Xs],[Y|Ys],Dist) :-

edit([X|Xs],Ys,InsDist),

edit (Xs, [Y|Ys],DelDist),

edit(Xs,Ys,TailDist),

X==Y ->
Dist = TailDist
% Minimum of insertion, deletion or substitution
sort ([InsDist,DelDist,TailDist], [MinDist|_]),
Dist is 1 + MinDist).

Without tabling the edit/3 predicate, the same subgoals are derived again
and again leading to exponential blowup, but it can be shown that the number
of distinct calls are quadratic, which is the actual complexity we may hope for
with optimal tabling.

The program has been transformed manually for this experiment based on
the pointer based representation shown in example 11.3.2 above, simplified
slightly for lists. The retrieve_term predicate is applied to resolve pointers
during program execution. For completeness, we include a suitable implemen-
tation of store_term/2 and retrieve_term/2.

store_term([],Index) :- assert(retrieve_term([],Index)).
store_term([X|Xs],Idx) :-
Idx1 is Idx + 1,

assert (retrieve_term(Idx, [X,Idx1])),
store_term(Xs,Idx1).

The transformed version of the edit distance program is now as follows.

:- table edit/3.
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edit (XIdx,YIdx,0) :-
retrieve_term(XIdx, []1),
retrieve_term(YIdx, []).

edit (XIdx,YIdx,Dist) :-
retrieve_term(XIdx, [1),
retrieve_term(YIdx, [_,YIdxNext]),
edit (XIdx,YIdxNext,Distl),
Dist is Distl + 1.

edit (XIdx,YIdx,Dist) :-
retrieve_term(YIdx, [1),
retrieve_term(XIdx, [_,XIdxNext]),
edit (XIdxNext,YIdx,Dist1),
Dist is Distl + 1.

edit (XIdx,YIdx,Dist) :-

retrieve_term(XIdx, [X,NextXIdx]),

retrieve_term(YIdx, [Y,NextYIdx]),

edit (XIdx,NextYIdx,InsDist),

edit (NextXIdx,YIdx,DelDist),

edit (NextXIdx,NextYIdx,TailDist),

(X==Y —>
Dist = TailDist
sort ([InsDist,DelDist,TailDist], [MinDist|_]),
Dist is 1 + MinDist).

The program is tested for randomly generated sequences of increasing lengths.
We measure the total time for the different Prolog engines to load the program
file, generate two different random sequences of a particular length, assert these
lists using store_term/2 and compute edit distance between these sequences,
as follows.

run(N) :-
random_list(N,117,L1), % Generate random list L1 with seed 117
random_list(N,42,L2), % Generate random list L1 with seed 42
store_term(L1,P1),
store_term(L2,P2),
edit(P1,P2, Dist).

The results, shown in Figure 11.2, demonstrate that all tested Prolog systems
use more time for the unmodified tabled edit distance program than for the
transformed program when applied to large data instances. For XSB and Yap
the major factor impacting time complexity seems to be space consumption.
The transformation has a positive impact space complexity regardless of the
underlying tabling strategy. For B-Prolog, space consumption is much closer
to the theoretical O(N?). Even though B-Prolog is very space efficient, the
transformed program still uses less memory.
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For larger problem instances the transformation has a significant impact
on time complexity. XSB seems to benefit greatly from the transformation,
although it starts out the slowest, it catches up for longer sequences, where
it outperforms the two other Prologs in time efficiency. Yap seems to gain
a modest boost from the transformation strategy and still seems to have a
rather high time complexity although it is significantly faster than without the
transformation. For B-Prolog, the two versions perform more or less the same
for sequences of length up to 350, but for longer sequences (not shown in the
figure) the transformed version is significantly faster: for example, with length
1000, the execution times are 7.5 seconds for the transformed and 21.5 seconds
for the original version.
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Figure 11.2: The first plot shows the time consumption of different Prolog en-
gines for edit distance with two lists of length N. The second is a plot of the
space consumption for the same calls. The plots for both normal tabled in exe-
cution and execution of a transformed program that uses indexing as described
in section 11.3 are shown, e.g. the plot index(X) shows the performance of the
transformed version for Prolog implementation X.
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11.4.2 Example: Hidden Markov Model in PRISM

PRISM [180] is an extension of Prolog with special goals representing random
variables. A global declaration such as values(coin, [head,taill) introduces
a so-called multivalued switch which means that an occurrence of the subgoal
msw(coin,C) represents a probabilistic choice of assigning either head or tail
to C. The semantics of PRISM is defined in terms of probabilistic Herbrand
models, which means that a program specifies a probability of any goal G
to be true determined from the possible combinations of msw outcomes that
happen to make G true.

The PRISM system supports various probabilistic inferences, such as finding
an optimal derivation, computing the probability for a goal or deriving msw
probabilities by learning from a set of goals. The algorithms behind these
inferences are dynamic programming algorithms and PRISM is implemented
in B-Prolog [226], relying heavily on tabling for the efficiency of the probabilistic
inferences.

We consider the example of a Hidden Markov Model (HMM) in PRISM
taken from the PRISM manual [190] and adapted here to accommodate variable
length sequences. In general, an HMM is a probabilistic model for sequential
phenomena based on a finite automaton, which chooses state transitions and
emissions by probabilistic choices; see [159] for a general introduction to HMMs
and [44] for an account on how different HMMs are expressed in PRISM. Our
example program is the following.

values(init, [s0,s1]). hmm(_, [1).
values (out(_), [a,b]).
values(tr(_), [s0,s1]). hmm(S, [0blY]) :-
msw(out(S),0b),
hmm (L) : - msw(tr(S),Next),
msw(init,S), hmm (Next,Y) .
hmm (S,L) .

The init, out (—) and tr (—) switches determine initial state, state transitions
and emissions. Notice that two last ones are parameterized meaning that they
define a switch for whatever value is substituted in for the parameter, which
in this program always is the present state.

Using the same list encoding as in the previous example, the recursive
predicate is rewritten as follows.

hmm (S,0bsPtr) : -
retrieve_term(ObsPtr, [1).

hmm(S,0bsPtr) :-
retrieve_term(ObsPtr, [0b,Y]),
msw(out (S),0b),
msw(tr(S),Next),
hmm(Next,Y) .

The rewritten program can be shown to be semantics preserving wrt a standard
Prolog semantics as well as PRISM’s probabilistic semantics, and thus running
PRISM’s utilities for probability calculations should yield the same results.
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When calculating the probability of a given goal, PRISM iterates over all
possible ways to execute the goal using tabling to avoid enumerating the expo-
nential number of different derivations. The same principle applies for PRISMs
version of the Viterbi algorithm which is a dynamic programming algorithm
that finds the most probable derivation. Assuming optimal execution of tabling,
these algorithms should in principle run in linear time.

We measured running times of probability calculations (prob in PRISM
lingo) for both the original and the transformed version of the PRISM HMM
program with sequences of increasing lengths from 100 to 5000. The actual
sequences used are instances of the pattern [a,b] repeated a number of times.
The results are shown in Figure 11.3. It is apparent from the figure that
indexed lookups results in approximately linear running time while the running
time is at least quadratic for the unmodified program. The reported times
are measured using prism_statistics(infer_time,Time), which is a PRISM
built-in predicate.

We did not measure running times of sequences longer than 5000 for the
unmodified program, but the transformed program scales up to sequences much
longer than this, for instance, the time for probability calculation for a sequence
of length 100000 takes less than 5 seconds.

11.5 Automatic Program Transformation

The indexed versions of the example programs shown in section 11.4 can be
produced automatically by a straightforward program transformation. The
user must declare modes for which arguments predicate arguments that should
be indexed. For the HMM program of section 11.4.2 this may look as follows;
plus means transform the argument, minus means keep it unchanged.

table_index_mode (hmm(+))
table_index_mode (hmm(-,+))

The correctness of the transformation depends on the following properties of
the program.

e The arguments indicated for indexing must be called with ground data
only.

e Variables that occur in an indexed argument in the head of a clause,
cannot occur in the body of that clause in both an indexed and a non-
indexed argument.

e Any argument of a goal within a clause body which is declared to be
indexed, must be given as a variable that also occurs in an indexed ar-
gument in the head of that clause.

Each clause whose head predicate is covered by a table mode declaration is
transformed using the procedure outlined in algorithm 1, and all other clauses
are left untouched.  The transformation moves any term appearing in an
indexed position in the head of a clause into a call to the lookup_pattern
predicate, which is added to the body. Variables in such terms are marked
lazy when they do not occur in any non-indexed argument inside the clause.
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Figure 11.3: The running time of the a) the transformed PRISM program and
b) the unmodified PRISM program. While a) shows a linear development as
function of sequence length, the development in b) is a higher-degree polyno-
mial. Notice also the different scales on the vertical axes.

This transformation can be shown to be semantics preserving for programs
satisfying the requirements given above.

The translation can be further enhanced by an unfolding of lookup_pattern
calls into specialized calls to retrieve_term as shown in the examples in the
previous section. This last step gave a speed-up of a factor of 5 for these exam-
ples when comparing with implementations using lookup_pattern directly.

11.6 Limitations

Our transformation assumes ground input arguments. As illustrated by the
examples, this has applications to a lot of interesting problems, in particular
dynamic programming problems. With regard to PRISM, our transformation
is useful for ordinary probability calculation, Viterbi decoding and supervised
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for each clause H: -B in original program do
if table_index_mode (¥) matching H then
for each argument H; € H, M; €¥ do
if M, =’+’ then
H! + MarkLazy(H;, B)
B « (lookup _pattern(V;, H!), B)
end
end

where MarkLazy is defined as

MarkLazy (H;,B) :

Potential Lazy = variables in all goals G € B

where G has table_index_mode declaration
NonLazy = variables in all goals G € B

where G has no table_index_mode declaration
Lazy = Potential Lazy \ NonLazy
for each variable V € H; do

if V € Lazy then
V « lazy(V)
end
Algorithm 1: Program transformation.

learning. For other probabilistic inferences such as sampling, posterior decod-
ing, unsupervised and semi-supervised learning, arguments containing variables
are required. Sampling is of minor concern, since this can be done in linear
time using the original program.

We currently have no optimization for structured terms in output argu-
ments — they must be handled by the usual tabling mechanism. Structured
terms in output arguments have the same consequences for complexity, which
can be observed for instance with the well-known append/3 predicate. Sup-
pose that append/3 is tabled and transformed using our approach, e.g. with
table_index_mode (+,+,-). Using our workaround, the space complexity for
the input lists will be kept linear rather than quadratic, but the answers for the
third list is tabled in the usual way which leads to quadratic space complexity
nevertheless. Output arguments that do not contain structured data — as in
the case of edit distance — do not present such a problem since the output
argument is of constant size.

A drawback of our transformation is that it, by replacing the patterns in
the head of rules with pointers, circumvents Prolog own indexing mechanism.
As result, indexing cannot use the pattern of the arguments to determine which
clauses to try. Instead, when multiple clauses with same name and arity exist,
Prolog will have to try each of them in order and creates a choice point each
time it tries a clause. This adds a constant factor — corresponding to the
number of such clauses — to the running time of the program. It most practical
programs it is realistic to assume that this factor will be fairly low, e.g. in the
edit distance program only four such clauses exist.
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11.7 Related work

The hashing employed by B-Prolog and the global trie of YAP [160] address
a related problem. Both methods reduce space consumption and this may
lead to reductions in running time since less copying is needed. However, even
with these mechanisms complexity is sub-optimal as shown in section 11.2.
Furthermore, the methods have the drawback that the running time depends
on the type of data. In comparison, our approach is data invariant and yields
optimal complexity.

Due to restrictions in the Mercury language, input arguments are always
ground, and the tabling system provides an option which identifies arguments
by their pointers [199] (see also more detailed explanations in the reference
manual [92]). This yields constant time storing and comparison of tabled ar-
guments, similar to how any standard tabling mechanism will work for the
programs produced by our program transformation.

The problem with tabling of structured data has addressed in applications
with methods similar to our approach. In particular, in chart-parsing with
DCGs supported by tabling, position indexed facts has been used [203]. A sim-
ilar approach has been applied to PCFG parsing in PRISM [184]. This works
by splitting the input list, ¢; ...ty into facts, {pos(1,¢1,2), ..., pos(N —
1,t,, N)}. XSB Prolog have special constructions for tabled DCGs, where the
standard >C’/3’ predicate is replaced by a special version that instead of using
difference lists, utilize position indexed facts constructed from the original in-
put list [204]. The position indexed difference list approach is quite similar to
our approach, but is specific for difference lists. Our approach is more generally
applicable and can be used with various kinds of structured data.

11.8 Conclusion

We have demonstrated that major Prolog implementations do not efficiently
handle tabling of structured data and we have provided a program transfor-
mation that ensures O(1) time and space complexity of tabled lookups of goals
with structured data in input arguments and is applicable regardless of inef-
ficiencies with structured data in the underlying tabling implementation. We
have demonstrated the applicability of our transformation using examples from
dynamic programming in Prolog and PRISM. The transformation makes it pos-
sible to scale to much larger problem instances.

Our program transformation should be seen as workaround, until such op-
timizations find their way into the tabling systems. We hope that Prolog
implementors will pick up on this and integrate such optimizations directly in
the tabling systems, so that the user does not need to transform his program,
and need not worry about the underlying tabled representation and its implicit
complexity.
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Abstract

Current tabling systems suffer from an increase in space complexity, time com-
plexity or both when dealing with sequences due to the use of data structures
for tabled subgoals and answers and the need to copy terms into and from
the table area. This symptom can be seen in not only B-Prolog, which uses
hash tables, but also systems that use tries such as XSB and YAP. In this
paper, we apply hash-consing to tabling structured data in B-Prolog. While
hash-consing can reduce the space consumption when sharing is effective, it
does not change the time complexity. We enhance hash-consing with two tech-
niques, called input sharing and hash code memoization, for reducing the time
complexity by avoiding computing hash codes for certain terms. The improved
system is able to eliminate the extra linear factor in the old system for process-
ing sequences, thus significantly enhancing the scalability of applications such
as language parsing and bio-sequence analysis applications. We confirm this
improvement with experimental results.

12.1 Introduction

Tabling, as provided in logic programming systems such as B-Prolog [229], XSB
[205], YAP [51], and Mercury [199], has been shown to be a viable declarative
language construct for describing dynamic programming solutions for various
kinds of real-world applications, ranging from program analysis, parsing, deduc-
tive databases, theorem proving, model checking, to logic-based probabilistic
learning. The main idea of tabling is to memorize the answers to subgoals in
a table area and use the answers to resolve their variant or subsumed descen-
dants. This idea of caching previously calculated solutions, called memoization,
was first used to speed up the evaluation of functions [135]. Tabling can get rid

175



176 CHAPTER 12. TABLING WITH ENHANCED HASH-CONSING

of not only infinite loops for bounded-term-size programs but also redundant
computations in the execution of recursive programs. While Datalog programs
require tabling only subgoals with atomic arguments, many other programs
such as those dealing with complex language corpora or bio-sequences require
tabling structured data. Unfortunately, none of the current tabling systems
can process structured data satisfactorily. Consider, for example, the predi-
cate is_list/2:

:-table is_list/1.
is_list([1).
is_list([_|L]):-is_1list(L).

For the subgoal is list([1,2,...,N]), the current tabled Prolog systems demon-
strate a higher complexity than linear in N: B-Prolog (version 7.6 and older)
consumes linear space but quadratic time; YAP, with a global trie for all tabled
structured terms [160], consumes linear space but quadratic time; XSB is
quadratic in both time and space. The nonlinear complexity is due to the
data structure used to represent tabled subgoals and answers and the need to
copy terms into and from the table area.

The inefficiency of early versions of B-Prolog in handling large sequences
has been reported and a program transformation method has been proposed to
index ground structured data to work around the problem [87]. In old versions
of B-Prolog, tabled subgoals and answers were organized as hash tables, and
input sharing was exploited to allow a tabled subgoal to share its ground
structured arguments with its answers and its descendant subgoals. Input
sharing enabled B-Prolog to consume only linear space for the tabled subgoal
is_list([1,2,...,N]). Nevertheless, since the hash code was based on the first
three elements of a list, the time complexity for a query like is_list([1,1,...,1])
was quadratic in the length of the list. B-Prolog didn’t support output sharing,
i.e. letting different answers share structured data. Therefore, on the tabled
version of the permutation program that generates all permutations through
backtracking, B-Prolog would create n x n! cons cells where n is the length of
the given list.

This problem with tabling structured data has been noticed before and
several remedies have been attempted. Omne well known technique used in
parsing is to represent sentences as position indexed facts rather than lists.
XSB provides tabled grammar predicates that convert list representation to
position representation by redefining the built-in predicate >C’/3.! The posi-
tion representation is also used for PCFG parsing in PRISM [185]. A program
transformation method has been proposed to index ground structured data
to work around the quadratic time complexity of B-Prolog’s tabling system
[87]. Nevertheless, these remedies have their limitations: the position repre-
sentation disallows natural declarative modeling of sequences and the program
transformation incurs considerable overhead. Have and Christiansen advocate
for native support of data sharing in tabled Prolog systems for better scalability
of their bio-sequence analysis application [87].

We have implemented full data sharing in B-Prolog in response to the man-
ifesto. In the new version of B-Prolog, both input sharing and output sharing
are exploited to allow tabled subgoals and answers to share ground structured

IPersonal communication with David S. Warren, 2011.
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data. Hash-consing [63], a technique originally used in functional program-
ming to share values that are structurally equal [80, 11], is adopted to memo-
rize structured data in the table area. This technique avoids storing the same
ground term more than once in the table area. While hash-consing can reduce
the space consumption when sharing is effective, it does not change the time
complexity. To avoid the extra linear time factor in dealing with sequences,
we enhance hash-consing with input sharing and hash code memoization. For
each compound term, an extra cell is used to store its hash code.

Our main contribution in this paper is to apply hash-consing to tabling
and enhance it with techniques to make it time efficient. The resulting sys-
tem demonstrates linear complexity in terms of both space and time on the
query is_list(L) for any kind of ground list L. As another contribution, we also
compare tries with hash consing in the tabling context. As long as sequences
are concerned, a trie allows for sharing of prefixes while hash-consing allows
for sharing of ground suffixes. While we can build examples that arbitrarily
favor one over the other, for recursively defined predicates such as is_list, it
is more common for subgoals to share suffixes than prefixes. The enhanced
hash-consing greatly improves the scalability of PRISM on sequence analysis
applications. Our experimental results on a simulator of a hidden Markov
model show that PRISM with enhanced hash-consing is asymptotically better
than the previous version that supports no hash-consing.

The remainder of the paper is structured as follows: Section 12.2 defines the
primitive operations on the table area used in a typical tabling system; Section
12.3 presents the hash tables for subgoals and answers, and describes the copy
algorithm for copying data from the stack/heap to the table area; Section
12.4 modifies the copy algorithm to accommodate hash-consing; Section 12.5
describes the techniques for speeding up computation of hash codes; Section
12.6 evaluates the new tabling system with enhanced hash-consing; Section
12.7 gives a survey of related work; and Section 12.8 concludes the paper.

12.2 Operations on the Table Area

A tabling system uses a data area, called table area, to store tabled subgoals
and their answers. A tabling system, whether it is suspension-based SLG [33]
or iteration-based linear tabling [229], relies on the following three primitive
operations to access and update the table area.?

Subgoal lookup and registration: This operation is used when a tabled
subgoal is encountered in execution. It looks up the subgoal table to see
if there is a variant of the subgoal. If not, it inserts the subgoal (termed
a pioneer or generator) into the subgoal table. It also allocates an answer
table for the subgoal and its variants. Initially, the answer table is empty.
If the lookup finds that there already is a variant of the subgoal in the
table, then the record stored in the table is used for the subgoal (called
a consumer). Generators and consumers are dealt with differently. In
linear tabling, for example, a generator is resolved using clauses and a
consumer is resolved using answers; a generator is iterated until the fixed

2The interpretation of these operations may vary depending on implementations.
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point is reached and a consumer fails after it exhausts all the existing
answers.

Answer lookup and registration: This operation is executed when a clause
succeeds in generating an answer for a tabled subgoal. If a variant of the
answer already exists in the table, it does nothing; otherwise, it inserts the
answer into the answer table for the subgoal. When the lazy consumption
strategy (also called local strategy) is used, a failure occurs no matter
whether the answer is in the table or not, which drives the system to
produce the next answer.

Answer return: When a consumer is encountered, an answer is returned im-
mediately if any. On backtracking, the next answer is returned. A gen-
erator starts consuming its answers after it has exhausted all its clauses.
Under the lazy consumption strategy, a top-most looping generator does
not return any answer until it is complete.

12.3 Hash Tables for Subgoals and Answers

The data structures used for the table area are orthogonal to the tabling mech-
anism, whether it is suspension-based or iteration-based; they can be hash
tables, tries, or some other data structures. In this section, we consider hash
tables and the operations for the table area without data sharing.

A hash table, called a subgoal table, is used for all tabled subgoals. For
each tabled subgoal and its variants, there is a record in the subgoal table,
which includes, amongst others, the following fields:

AnswerTable: Pointer to the answer table for the subgoal

sym: The functor of the subgoal

Al...An: The arguments the subgoal
When a tabled predicate is invoked by a subgoal, the subgoal table is looked
up to see if a variant of the subgoal exists. If not, a record is allocated and
the arguments are copied from the stack/heap to the table area. The copy of
the subgoal shares no structured terms with the original subgoal and all of its
variables are numbered so that they have different identities from those in the
original subgoal.

The record of a subgoal in the subgoal table includes a pointer to another
hash table, called an answer table, for storing answers produced for the subgoal.
For each answer and its variants, there is a record in the answer table, which
stores amongst others a pointer to a copy of the answer. When an answer
is produced for a subgoal, the subgoal’s answer table is looked up to see if
a variant of the answer exists. If not, a record is allocated and the answer
is copied from the stack/heap to the table area. The answers in a subgoal’s
answer table are connected from the oldest one to the newest one such that
they can be consumed by the subgoal one by one through backtracking.

In the implementation, a hash table is represented as an array. To add an
item into a hash table, the system computes the hash code of the item and uses
the hash code modulo the size of the array to determine a slot for the item.
All items hashed to the same slot are connected as a linked list, called a hash
chain. A hash table is expanded when the number of records in it exceeds the
size of the array.
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The WAM representation [219] is used to represent both terms on the heap
and terms in the table area except that variables in tabled terms are numbered.
A term is represented by a word containing a value and a tag. The tag dis-
tinguishes the type of the term. It may be REF denoting a reference, ATM an
atomic value, STR a structure, LST a cons, or NUMVAR a numbered variable.
A STR-tagged reference to a structure f(tq,...,t,) points to a block of n + 1
consecutive words where the first word points to the functor f/n in the symbol
table and the remaining n words store the n components of the structure. An
LST-tagged reference to a list cons [H|T] points to a block of two consecutive
words where the first word stores the car H and the second word stores the cdr
T.

Figure 12.1 gives the definition of the function copy term that copies a
numbered term from the stack/heap to the table area. The hash function is
designed in such a way that the hash code of a non-ground term is always 0.
The function call seq_hcode(codel,code2) gives the combined hash code of the
two hash codes from two components:

int seq_hcode(int codel, int code2){
if (codel==0) return O;
if (code2==0) return 0O;
return codel+31*code2+1;

}

If either code is 0, then the resulting code is 0 too.3

It is assumed that all the variables in a subgoal have been numbered before
the arguments are copied. In the real implementation, variables are numbered
inside the function copy term. The function call copy subgoal args(src,des,arity)
copies the arguments of a numbered subgoal to the table area where (src-i)
points to the ith argument on the stack and (des+i) is the destination in the
table area where the argument is copied to. In the TOAM architecture [226]
on which B-Prolog is based, arguments are passed through the stack and the
stack grows downward from high addresses to low ones. That is why (src-1)
points to the first argument and (src-arity) points to the last argument of the
subgoal. A similar function is used to copy answers to the table area.

The function copy_term is not tail recursive and can easily cause the native
C stack to overflow when copying large lists. In the real implementation, an
iterative version is used to copy a list and compute its hash code. For a cons,
the function needs to compute the hash codes of the car and the cdr before
computing its hash code. The function does this in two passes: in the first pass
it reverses the list and in the second pass it computes the hash codes while
reversing the list back.

The function copy term exploits no sharing of data. Consider, for ex-
ample, the following program and the query is_list([1,2]). After completion
of the query, the subgoal table contains three tabled subgoals, is list([1,2]),
is_list([2]), and is_list([]), and each subgoal’s answer table contains an an-
swer that is just a copy of the subgoal itself. No data are shared among the
copies of the terms. So there are two separate copies of [1,2] and two separate
copies of [2] in the table area. In the WAM representation of lists, a cons re-

3Note that this way of combing hash codes is for hash consing terms. For the subgoal
and answer tables, hash codes are combined in a different way.
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int copy subgoal args(TermPtr src, TermPtr des, int arity){
hcsum = 0;
for (i=li<=arity;i++){
hcode = copy _term(*(src-i), des+i);
hc_sum = seq_hcode(hc_sum,hcode);
}
return hc_sum;

}

int copy term(Term t, TermPtr des){

deref(t);

switch (tag(t)){

case NUMVAR:
*des = t;
return 0O;

case ATM:
*des = t;
return atomic__hcode(t);

case LST:
pl = untag(t);
p2 = allocate from table(2);
car_code = copy_term(*pl, p2);
cdr_code = copy _term(*(pl+1), p2+1);
hcode = seq_hcode(car_code,cdr_code);
tl = add_tag(p2,LST);
*des = tl;
return hcode;

case STR:
pl = untag(t);
sym = *pl;
arity = get arity(sym);
p2 = allocate_from _table(arity+1);
hcode = *p2 = sym;
for (i=1;i<=arity;i++)

hcode = seq hcode(hcode, copy term(*(pl+i), p2+i));

tl = add_tag(p2,STR);
*des = t1;
return hcode;

} /* end switch */

} /* end copy_term */

Figure 12.1: Copy data to the table area with no sharing.

quires two words to store, so 12 words are used in total. In general, the query
is_list([1,2,...,N]) consumes O(N?) space in the table area.

12.4 Hash-Consing of Ground Compound Terms

Hash-consing, like tabling, is a memoization technique which uses a hash table
to memorize values that have been created. Before creating a new value, it
looks up the table to see if the value exists. If so, it reuses the existing value,
otherwise, it inserts the value into the table. The concept of hash-consing
originates from implementations of Lisp that attempt to reuse cons cells that
have been constructed before [80]. This technique has also been suggested
for Prolog (e.g., for sharing answers of findall/3 [149]), but its use in Prolog
implementations is unknown, not to mention its use in tabling.

Let’s call the hash table used for all ground terms terms-table. Figure
12.2 gives an updated version of copy term that performs hash-consing. If
the term is a list or a structure, the function copies it into the table area
first. If the term is ground, it then calls the function hash consing(t1,hcode)
to look up the terms-table to see if a copy of tl already exists in the table.
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int copy term(Term t, TermPtr des){
deref(t);
switch (tag(t)){
case NUMVAR:
*des = t;
return 0;
case ATM:
*des = t;
return atomic_hcode(t);
case LST:
pl = untag(t);
p2 = allocate from table(2);
car_code = copy _term(*pl, p2);
cdr_code = copy term(*(pl+1), p2+1);
hcode = seq_hcode(car_code,cdr_code);
tl = add_tag(p2,LST);
if (is_ground_hcode(hcode)){
t2 = hash_consing(t1,hcode);
if (t1 '= t2){
deallocate_to_table(2);
tl = t2;
}
}
*des = t1;
return hcode;
case STR:
pl = untag(t);
sym = *pl;
arity = get arity(sym);
p2 = allocate from _table(arity+1);
hcode = *p2 = sym;
for (i=1l;i<=arity;i+-+)
hcode = seq_hcode(hcode, copy _term(*(pl+i), p2+i));
tl = add_tag(p2,STR);
if (is_ground_hcode (hcode)){
t2 = hash_consing(t1,hcode);
if (t1 '= t2){
deallocate_to_table(arity+1);
tl = t2;
}
}
*des = t1;
return hcode;
} /* end switch */
} /* end copy term */

Figure 12.2: Copy data with hash-consing.

If so, hash consing(t1,hcode) returns the copy; otherwise, it inserts tl into
the terms-table and returns tl itself. If an old copy in the terms-table is
returned (t1 !'= t2), the function deallocates the memory space allocated for
the current copy.

With hash-consing, the query ?-is_list([1,2]) only creates one copy of [1,2]
in the table area and the list is shared by the subgoals and the answers. As
[2] is the cdr of [1,2], no separate copy is stored for it. So, only 4 words are
used in total for the list. The number of words used for hashing the two lists
varies, depending on if there is a collision. If no collision occurs, two slots in
the terms-table are used; otherwise, one slot in the terms-table is used and one
node with two words is used to chain the two lists. So in the worst case, 7
words are needed in total.
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12.5 Enhanced Hash-Consing

With hash-consing, the tabled subgoal is_list([1,...,N]) consumes only linear
table space now. Nevertheless, its time complexity remains quadratic in N.
This is because for each descendant subgoal is list([K,...,N]) (K>1) the hash
code of the list [K,...,N] has to be computed and the terms-table has to be
looked up. We enhance hash-consing with two techniques to lower the time
complexity of is_list([1,...,N]) to linear.*

12.5.1 Hash code memoization

The first technique is to table hash codes of structured terms in the table area.
For each structure or a list cons in the table area, we use an extra word to
store its hash code. The WAM representation of terms is not changed. The
word for the hash code of a compound term is located right before the term.
So assume p is the untagged reference to a structure or a list cons, then p-1
references the hash code.

Figure 12.3 gives a new version of copy term that tables hash codes.
Tabled hash codes are used for two purposes. Firstly, when searching for the
term t1 in the hash chain, the function hash consing(t1,hcode) always com-
pares the hash codes first and only when the codes are equal will it compare
the terms. Secondly, the system reuses the tabled hash codes of terms when it
expands a hash table and rehashes the terms into the new hash table.

With tabled hash codes, the subgoal is_list([1,...,N]) still takes quadratic
time since the list [1,...,N] resides on the heap and for each descendant subgoal,
the hash code of the argument is not available and hence has to be computed.
To avoid this computation, we introduce input sharing.

12.5.2 Input Sharing

Input sharing amounts to letting a subgoal share its ground terms with its
answers and descendant subgoals. Consider the tabled subgoal is_ list([1,2,3]).
The answer is the same as the subgoal, so it shares the term [1,2,3] with the
subgoal in the table area. The direct descendant subgoal is is list([2,3]). Since
the list [2,3] is a suffix of [1,2,3], the descendant subgoal should share it with
the original subgoal in the table area.

To implement input sharing, we let the copying procedure set the frame
slot of an argument of a tabled subgoal to the address of the copied argument
in the table area if the argument is a ground structured term. So for the tabled
subgoal is list([1,2,3]), the frame slot of the argument initially references the
list [1,2,3] on the heap. After the subgoal is copied to the table area, the
frame slot is set to reference the copy of the list in the table area. In this way,
the list will be shared by answers and the descendant subgoals. For programs
that do not use destructive assignments, which is the case for tabled programs,
updating frame slots this way causes no problem.

The function copy subgoal args shown in Figure 12.4 implements input
sharing. When an argument is found to be ground, the function lets the

4The worst case time complexity is still quadratic in theory if a poorly designed hash
function is used.
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int copy term(Term t, TermPtr des){
deref(t);
switch (tag(t)){
case NUMVAR:
*des = t;
return 0;
case ATM:
*des = t;
return atomic_hcode(t);
case LST:
pl = untag(t);
if (!is_heap_reference(p1)){
*des = t;
return *(pl-1); /* return the tabled hash code */

p2 = allocate_from _table(3);
p2++;
car_code = copy _term(*pl, p2);
cdr_code = copy _term(*(pl+1), p2-+1);
hcode = seq_hcode(car_code,cdr_code);
*(p2-1) = hcode;
tl = add_tag(p2,LST);
if (is_ground hcode(hcode)){

t2 = hash_consing(t1,hcode);

if (t1 1= t2){

deallocate to table(3);
tl = t2;

}
}
*des = t1;
return hcode;

case STR:

pl = untag(t);
if (!is_heap_reference(p1)){

*des = t;

return *(pl-1); /* return the tabled hash code */
}
sym = *pl;
arity = get arity(sym);
p2 = allocate_from _table(arity+2);
p2++;
hcode = *p2 = sym;
for (i=Li<=arity;i+-+)

hcode = seq_hcode(hcode, copy term(*(pl-+i), p2+i));
*(p2-1) = hcode;
tl = add_tag(p2,STR);
if (is_ground hcode(hcode)){

t2 = hash_consing(t1,hcode);

if (1 1= t2){
deallocate to table(arity+2);
tl = t2;
}
}
*des = t1;

return hcode;
} /* end switch */
} /* end copy term */

Figure 12.3: Tabling hash codes while copying with hash-consing.

stack slot of the argument reference its copy in the table area. The func-
tion copy_term (in Figure 12.3) tests the reference to a compound term to see
if the term needs to be copied. If it is not a heap reference, then the referenced
term must reside in the table area and thus can be reused.

Note that our input sharing scheme has its limitation in the sense that
it fails to facilitate sharing of ground components in non-ground arguments.
Consider, for example, the subgoal is_list([X,2,3]). The suffix [2,3] will not
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int copy subgoal args(TermPtr src, TermPtr des, int arity){

hcsum = 0;

for (i=li<=arity;i++){
hcode = copy _term(*(src-i), des+i);
if (is_ground_hcode(hcode)) *(src-i) = *(des+1);
hc_sum = seq_hcode(hc_sum,hcode);

}

return hc_ sum;

}

Figure 12.4: Input sharing by updating frame slots.

be shared through input sharing in our implementation since the argument is
not ground. It will eventually be shared through hash-consing, but its hash
code needs to be computed again when it occurs in a descendant subgoal or an
answer.

12.6 Evaluation

The improved tabling system described in this paper has been implemented and
made available with B-Prolog version 7.7 (BP7.7). We evaluate the proposed
approach by comparing BP7.7 with YAP (version 6.3.2) and XSB (version
3.3.6), and also the previous version of B-Prolog, version 7.6 (BP7.6), which
did not have enhanced hash-consing. We also compare it with indexed pro-
grams produced by the transformation proposed in [87] running on B-Prolog
7.6 (indexed). We use the is_list/1 predicate, the edit distance/3° program,
and a PRISM program to show the effectiveness of the proposed techniques.
We also test on a program that favors prefix sharing with tries more than suf-
fix sharing with hash-consing. In addition, we also show results for the CHAT
suite and the ATR parser, the traditional benchmarks used to evaluate tabling
systems.

The results are obtained on a Linux machine with 16 2.4 GHz, 64 bit Intel
Xeon(R) E7340 processor cores and 64 GB of memory. For this evaluation,
only a single processor core is utilized. CPU times (in seconds) and table space
(in kilobytes) consumptions are measured using the statistics/1 built-in for
BP and XSB, and table_statistics/1 for YAP.

Table 12.1 shows the results on the query is_list([1,1,...,1]) where N
is the number of 1s in the list. All the systems except for BP7.6 demonstrate
a close-to-linear complexity. The higher time complexity of BP7.6 is due to
that fact that BP7.6 only uses the first three elements of a list as the key and
hashing degenerates into linear search for the query because of hash collision.
The difference in time among BP7.7, YAP and XSB is at least a large constant
factor. As mentioned above, a trie allows for sharing of prefixes while hash-
consing allows for sharing of suffixes as long as lists are concerned. For a list
that contains repeated data, there are an equal number of prefixes and suffixes,
and hence both types of sharing are equally favored. The difference between
BP7.7 and indexed is only a small constant factor.

Table 12.2 shows the results on the query is list(L) where L is a list of

5The source code is available in [87].
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Table 12.1: Results on is_list(]1,1,...,1])

BP7.7 BP7.6 indexed YAP XSB

N time | space | time space | time | space | time | space | time | space
500 0.000 33 0.098 43 | 0.001 39 | 0.007 90 | 0.003 399
1000 | 0.001 66 0.776 86 | 0.003 78 | 0.033 180 | 0.010 567
1500 | 0.001 99 2.608 128 | 0.004 117 | 0.073 269 | 0.019 735
2000 | 0.002 131 6.169 171 | 0.005 156 | 0.134 359 | 0.037 903
2500 | 0.001 164 | 12.034 214 | 0.006 195 | 0.186 449 | 0.058 | 1071
3000 | 0.002 197 | 20.777 257 | 0.008 234 | 0.282 539 | 0.078 | 1239
3500 | 0.002 229 | 32.975 300 | 0.009 273 | 0.384 629 | 0.108 | 1407
4000 | 0.003 264 | 49.204 343 | 0.011 312 | 0.498 719 | 0.139 | 1575
4500 | 0.003 297 | 70.048 386 | 0.011 351 | 0.571 809 | 0.177 | 1743
5000 | 0.003 330 | 96.112 429 | 0.013 390 | 0.729 898 | 0.217 | 1911

Table 12.2: Results on is_list (L) where L contains random data.

BP7.7 BP7.6 indexed YAP XSB

N time | space | time | space | time | space | time | space | time space
500 0.000 33 | 0.000 43 | 0.002 39 | 0.008 90 | 0.024 9990
1000 | 0.001 66 | 0.001 86 | 0.002 78 | 0.032 180 | 0.063 39236
1500 | 0.001 99 | 0.001 128 | 0.004 117 | 0.082 270 | 0.142 87991
2000 | 0.001 132 | 0.002 171 | 0.005 156 | 0.134 360 | 0.252 | 156269
2500 | 0.001 164 | 0.003 214 | 0.007 195 | 0.218 450 | 0.387 | 244071
3000 | 0.002 197 | 0.003 257 | 0.008 234 | 0.341 540 | 0.559 | 351401
3500 | 0.002 229 | 0.004 300 | 0.010 273 | 0.401 630 | 0.766 | 478260
4000 | 0.003 264 | 0.005 343 | 0.011 312 | 0.537 719 | 0.978 | 624640
4500 | 0.003 297 | 0.006 386 | 0.012 351 | 0.703 809 | 1.244 | 790555
5000 | 0.004 330 | 0.008 429 | 0.013 390 | 0.894 899 | 1.504 | 975990

random constants.® BP consumes linear space and linear time; YAP consumes
linear space thanks to the global trie for terms but takes quadratic time; XSB
is quadratic in both time and space. For random lists, suffix sharing with hash
consing is clearly more effective than prefix sharing with tries.

Tables 12.3 and 12.4 show the results on the edit _distance program with re-
peated data and random data, respectively. The main predicate edit(L1,L.2,D)
in the program computes the distance between L1 and L2, i.e., the number
of substitutions, insertions and deletions needed to transform L1 to L2. The
tabled version finds all solutions. BP7.7 is significantly faster than BP7.6 on
the type of queries that use repeated data. BP7.7 also outperforms YAP and
XSB in both time and space on both types of queries. Similar to the is_list
benchmark, enhanced hash-consing is asymptotically more effective than tries
on random data.

Table 12.5 compares BP7.7 and BP7.6 on the PRISM program that simu-
lates a two-state hidden Markov model [207]. For our benchmarking purpose,
the training data of the form hmm([a,b,a,b,...]) are used, and only the time
and space required to find all the explanations are measured. While BP7.7
consumes slightly more space than BP7.6 due to the overhead of hash-consing,
it outperforms BP7.6 in time by a linear factor.

Although it is more common for subgoals of recursive programs to share
suffixes than prefixes, it is possible to find programs on which prefix sharing

6A random number generator is used to generate the lists. For each size, the same list
was used for all the systems.
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Table 12.3: Results on edit([1,1,...,1],[1,1,...,1],D).
BP7.7 BP7.6 indexed YAP XSB
N time | space time space | time | space | time | space time space
30 | 0.000 60 0.026 97 | 0.003 90 | 0.005 213 0.006 1273
60 | 0.003 233 0.726 378 | 0.016 348 | 0.034 819 0.057 4341
90 | 0.007 519 5.189 841 | 0.036 776 | 0.107 1820 | 0.235 9435
120 | 0.015 917 21.216 | 1487 | 0.064 | 1372 | 0.266 | 3214 | 0.736 16554
150 | 0.022 | 1427 63.536 | 2316 | 0.102 | 2137 | 0.517 5002 1.635 25698
180 | 0.031 | 2051 156.072 | 3328 | 0.142 | 3071 | 0.942 7183 3.041 36868
210 | 0.047 | 2786 334.190 | 4523 | 0.208 | 4173 | 1.533 | 9759 5.035 50064
240 | 0.060 | 3634 | 646.550 | 5900 | 0.267 | 5445 | 2.367 | 12728 7.662 65285
270 | 0.074 | 4595 | 1159.182 | 7460 | 0.339 | 6885 | 3.081 | 16090 | 11.327 | 82531
300 | 0.095 | 5668 | 1955.331 | 9204 | 0.448 | 8493 | 4.401 | 19847 | 15.664 | 101803

Table 12.4: Results on edit(L1,L2,D) where L1 and L2 contain random data.

BP7.7 BP7.6 indexed YAP XSB
N time | space | time | space | time | space | time | space time space
30 | 0.001 61 | 0.000 97 | 0.004 90 | 0.005 214 | 0.011 4148
60 0.003 234 | 0.006 378 | 0.020 348 | 0.045 822 0.099 27706
90 | 0.010 521 | 0.016 841 | 0.038 776 | 0.118 1823 | 0.313 89645
120 | 0.017 919 | 0.033 | 1487 | 0.067 | 1372 | 0.298 | 3218 | 0.759 | 209183
150 | 0.027 | 1430 | 0.057 | 2316 | 0.105 | 2137 | 0.591 | 5007 | 1.501 | 404752
180 | 0.038 | 2054 | 0.094 | 3328 | 0.148 | 3071 | 1.058 | 7190 | 2.771 | 695363
210 | 0.056 | 2790 | 0.156 | 4523 | 0.217 | 4173 | 1.695 | 9766 | 4.271 | 1099906
240 | 0.073 | 3639 | 0.219 | 5900 | 0.282 | 5445 | 2.687 | 12736 | 6.247 | 1637354
270 | 0.092 | 4600 | 0.297 | 7460 | 0.352 | 6885 | 3.782 | 16100 | 8.787 | 2327276
300 | 0.114 | 5674 | 0.435 | 9204 | 0.466 | 8493 | 5.248 | 19857 | 11.954 | 3187340
Table 12.5: Results on the PRISM program HMM.
BP7.7 BP7.6
N time | space time space
2000 0.002 222 1.164 179
3000 0.005 333 3.911 269
4000 0.006 444 9.249 359
5000 0.008 555 18.044 449
6000 0.010 666 31.150 539
7000 0.011 776 49.441 628
8000 0.013 889 73.774 718
9000 0.015 | 1000 | 105.049 808
10000 | 0.018 1111 | 144.140 898
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Table 12.6: Results on create list(N,L).

BP7.7 BP7.6 YAP XSB

N time space time space | time space time | space
500 | 0.035 2417 0.107 990 | 0.039 3965 | 0.023 290
1000 | 0.201 9564 0.827 | 3937 | 0.201 15742 | 0.043 348
1500 | 0.654 21635 2.989 8831 | 0.523 35332 | 0.095 407
2000 | 0.969 37926 7.245 | 15679 | 0.962 62734 | 0.169 465
2500 | 2.151 60082 14.130 | 24480 | 1.699 97949 | 0.264 524
3000 | 2.660 85890 24.343 | 35249 | 2.630 | 140976 | 0.378 583
3500 | 3.276 | 116011 38.397 | 47956 | 3.739 | 191816 | 0.517 641
4000 | 4.011 | 150192 57.217 | 62616 | 5.071 | 250468 | 0.675 700
4500 | 7.319 | 194310 80.994 | 79229 | 6.978 | 316933 | 0.853 758
5000 | 8.316 | 238885 | 110.631 | 97796 | 9.267 | 391211 | 1.051 817

Table 12.7: Results on the CHAT benchmarks and the ATR parser.

BP 7.7 BP 7.6 YAP XSB
Benchmark | time | space time | space | time | space | time | space
cs_o 0.015 198 | 0.0129 11 | 0.009 26 | 0.011 285
cs T 0.025 332 | 0.026 11 | 0.019 27 | 0.022 286
disj 0.008 108 | 0.009 11 | 0.005 23 | 0.007 277
gabriel 0.011 111 0.012 9 | 0.006 20 | 0.008 272
kalah 0.008 90 | 0.008 15 | 0.006 35 | 0.008 304
pg 0.006 69 | 0.006 7 1 0.004 15 | 0.006 263
read 0.057 987 | 0.058 23 | 0.099 46 | 0.030 327
atr 0.509 | 15111 0.543 | 5947 | 0.325 | 52520 | 0.280 | 45400

with tries is more effective than suffix sharing with hash-consing. The following
gives such a program:

:-table create_list/2.

create_list(N,L):-
between(1,N,I),
range(1,I,L).

The query create list(N,L) creates N lists [1], [1,2], ..., and [1,2,...,N] that
have only common prefixes. As shown in Table 12.6, XSB consumes linear
space, while BP and YAP consume quadratic space. YAP tables all suffixes
into the global trie for terms and there are O(N?) suffixes. BP7.7 consumes
more table space than BP7.6 since all the terms are hash-consed but none is
shared. BP7.6 is slower than BP7.7 since the hash function used in BP7.6,
which is based on the first three elements of a list, results in more collisions
than BP7.7.

Table 12.7 compares the systems on the CHAT benchmark suite and the
ATR parser. There is almost no difference between BP7.7 and BP7.6 in time
and the space overhead incurred by hash-consing is noticeable. Hash-consing
has no positive effect on these programs because the sequences used in the
programs are very short.
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12.7 Related Work

Since structure sharing [21] was discarded and the Warren Abstract Machine
(WAM) [219] triumphed as the implementation model of Prolog, there has
been little attention paid to exploiting data sharing in Prolog implementa-
tions.” In his Diploma thesis [144], Ulrich Neumerkel gave several example
Prolog programs that would consume an-order-of-magnitude less space with
data sharing than without sharing. He proposed applying hash-consing and
DFA-minimization to sharing terms including cyclic ones. The proposed ap-
proach would incur considerable overhead if every compound term is hash-
consed when created, and hence it is infeasible to incorporate the approach
into the WAM. Following Appel and Goncalves’s hash-consing garbage collec-
tor for SML/NJ [11], Nguyen and Demoen recently built a similar garbage
collector for hProlog [145]. The garbage collector hash-conses compound terms
on the heap in one phase and performs absorption in another phase such that
for the replications of a compound term only one copy is kept and all the others
are garbage collected. Their experiment basically confirms the disappointing
result reported in Appel and Goncalves’s paper: the overhead outweighs the
gain except for special programs.

Hash-consing can be applied to the built-in predicate findall/3, as sug-
gested by O’Keefe [149], to avoid repeatedly copying the same term in different
answers. Currently, B-Prolog is the only Prolog system that supports hash-
consing for findall/3. It employs a hash table for ground terms in the findall
area. The algorithm and memory manager developed for the table area is
reused for the findall area. With hash-consing, the system copies a ground
term only once when copying answers from the findall area to the heap. Input
sharing is exploited in the same way as for tabled subgoals. For a findall call,
the compiler converts it into a call to a temporary predicate such that each
argument of the generator occupies one slot in the stack frame. At runtime,
the system first copies the arguments of the generator from the stack/heap to
the findall area before the generator is executed. When an argument of the
generator is found to be a ground compound term, its frame slot is set to ref-
erence the copy in the findall area. In this way, the argument and its subterms
can be reused by the answers and the descendant calls. Nguyen and Demoen’s
implementation of input sharing for findall/3 [145] distinguishes between old
terms that are created before the generator and new terms that are gener-
ated by the generator, and have answers share the old terms. Their scheme
can exploit sharing of not only ground arguments but also ground terms in
non-ground arguments. Their scheme may not be suited for tabled data since,
unlike data in the findall area which live and die with the generator, tabled data
are permanent. Also, their implementation does not exploit output sharing.

A trie has been a popular data structure for organizing tabled subgoals and
answers [161]. It is adopted by all the tabled Prolog systems except B-Prolog.
As far as lists are concerned, a trie facilitates sharing of the prefixes while
hash-consing allows for sharing of the suffixes. So for the two lists [1,2] and
[1,2,3], the former shares the same path as the latter in the trie, but they are
treated as separate lists when hash-consed; for the two lists [2,3] and [1,2,3],

7A lot of work has been done on indexing Prolog terms, but indexing is a different kind
of sharing since it does not consider reuse of terms from different sources.
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however, a trie allows for no sharing while hash-consing allows for complete
sharing.

Another advantage of tries is that they can be used to perform both variant
testing and subsumption testing, and thus can be used in both variant-based
and subsumption-based tabling systems. Hash-consing, on the other hand, can
be used to perform equivalence testing only and thus cannot directly be used
for subsumption-based tabling.

Terms stored in a trie have a different representation from terms on the
heap. For example, in the YAP system, tries are represented as trie instructions
[61]. For this reason, when an answer is returned, it must be copied from its
trie in the table area to the heap even if it is ground. In our system, structured
ground terms in the table area have exactly the same representation as on the
heap, so when they occur in an answer they do not need to be copied when the
answer is returned.

In the original implementation of XSB and YAP, one trie is used for all
tabled subgoals, and for each subgoal one trie is used for the answer table.
To enhance sharing, Raimundo and Rocha propose using a global trie for all
tabled structured terms [160]. Due to the necessity of copying answers from
the table area to the heap, the time complexity remains the same even when
the space complexity drops.

To some extent, the idea of representing sentences as position indexed facts
[87, 206] is similar to hash-consing in the sense that a hash-consed term always
is associated with a hash code. The translation from a program that deals with
sequences represented as lists into one that uses position representation is not
trivial. When difference lists are involved, the translation is even more compli-
cated. The program obtained after translation may lose sharing opportunities.
Therefore, hash-consing is a more practical solution to sharing than program
transformation.

As far as we know, our implementation is the first attempt to apply hash-
consing to tabling. Our implementation enhances hash-consing with input
sharing and hash code memoization to speed-up computation of hash codes.
The extra cell used to store the hash code of a compound term is overhead if
the term is never shared. Nevertheless, while the increase of space is always a
constant factor, the gain in speed can be linear in the size of the data.

12.8 Conclusion

We have presented an implementation of hash-consing for tabling structured
data. Hash-consing facilitates sharing of structured data and can eliminate the
extra linear factor of space complexity commonly seen in early tabling systems
when dealing with sequences. Hash-consing alone does not change the time
complexity. We have enhanced it with input sharing and hash code memo-
ization to eliminate the extra linear factor of time complexity in dealing with
sequences. The resulting tabling system significantly improves the scalability
of language parsing and bio-sequence analysis applications.

Our work will shed some light on the discussion on what data structure to
use for tabled data. A trie is suitable for sharing prefixes and hash-consing
is suitable for sharing suffixes of sequences. Although it is possible to find
programs that make prefix sharing arbitrarily better than suffix sharing, it is
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more common for subgoals of recursive programs to share suffixes than pre-
fixes. Therefore, hash-consing is in general a better choice than tries as a data
structure for representing tabled data. Hash-consing as it is in our implemen-
tation is not suitable for subsumption-based tabling. It is future work to adapt
hash-consing to subsumption testing.
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Abstract

We introduce a new type of probabilistic sequence model, that model the se-
quential composition of reading frames of genes in a genome. Our approach
extends gene finders with a model of the sequential composition of genes at the
genome-level — effectively producing a sequential genome annotation as output.
The model can be used to obtain the most probable genome annotation based
on a combination of i: a gene finder score of each gene candidate and ii: the se-
quence of the reading frames of gene candidates through a genome. The model
— as well as a higher order variant — is developed and tested using the prob-
abilistic logic programming language and machine learning system PRISM - a
fast and efficient model prototyping environment, using bacterial gene finding
performance as a benchmark of signal strength. The model is used to prune
a set of gene predictions from an underlying gene finder and are evaluated by
the effect on prediction performance. Since bacterial gene finding to a large
extent is a solved problem it forms an ideal proving ground for evaluating the
explicit modeling of larger scale gene sequence composition of genomes.

We conclude that the sequential composition of gene reading frames is a
consistent signal present in bacterial genomes, that can be effectively modeled
with probabilistic sequence models.

13.1 Introduction

Automated genome annotation is essential for exploiting the enormous amounts
of genome sequence data currently being generated [22]. The initial steps of
genome annotation relies heavily on probabilistic nucleotide sequence models,
for generating sets of predicted genes. Such models typically estimate the
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probability that each open reading frame (ORF) is a gene. This estimate
is usually based on only a limited context comprising the ORF nucleotide
sequence and perhaps a few hundred bases upstream and downstream to include
signals such as promoters and ribosomal binding sites. The subsequent steps
to assemble a genome annotation typically involves selecting the highly scoring
predictions using a significance criteria or threshold. In some recent gene finders
[56, 99, 89] the selection of predictions is done as a genome-wide optimization
where the predictions are chosen to form a coherent genome annotation by
taking into account the extent of overlap between genes.

In a similar vein, we introduce a probabilistic sequence model which select
the set of predictions that form the genome annotation, but which is based
on sequential composition of gene reading frames, which we believe is a novel
signal to be explored in gene finding. Our purpose is not to build the next state-
of-the-art gene finder, but to present a class of simple models which clearly
demonstrates the efficacy of exploiting the gene-reading-frame-sequence bias.

13.1.1 The gene reading frame sequence bias

The existence of a gene-strand bias in prokaryotes is well established [23]. One
source for this bias is a tendency for genes to be placed on the leading strand due
to replication efficiency consequences of co-directional and head-on collisions of
the replication and transcription apparatus [155]. It has also been argued that
the preferential placement of genes in the leading strand is driven by essentiality
rather than expression [163].

A gene-reading-frame-sequence bias is a general signal that can incorpo-
rate gene-strand bias, bias due to clusters of orthologous genes [165], operonic
structures [221], phase preference for overlapping genes [46] and other potential
effects yielding non-random sequence composition.

The gene-strand bias account for a large proportion of the gene-reading-
frame-sequence bias, but a pronounced bias is detectable even within the
strands. Furthermore, the gene-reading-frame-sequence bias seems to be sym-
metric for the two strands, cf. Table 1. This is a convenient property, especially
considering the arbitrary designation of which is the forward and which is the
reverse strand.

13.2 Methods

Our gene-reading-frame-sequence model are implemented in PRISM, a proba-
bilistic logic programming language and machine learning system with generic
algorithms for parameter estimation and decoding [175]. We use PRISM as
a convenient model comparison platform, since it is powerful enough to ex-
press the different models and enables a level execution provided by its generic
machine learning routines. The use of probabilistic logic programming for eval-
uating sequence models as the heart of contemporary gene finders has recently
been demonstrated in [137].

13.2.1 The Frameseq model

The basic Frameseq model is a variant of a fully connected Hidden Markov
Model (HMM) [159] with a state for each of the six possible reading frames —
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the frame states — and a delete state. Given a sequence of gene predictions
sorted by position, a path through the model capable of emitting this prediction
sequence represents a classification of predictions into presumed true positives
emitted from the frame states and presumed false positives emitted from the
delete state. A path with optimal probability represents a best hypothesis
about the classification of predictions into positives and negatives. This path
can be calculated using the Viterbi algorithm which is provided by PRISM.

Each state emits a score symbol and a frame for each gene prediction.
Frame states only emit predictions with a corresponding frame, whereas the
delete state may emit predictions of any frame. The score symbol is a symbolic
value representing a range of confidence scores for the predictions of the input
gene finder. The emission probabilities thus reflect the prediction confidence
scores in the training set.

Traditionally, the transition probabilities of an HMM are conditioned only
on the previous state (the Markov property). In our model the transition
probability is conditioned on the previous frame state rather than just the
previous state. The frame state transition probabilities are thus assumed to
reflect the probability of a seeing a gene in a particular reading frame given
the reading frame of the previous gene.

Higher ordered Markov models have generally shown to be an improvement
over standard models for the nucleotide sequence models used in bacterial gene
finding (e.g. as used in Genemark and Glimmer). To explore the possibility
that the same might be true for the gene reading frame sequence, we have also
employed a second order version of Frameseq, i.e., which conditions transitions
on the two previous frame states.

The transition probabilities between the frame states are estimated as the
relative frequency of observed adjacent genes in the various frames observed in
the set of verified genes.

The probability of a transition to the delete state (from any state) reflects
the probability that a gene finder prediction is a false positive,

TP

P(delete) =1 TP+ FP

where TP is the number of true positives predicted by the gene finder and
FP is the number of false positives. This probability is directly related to
gene finder specificity and may be tweaked for different sensitivity /specificity
trade-offs. We exploit this in experiments reported below.

The frame state transition probabilities are estimated as relative frequen-
cies, which have the interpretation of conditional probabilities given that a
transition to the delete state did not occur. We normalize each of these tran-
sition probabilities by multiplying them by 1 — P(delete).

Each state is capable of emitting a finite set of ¢ symbols d;...d, cor-
responding to ranges of prediction scores, i.e.n the states emit a discretized
symbol corresponding to the confidence score of a prediction as supplied by
the gene finder. The ranges are selected to ensure that each score symbol
correspond to an equal proportion of gene finder predictions. The number of
ranges, n, is a configurable parameter; when n is high the model can better
exploit the scores from the gene finder, but the estimated emission probabilities
become more fragile, i.e., more data is needed to reliably estimate them. The
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emission probabilities of the delete state are estimated as the relative frequency
of each of the possible score symbols for all false positives predictions, i.e.,

FP;,
FP

where F'P;s, is the number of false positives with a confidence score within
the range symbolized by §;.

Similarly, the emission probabilities of frame states are estimated as the
fraction of true positive predictions belonging to a particular range within the
corresponding frame, i.e.,

P(6;|state = delete) =

TP(;:ramej

P(0;|state = frame;) = Tpframe;

where TP/7¥™m¢; is the total number true positive predictions in reading
frame j and TP({_ "M g the number of true positive predictions in reading
frame j with a confidence score within the range symbolized by §;.

A illustration of the states and transitions and of the model is shown in
figure 13.2.1.

Instead of using exact empirical frequency counts as described above, we use
a variational Bayes version of the EM algorithm [186] provided with PRISM.
This algorithm puts Dirichlet priors (pseudo-counts) on random variables en-
suring that all estimated probabilities are non-zero.

13.3 Results and discussion

13.3.1 The phylogenetic reach of the gene reading frame bias

To test the generalization capability and potential phylogenetic reach of our
model, we train models on five different prokaryotic genomes and use them
to filter predictions for the FE. coli genome. We expect E. coli to have the
most reliable genome annotation and by using it for validation we obtain the
most reliable validation results. By training on distant organisms, we show
the robustness of our approach with regard to both training set quality and
phylogenetic distance. Good performance on E. coli should also imply that
we can train our model on a well annotated genome and filter gene finder
predictions in other genomes with increased reliability. To validate this we also
do this experiment in reverse, i.e., we also train our model on E. coli to predict
on each of the other genomes. For all models trained, we set the number of
score ranges to n = 195.

The five genomes, listed here in ascending order of phylogenetic distance
from E. coli:

e FEscherichia coli [REFSEQ:NC_000913],

Salmonella enterica [REFSEQ:NC_004631.1],

Legionella pneumophila [REFSEQ:NC_002942],

Bacillus subtilis [REFSEQ:NC __000964]

Thermoplasma acidophilum [REFSEQ:NC _002578].
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Figure 13.1: The Frameseq delete-HMM model. All frame states F1...F6

have transitions to each other and to themselves.

Transitions to the delete

state are symbolized by red arrows, to indicate that they share the transition
probability, P(delete). The dashed blue arrows illustrate transitions from the
delete state to a frame state — the probability of which depend on the last
frame state visited before the delete state. Furthermore, the delete state is
drawn as circle rather than a box to convey that it resembles a silent state — it
does produce emissions (predicted false positives) but we are only interested in
emissions from the frame states (predicted true positives). To minimize visual
clutter, a begin and end state have been omitted.
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Figure 13.2: ROC curve illustrating phylogenetic reach (inverse). The figure
shows ROC curves for filtering of all Genemark 2.5 predictions with score > 0.1
for different organisms. The black curve shows selection using a threshold
and the colored curves show filtering using Frameseq. The Frameseq model is
trained the E. coli for all organisms. The experiment shows that it is possible
to train Frameseq on a well-known and well-annotated organism and apply it to
filter predictions on phylogenetically distant organisms with improved accuracy.
Accuracy is improved for both S. enterica and B. subtilis and in part for L.
pneumophila, but not for the phylogenetically distant T. acidophilum.
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We use Genemark 2.5 [17] which is available as a web-service to produce a
large initial set of candidate genes.

Genemark is currently available in newer versions (GeneMarkS and Gene-
markHMM) with improved prediction performance.

However, as our main interest is to introduce a new type of genome-sequence
model, not to improve gene finding, the older version of Genemark provides a
number of advantages for our purposes that are not present in other available
single-sequence gene finders: Genemark 2.5 use a very simple scoring model and
do not employ any post-scoring prediction selection algorithm, but is capable
of producing a large set of predictions simply by enforcing a (low) score cut-off.
As it does not otherwise prune predictions, we eliminate factors which could
affect and reduce the pruning potential available to our model. Obviously, the
accuracy of this gene finder is slightly below what is now state-of-the-art.

The full dataset offered by being able to produce a large set of predictions
provides a better evaluation of the contribution of the reading frame signal
than pruning a small optimal prediction set or (for completeness we do include
such more limited experiments for state-of-the-art gene finders below).

We set the configurable score cut-off as low as possible, i.e., to 0.1, to allow
as many false positive predictions as possible. The gene finder predictions are
preprocessed to contain only the best scoring prediction for each distinct stop
codon. For each genome, we train using the preprocessed Genemark predictions
and use the RefSeq annotation as golden standard. By inspection of transition
probabilities, we observe that the gene-reading-frame-sequence bias tends to
be almost symmetric for the strands, see table 13.3.1.

We test the performance of each model on the Genemark predictions for
the target genome by measuring sensitivity and specificity in terms of predicted
stop codons with respect to the RefSeq annotation.

We repeat this process with incrementally increasing delete state probabil-
ities resulting in a range of sensitivity /specificity trade-offs. These are plotted
in Figure 13.3.1 (predictions on E. coli) and Figure ?? (predictions on the other
genomes) as a Receiver Operator Characteristic (ROC) curves.

For comparison we provide a baseline ROC curve, produced via incremen-
tally increasing a cut off value of the scores for the Genemark predictions for
the target genome.

For all organisms except the phylogenetically very distant T. acidophilum,
Frameseq improves accuracy and the margin of the improvement correlates
with phylogenetic distance. The pronounced improvement in the accuracy
which can be observed in ROC curves for the frame-bias model as compared
to the baseline demonstrates that for comparable levels sensitivity, Frameseq
achieves a lower false positive rate.

13.3.1.1 A higher order signal?

It is plausible that the gene-reading-frame-sequence bias is more complex than
just pairwise dependencies between the frames of genes. More complex depen-
dencies on previous gene reading frames can be modeled using a higher order
model.

We test this hypothesis by using a second order HMM based Frameseq
model which is trained and applied on E. coli. We compare this to the basic
Frameseq model which uses a first order HMM. We also investigate the phy-
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Figure 13.3: ROC curves illustrating phylogenetic reach. The figure shows

ROC curves for filtering of all Genemark 2.5 predictions with score > 0.1 for E.

coli. The black curve shows selection using a threshold and the colored curves
show filtering using Frameseq. Note that the ROC curve does not extend all the
way to the right; this is due to the 0.1 Genemark cutoff which still eliminates

a lot of candidate predictions.

logenic of conservation of a possible higher order signal by training the same
model on S. enterica and decoding on E. coli. In both cases, the we use pre-
dictions from the Genemark 2.5 gene finder, with a score cut-off of 0.1. As in

the previous experiments we set the number of score ranges to n = 15.
We derive and compare ROC curves for threshold selection and Frameseq
selection like in the previous experiments, but here for both the first order
and second order models. We provide a separate plot with the E. coli trained
models (Figure 13.3.1.1) and the S. enterica trained models (Figure 13.3.1.1).
In the case where we train on E. coli, the second order Frameseq model
results in significantly better accuracy than with the first order model. The

improvement degrades quite a bit when we instead train the model on S. en-
terica, but there is still a detectable improvement in accuracy for the second
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Figure 13.4: ROC curves illustrating potential accuracy gain with second order

model. This ROC curve compares the basic first order Frameseq model to a
second order model. The black curve indicate threshold selection, the red curve
is the first order model and the blue curve is the second order model. Both
the first order model and the second order model are trained on E. coli and
applied to filter the predictions of the same genome. The second order model

results in markedly better accuracy than with the first order model.

order model.

It should be noted that, higher order models effectively increase the amount
of transition probabilities involved, but the amount of training data used to
estimate these are fixed in our case. This means that increasing the order of the

model results in less reliable transition probabilities. This may explain some of
the loss of accuracy when observed when training on S. enterica as compared

to training on FE. coli.
On the other hand, the experiment with the second order Frameseq model
demonstrates the maximal potential of utilizing a higher

trained on FE. coli
order signal.
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Figure 13.5: Phylogenetic robustness of a second order signal. This ROC curve

compares the basic first order Frameseq model to a second order model. The
black curve indicate threshold selection, the red curve is the first order model
and the blue curve is the second order model. Both the first order model and

the second order model are trained on S. enterica and applied to filter the
predictions of E. coli. The second order model results in marginally better
accuracy.

13.3.1.2 Effect on state-of-the-art gene finders

In this section we explore using Frameseq with Glimmer 3 and Prodigal 2.50 —
to evaluate the contribution of a reading frame sequence signal for state-of-the

art gene finders.
Genemark 2.5 which was used in the previous experiments, scores each
open reading frame individually and does not attempt to stitch such individual
predictions together into a more coherent set of predictions for the genome.
The algorithms employed by the two other gene finders have some similar-

ities to the delete-HMM of Frameseq. Both gene finders use custom dynamic

programming algorithms to achieve a more coherent set of predictions for a
Prodigal use several features including hexamer scores, ribosomal

genome.
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binding site detection, maximal overlap and distance between predictions com-
bined using a custom dynamic programming algorithm. Similarly, Glimmer 3
also use a dynamic programming algorithm which restricts the size of overlaps
between predictions. Neither of these algorithms utilize the gene frame bias.

Our algorithm is quite simplistic in comparison since it only considers one
signal — the gene-reading-frame-sequence bias. It could undoubtedly be im-
proved by considering other signals and constraints inherent between predic-
tions such as distance and overlaps. In being simplistic, however, it clearly
demonstrates the utility of the gene-reading-frame-sequence bias without the
inherent noise from the impact of other features — which is our purpose.

In these experiments, we use Frameseq to filter the predictions of the state-
of-the-art gene finders in order to explore the potential beneficial effect they
could achieve by incorporating the gene-reading-frame-sequence bias. For each
gene finder — Prodigal 2.50 and Glimmer 3 — we apply the second order
Frameseq model trained on E. coli to filter their respective predictions on also
on E. coli. The number of score ranges is in this experiment set to n = 100
to better capture the more detailed variations of the scores. The results are
shown in figure 13.3.1.2 (Glimmer) and figure 13.3.1.2 (Prodigal).

In all cases the filtered predictions have significantly improved specificity for
comparable levels of sensitivity. The effect of Frameseq seems most pronounced
with reduced sensitivities which could indicate that the scores of the gene
finders are more reliable for the top-scoring predictions.

These experiments do not conclusively prove that all the gene finders could
achieve improved specificity for the desired levels of sensitivity (close to one) by
incorporating the gene-reading-frame-sequence bias. It should be noted that we
slightly over-fit the model by training on E. coli and by doing this we get more
impressive results than would have been the case if the models where trained
using other organisms. Training Frameseq on, e.g., S. enterica and filtering
predictions for these gene finders does not result in significantly improved ac-
curacy (data not shown). We believe this to be mainly a problem of sparsity
of the training data, but also due to the reduced margins for possible improve-
ment as compared to Genemark 2.5. We demonstrated the phylogenetic reach
using Genemark 2.5, but the margin for possible improvement is significantly
smaller with Glimmer and Prodigal. Due to this, a slightly under-fitted model
will generalize sufficiently to improve Genemark 2.5 results, but insufficiently
with the state-of-the art gene finders.

The experiment here, however, does show that the gene-reading-frame-
sequence bias signal provides useful information which is complementary to
the signals used by the contemporary methods.

13.4 Conclusions

We have demonstrated the feasibility of modeling the sequential composition
of genes in a genome with simple sequential reading frame models. We ob-
tain surprisingly good results when predicting on one organism with models
trained on phylogenetically distant genomes, which implies both the generality
of the approach and the potential importance of gene reading frame sequence
structure across taxa.

The impact of our method is most pronounced for reduced levels of sensitiv-
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Figure 13.6: Frameseq with Glimmer. The red ROC curve shows threshold
selection with Glimmer 3 predictions on E. coli and blue curve shows results
of filtering these predictions with a second order Frameseq model trained on

FE. coli.

ity. Ideally we would like to achieve as significant improvements in specificity
for a higher level of sensitivity, but improved specificity with a lower sensitivity
is still a good result with important implications; It means that our approach
is capable of supplying a larger set of gene predictions with a specified upper
bound on the false positive rate, than is possible with any other gene finder.
This may be useful when selecting candidate genes for experimental verification
and can reduce the likelihood of wasted lab effort.

We also believe that the gene-reading-frame-sequence bias signal can be
useful for improving automated computational genome annotation, but in order
to achieve this, it will need to be integrated with the algorithms of state-of-
the-art gene finders instead of the relatively superficial augmentation we do
here.
In order to clearly illustrate the gene-reading-frame-sequence bias, we en-
gineered our method to be as simple as possible, which in effect have several
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limitations:
e It relies on gene finder scores rather integrating with the algorithm of the
gene finder, thereby missing out on exploiting possible correlations with

signals incorporated in the gene finder.
e [t relies on discretization of gene finder scores, i.e., it summarizes of the
information contained in prediction scores and hence cannot fully exploit

these. The discretization procedure could be improved by using variable
sized bins, e.g., as in [113], or by instead using a continuous Hidden

Markov Model.
e We do not fully exploit the nature of the gene finder score distribution
for parameter smoothing. We do apply limited parameter smoothing by
using the variational Bayes EM algorithm, but we could probably achieve
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better generalization by fitting a suitable function to the gene finder score
distribution.

e We use only a single organism as training data which become too sparse;
This results in slightly over-fitted models when training on the same
genome and slightly under-fitted models when training on an other genome.
This situation could be amended by training on several genomes.

Despite these limitations, our method achieves good results which illustrate
the usefulness of the signal, yet still leaves room for potential improvement.

We choose the problem of bacterial gene finding to exemplify the gene-
reading-frame-sequence bias and its use. This problem has the nice property
that it is almost solved, which enables us to use reference annotations to vali-
date the approach. It should be noted, however, that many reference annota-
tions are unverified results from the gene finders that we try to improve upon.
This bias gives our method a slight disadvantage.

Lastly, we believe that the gene-reading-frame-sequence bias signal could
have applications beyond gene finding. For instance, it may potentially benefit
next generation sequencing and genome assembly where a complete model of
the overall gene content of a genome would be applicable.

Availability The source code of the model and accessory scripts are freely
available at:
http://github.com/frameseq/frameseq
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Table 13.1: Estimated transition probabilities between frame states. A cell
indicates the probability that a gene in the frame indicated by the row is
followed by the gene in the frame indicated by the column. Note that the
strands have almost symmetrical probabilities.

from \ to 1 2 3 4 5 6

0.18 | 0.20 | 0.28 | 0.13 | 0.1 0.1
029 | 0.2 | 0.2 |0.12 ] 0.09 | 0.1
022 ] 03 | 017 | 0.1 | 0.11 | 0.1
0.11 | 0.1 0.1 | 0.19 | 0.23 | 0.27
0.11 ] 09 | 0.1 | 0.29 | 0.19 | 0.22
0.09 | 0.08 | 0.1 | 0.23 | 0.30 | 0.19
E. coli
from \ to | 1 2 3 4 5 6

0.19 | 0.23 | 0.30 | 0.09 | 0.09 | 0.09
0.29 | 0.20 | 0.25 | 0.08 | 0.10 | 0.07
0.23 1 0.29 | 0.18 | 0.09 | 0.11 | 0.10
0.10 | 0.09 | 0.10 | 0.21 | 0.22 | 0.28
0.11 | 0.10 | 0.10 | 0.28 | 0.18 | 0.22
0.11 | 0.10 | 0.10 | 0.20 | 0.30 | 0.21
S. enterica
from \ to 1 2 3 4 5 6

0.18 | 0.23 | 0.26 | 0.10 | 0.11 | 0.13
0.27 | 0.18 | 0.22 | 0.12 | 0.09 | 0.12
0.24 | 0.27 | 0.18 | 0.10 | 0.12 | 0.10
0.09 | 0.11 | 0.11 | 0.18 | 0.20 | 0.31
0.12 | 0.11 | 0.11 | 0.26 | 0.17 | 0.23
0.09 | 0.09 | 0.11 | 0.24 | 0.29 | 0.18
L. pneumophila
from \ to 1 2 3 4 5 6

0.22 | 0.24 | 0.25 | 0.09 | 0.10 | 0.10
0.29 | 0.20 | 0.23 | 0.11 | 0.08 | 0.09
0.25 | 0.25 | 0.22 | 0.08 | 0.10 | 0.11
0.09 | 0.10 | 0.06 | 0.23 | 0.24 | 0.28
0.11 | 0.09 | 0.09 | 0.26 | 0.22 | 0.23
0.10 | 0.07 | 0.08 | 0.26 | 0.28 | 0.21
B. subtilis
from \ to 1 2 3 4 5 6

0.18 | 0.20 | 0.23 | 0.17 | 0.09 | 0.13
0.25 | 0.16 | 0.24 | 0.13 | 0.13 | 0.09
0.22 |1 0.26 | 0.21 | 0.11 | 0.10 | 0.10
0.12 | 0.14 | 0.12 | 0.18 | 0.23 | 0.20
0.15 | 0.16 | 0.06 | 0.24 | 0.18 | 0.20
0.10 | 0.11 | 0.15 | 0.20 | 0.22 | 0.21

T. acidophilum
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Abstract

Background: Pyrrolysine (the 22nd amino acid and) is in certain organisms
and under certain circumstances encoded by the amber stop codon, UAG. The
circumstances driving pyrrolysine translation are not well-understood. The
involvement of a predicted mRNA structure in the region downstream the
UAG has been suggested, but the structure does not seem to be present in all
pyrrolysine incorporating genes.

Results: We propose a strategy to predict pyrrolysine encoding genes in
genomes of archaea and bacteria. We cluster open reading frames interrupted
by the amber codon based on sequence similarity and rank these clusters ac-
cording to several features which may influence pyrrolysine translation. The
ranking effects of different features are assessed and we propose a weighted
combination of these features which best explains the currently known pyrroly-
sine incorporating genes. We devote special attention to the effect of structural
conservation and provide further substantiation to support that structural con-
servation may be influential — but is not a necessary factor. Finally, from the
weighted ranking, we identify a number of potentially pyrrolysine incorporating
genes.

Conclusions: We propose a method for prediction of pyrrolysine incorporat-
ing genes in genomes of bacteria and archaea leading to insights about the fac-
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tors driving pyrrolysine translation and identification of new gene candidates.
The method predicts known conserved genes with high recall and predicts sev-
eral other promising candidates for experimental verification. The method is
implemented as a computational pipeline which is available upon request.

Background

Over the past two decades, the standard genetic code has been revised to in-
clude the two new amino acids, selenocysteine and pyrrolysine. These amino
acids are, under certain circumstances, encoded by codons which are normally
stop codons. Translation of these codons can be influenced by the mRNA
structure, which is the case for selenocysteine where a cis-acting mRNA struc-
ture (SECIS) drives translation of the opal stop codon (UGA) as selenocys-
teine. Similarly, a structure (PYLIS) has been identified in some genes where
pyrrolysine is encoded by the (usual) stop codon UAG [223]. The structure lies
in the region between the UAG codon and approximately 100 bp downstream.
The role of the structure in translation is unclear and it is only conserved
among some pyrrolysine incorporating genes [225]. Zhang et al [225] suggest
that either a complete recoding of the UAG codon as pyrrolysine occurs or
alternatively that UAG serves a dual function in pyrrolysine incorporating or-
ganisms; termination and translation competes leading to "statistical proteins"
where both terminated and elongated products occur, but amounts of protein
products may depend on circumstances.

The latter possibility is substantiated in an in vitro study [127] where the
components necessary for pyrrolysine synthesis is inserted into E.Coli. The
study shows that the PYLIS structure is not essential for translation of pyrroly-
sine incorporating genes, but also concludes that the presence of the structure
results in a higher amount of pyrrolysine incorporating protein product and
that synonymous codon mutations in the the PYLIS sequence results in lesser
amounts.

The translation of pyrrolysine is associated with methane metabolism. All
known organisms with methane metabolism have pyrrolysine incorporating
methyltransferases, which initiate the transfer of methyl groups from methyl
amines and into a process of which methane is the result [120, 78]. Three dis-
tinct methyl transferases have been identified — methyltransferase (mtmB),
dimethyltransferase (mtbB), and trimethyltransferase (mttB) — each of which
allow metabolism of different kinds of methyl amines [12]. Not all methyltrans-
ferases are present in all methane-producing organisms. It has been hypoth-
esized that the availability of methyl amines regulates translation of UAG as
pyrrolysine [225].

While selenocysteine is translated in a broad variety of organisms including
archaea, bacteria and eukaryotes, pyrrolysine translation has so far been known
to occur only in a few microbes, although it has recently been detected in a
somewhat larger number of genomes within archea and bacteria [77]. So far,
approximately 16 species are known to have pyrrolysine-containing genes.

Identification of selenocysteine encoding genes based on detection of the
SECIS structural motif is quite successful [119]. Such approaches might suc-
cessfully identify genes with a PYLIS structure, but would have difficulties pre-
dicting pyrrolysine incorporating genes without the consensus structure. Pre-
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iORFs
~40.000 per genome

e
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Ranking

« Coding potential
e Number of organisms
e Structural similarity
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Gene canidate

Figure 14.1: Illustration of the pipeline for identifying pyrrolysine containing
genes. The process extracts iORFs which are then clustered using BLAST.
Finally, the clusters are ranked according to several features.

vious computational methods for detection of pyrrolysine genes, e.g., [32, 73],
has been based on homology search. Little attention has been paid to the use of
structural conservation and codon sequence composition of downstream region
for predicting pyrrolysine incorporating genes. In this paper we introduce an
approach which takes all these factors in account. Unlike approaches like [119],
we do not a assume a particular consensus structure to be present. Our model
is, however, capable of taking conserved structure in the region downstream
UAG into account.



210 CHAPTER 14. PREDICTING PYRROLYSINE CONTAINING GENES

14.1 Methods

14.1.1 Identification of relevant organisms

We identify organisms of interest by 1) searching for the tRNAPY' synthetase
using BLAST [9] and 2) verifying the results by creating a structure profile
of the tRNAPY using CLUSTALW [210] and RNAALIFOLD [16] and using this
profile for screening the genomes with INFERNAL [143]. The genomes verified
to have the tRNA and for which complete assembled genomes are available are
used for further investigations. These are, in alphabetical order:

o Acetohalobium arabaticum [RefSeq:NC_014378.1]

o Desulfitobacterium hafniense |RefSeq:NC _011830.1]
o Desulfobacterium autotrophicum [RefSeq:NC _012108.1]
o Desulfosporosinus orientis [RefSeq:NC _016584.1]

e Methanococcoides burtonii [RefSeq:NC_007955.1]

e Methanohalobium evestigatum [RefSeq:NC 014253.1]
e Methanohalophilus mahii [RefSeq:NC _014002.1]

e Methanosalsum zhilinae [RefSeq:NC _015676.1]

e Methanosarcina acetivorans [RefSeq:NC _003552.1]

o Methanosarcina barkeri [RefSeq:NC_007355.1]

o Methanosarcina mazei [RefSeq:NC_003901.1]

o Thermincola potens [RefSeq:NC _014152.1]

A summary of the genome screening can be found in table 14.1.1.

Extraction of interrupted ORFs

We adopt the terminology Interupted ORFs (iORFs) from Chaudhuri and
Yeates [32] and in a similar vein we extract iORFs from the genomes of in-
terest. Interrupted ORFs are like traditional ORFs except that they contain
an UAG codon between the first potential start codon and the following stop
codon. Such iORFs are described by the following grammar in extended BNF
notation,

(iORF) == (start) (not-stop)* (amber) (not-stop)* (stop)
(start) == TTG |CTG | ATT | ATC | ATA | ATG | GTG
(stop) == TAA | TAG | TGA
(amber) == TAG
(regular) = AAA | .. | TTT //all codons except those in (start) and (stop)
(not-stop) = (start) | (regular)

An iORF is any subsequence of nucleotides specified by this the grammar, in
either the sense strand or the reverse complemented anti-sense strand. The
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star notation in the first rule indicates a repetition zero or more times, and the
vertical bar is used for alternatives.

We extract only iORFs which has at least 100 bases downstream the UAG.
This ensures that the iORF can accommodate a PYLIS structure. A obvious
consequence of this restriction is that we do not consider iORFs where the
PYLIS structure possibly extends beyond the stop codon or where a hypothet-
ical PYLIS structure occurs upstream the amber codon.

14.1.2 Reciprocal blast

Presumably, the PYLIS structure region is subject to purifying selective pres-
sure due to both its protein function and the possible importance of a putative
structure.

We identify homologous putative PYLIS sequences (100 bp downstream the
UAG) conserved at amino acid level using a reciprocal BLAST search. For each
iORF, we translate the region 100 bp downstream the UAG to its amino acid
sequence. Then, using TBLASTN with an e-value threshold of 10~% we search
for this amino acid sequence in all the candidate genomes. We disregard hits
to the query iORF itself and also hits to non-iORF regions.

The result of this search is a set of pairwise matches between some of the
iORFs. Transitively, matched iORFs form clusters of similar hits. We disregard
clusters which include an iORF where a) the region 100 bp downstream is
completely overlapped by a known gene! in a different reading frame or b) the
region partially overlaps a known functional RNA genes.

In particular, requirement a) excludes a lot of shadow ORFs which may arise
when a protein sequence in a different reading frame is conserved and which as
a side-effect seems like conservation in the reading frame of the iORF. Since we
only consider overlaps with genes in different reading frames, iORFs for known
pyrrolysine incorporating genes are not eliminated since those will be in the
same reading frame as the iORF. It happens that such genes are erroneously
annotated as two genes?, where the first uses the UAG as stop codon, but these
are still in the same reading frame as the iORF.

After these pruning steps, 1789 clusters remain.

14.1.3 Feature extraction

Coding potential is a measure of how likely a stretch of DNA may encode a
protein. Protein coding genes exhibit a non-random sequence of codons which
turn out to be a strong indicator of coding potential. Many contemporary gene
finders use variants of Hidden Markov Models (HMM) to statistically model
the codon sequences of genes. We apply a HMM where the hidden states cor-
respond to amino acids which can emit the codons that encode the amino acid
with distinct probabilities [137]. Additionally the HMM incorporates length
modeling of genes. As an adaptation to be able to model iORFs as well as
usual ORFs, the states may emit the UAG codon (with no effect on proba-
bility) in addition to the usual probabilistic codon emission. This adaptation

IRefSeq annotated genes, except genes where one of the words "pseudo, predicted, pu-
tative, unknown, possible, hypothetical or probable" occur in the gene product description.
2This is prevalent for instance in M. Mazei.
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means that we are able to train the model on non-pyrrolysine incorporating
genes, but are able decode also on iORFs®.

We train the model on the RefSeq annotated genes of each genome resulting
in maximum-likelihood parameters ©, for each genome g.

The trained models are used assign a probability to each iORF ¢ from
genome g. In effect, the probability reflects how much the iORF i resembles
the known genes of the genome g in sequence composition and length. A
log-odds ratio is calculated with the probability score of an i.i.d. nucleotide
sequence model* as null model:

HMM, (i) = log P(ilmodelgpn, ©4) — log P(iORF|model; ;. q.).

We define the coding potential of a cluster w of size n to be the average of
iORF coding potential scores within a cluster,

feoding — % * ZHMMQ(i),i is an iORF from genome g.
1EW
Only 958 of the initial 1789 have fC°%"9 < 0. We only consider these 958
clusters for further investigation.

The number of homologues may be indicative of functional importance.
We define a feature f3*¢ which measure the number of hits in a cluster,
f3%7¢ =|| w ||. The f3*¢ feature does not distinguish between paralogues and
orthologues. Since, orthologous conservation is a stronger indicator of impor-
tant function we also define a feature f9799m#5™m which is the number of unique
organisms present in a cluster w.

We expect clusters which contain real PYLIS regions to be relatively more
diverse in their nucleic sequence than their amino acid sequence, whereas this
may not be the case for spurious hits. On the other hand, primary sequence
variation can have a degrading effect on protein function and for paralogues
genes the variation may be minimal. We model diversity using the fversity
feature, which is calculated as the average distance between the PYLIS regions
of all n iIORFs in a cluster,

fgiversity — — 1_ - Z DISTg(Spyl, tpyl)
(s,t)Ew,s#t

where s,,; and tp,; are the regions 100 bp downstream of the in-frame UAG,
of s and ¢, respectively. DIST,, (Spyi, tpyi) 1S the edit distance — the number of
insertion, deletions or mutations needed to transform s,,; into t,,; — disallow-
ing gaps which are not in multiples of m. Note that DIST,, is symmetric, i.e.,
DIST,, (a, b) = DIST,, (b, a), but for convenience of notation the feature includes
all pairwise distances.

Since primary sequence variation may have a degrading effect on protein,
we also consider the average number of synonymous codons, f5¥"-¢°ns which
is defined as,

syn_codons __ 1 1
w = 5 _ E Hrar. (< +H
n DIST1(8},,, tpy1)

n
(s,t)Ew,s#t

3The adaptation corresponds to removing the in-frame UAG codon before decoding.
4 A model which assumes that all nucleotides occur with the same frequency.
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where, s;yl and t;yl are the amino acid sequences translated from sy, and ¢p;.

Note that f#versity and fsym_codons gre inversely correlated except in cases
where diversity is preferentially in third codon position such that it leads to
synonymous codons.

The iORF extraction step ensures that iORFs have at least 100 bases down-
stream an in-frame UAG. In many clusters, however, iORFs have only a few
bases upstream the UAG and a start codon just upstream the UAG. In such
short upstream regions it becomes more likely that the UAG and upstream start

codon occurs due to chance. To address this we define the features fupstream
and fdownstream7

1
upstream . .
pr = - § H lstart - - - tuag H
n
1€w
where || siart - - - fuag || is the distance in nucleotides from the start codon to
the in-frame UAG codon and

downstream 1 . .
I = 2 i i |
where || yqg . .- istop || is the distance in nucleotides from the UAG codon to
the stop codon.

Assuming that the structure of PYLIS region may be important, we model
structural similarity within a cluster w with the feature f3!"“c®“r¢ defined as
follows. We measure similarity based on alignment of base-pairing probabilities
of the sequences, which is independent of any predicted structure. We com-
pute the base-pairing probabilities using RNAfold [93] and align these using
the PMCOMP [94] with default settings. The fs"uctur¢ gcore is the average
PMCOMP score for each pair of pylis regions in a cluster,

1
structure __
s = E PMCOMP(Spy1, tpyl)-
n?—n
(s,t)Ew,s#t
Normalization

We normalize features to the interval [0, 1]; ff is the normalized value for the
j’th feature in the #'th cluster, defined as

2. I = min(f7)
' max(f7) — min(fJ)

where f7 is the value for the j'th feature for the i’th cluster, min(f7) is the
minimum value for feature in any cluster and vice versa for max(f?).

14.1.3.1 Complex features

In addition to the basic features we derive two combined features based on
our intuitions and on observed correlations (see Figure 14.1.3.1). f¢°%"9 and
fupstream are inversely correlated in general, but positively correlated for the
known clusters. The negative correlation occurs, e.g. with an iORF with a long
gene just downstream the UAG (high £°°¥"9) but a only a few bases upstream
the UAG. The correlation effect observed between fe°%"9 and fdewnstream jq
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Table 14.2: Raw feature values and ranking of known true positive clusters
based on single features and combined ranking using regression weights. P-
values for significant features (p > 0.05) are marked in bold.

mttB mtbB | mtmB trans- trans- TetR p-value
posase; | posaseg

forganisms 11 9 10 2 1 2 _
fdiversity 32.2 18.8 25.2 5.4 0.0 18.0 -
fstructure 19.0 37.6 22.5 41.3 42.4 23.2 -
feoding 111.8 107.1 95.2 103.2 56.0 58.3 -
fupstream 1016.6 992.1 605.4 293.2 325.7 297.5 -
fdownstream 495 | 325.4 | 773.2 1150 1149.7 | 391 -
foymn_codons 90.6 96 93.7 98.4 100 91.0 -
foize 18 18 19 16 3 2 -
rank(feroanismsy 1 3 2 84 508 85 0.0006
rank(fdiversity) 32 222 87 639 890 243 0.13
rank(fstructure) 895 344 858 196 147 840 0.72
rank(feoding) 22 26 38 31 80 76 0.00006
rank(fupstream) 6 7 13 46 32 41 | 0.000027
rank( fdownstream) 6 90 18 602 888 255 0.064
rank(fsyn_codons) 793 385 596 252 99 762 0.51
rank(fi=¢) 8 9 6 10 305 498 0.0013
rank(y/ feoding x fupstream) 4 5 10 16 18 19 | 0.000017
rank( 13/ fstructure X

Fiversity 211 6 132 504 876 417 0.13

]’c\synicodons
rank(regression) 2 3 4 15 23 19 0.000015

less pronounced. This motivates the addition of a combined feature, \/ fwdmg X ]?“P“Te‘””

which is the geometric mean of fwdmg and f“ps“"e“m.

Structural similarity may arise by chance and without sequence diversity it
is difficult to judge the significance of a structurally similar cluster. To penalize
diversity due to overhangs in blast hits and diversity which has a degrading on
the amino acid sequence, we also take into account the number of synonymous

_ . 3 /= P =
codons. This leads to a combined feature \/ fstructure w fdiversity . fsyn_codons

14.1.3.2 Feature significance

For each of the features we calculate a p-value to assess its statistical signifi-
cance. We obtain p-values in the following way: We sample without replace-
ment 10° means of n random ranks out of the 958 possible, where n is the
number clusters containing known pyrrolysine-incorporating genes®. Building
on the central limit theorem which guarantees that the distribution of means
is normal, we fit the sampled means to normal distribution (u &~ 479, 0 ~ 112).
P-values can then be calculated from the estimated normal distribution in the
usual fashion. We calculate the p-value of the mean rank — when ranked
according to each feature — of the clusters known to include pyrrolysine-
incorporating genes.

Features for which the null hypothesis cannot be rejected (P-VALUE > 0.05)
are not used for the final ranking, i.e. we use a subset of features indexed by
h : P-VALUE(rank(f")) > 0.05.

The p-values of each feature are reported in table 14.1.3.2.

5There are six of clusters which contain known pyrrolysine-incorporating genes.
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14.1.4 Ranking of clusters

Based on significant normalized feature values ]/”21 we calculate a combined
cluster score which is used for ranking,

score; = E whﬁh
h

where w" is a unique weight which we associate to feature ]/"Zl We estimate

weights for each feature using gradient descent to minimize the sum of ranks
of positive examples,

: e
argwrl?{g"b Z rank®.
ecE+

The set of positive examples, denoted ET, are clusters which include known
pyrrolysine-incorporating genes. There are six of these: mtbB, mttB, mtmB,
two clusters with transposases only annotated in M. Acetivorans and transcrip-
tional regulator of the TetR family also only annotated in M. Acetivorans. In
the genomes we consider, there are five other (RefSeq) annotated genes with
in-frame UAGs, but these are not conserved and as result they are not present
in reciprocal blast clusters.

The ranking scheme is based on a simple a linear combination features,
where the weights are be estimated by regression over rankings of known pos-
itive examples. It is possible to devise a more precise but complex ranking
function, but we have opted for this simple scheme because we only have a few
positive examples and there is a large potential for overfitting a more complex
function. With the few positive examples available, we have no real means of
doing cross-validation and even this simple function may slightly overfit. With
the discovery of additional pyrrolysine incorporating genes, the generality of
the approach can improve.

The individual rankings as well as the combined ranking are shown in ta-
ble 14.1.3.2.

14.1.5 Hierarchical clustering of PYLIS structures

To assess evolutionary relationships between known pyrrolysine incorporating
genes we group the PYLIS regions of these genes into clusters which are similar
in structure as follows. We consider all genes annotated with UAG as well as
other members of the reciprocal blast clusters which include annotated genes.
We perform a hierarchical clustering of the genes using a form of neighbor
joining (rapidNJ [132]) resulting in a phylogenetic tree that depicts structural
conservation relationships. The clustering method relies on a distance measure
between a pair of sequences, e.g., derived from a structural alignment. Rather
than relying on alignment of predicted structures, our distance measure is
calculated using PMcOMP [94] which is based on alignment of base-pairing
probabilities of the sequences. We compute the base-pairing probabilities using
the RNAFOLD tool. The distance between two sequences is the inverse of the
alignment score, scores_ g, from PMCOMP:

1

distao_.pg = ———.
scorea_p
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Figure 14.3: Structural clustering of PYLIS regions from iORFs in the clusters
for known pyrrolysine incorporating genes.

The resulting dendrogram of PYLIS regions is shown in figure 14.1.5.

14.2 Results and discussion

To ensure generalization capability and to minimize model complexity we sys-
tematically assess the ranking features using a criteria of statistical significance.
In effect, this assessment leads to a deeper understanding of the factors influ-
encing pyrrolysine translation. We inspect and discuss the the list of candidate
genes ranked by our method and we discuss structural conservation for known
pyrrolysine incorporating genes.

14.2.1 Ranking of gene clusters

Our method to automatically identify pyrrolysine coding candidate genes is
unique in utilizing both coding potential, structural conservation and amino
acid conservation. Additionally, we take the number of organisms with ho-
mologous PYLIS regions and the length of up and downstream the potential
in-frame UAG into account.

The ranking is systematically modeled from the known genes taking several
factors into account and weigh the different features with respect to the distance
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of known genes using pyrrolysine (Table 14.1.3.2).

The method has some limitations due to the assumptions that we make.
We assume that the PYLIS region is 100 bases downstream the UAG and
is well-conserved due to the presumptive presence of a PYLIS structure. Our
method cannot detect pyrrolysine containing genes which have divergent PYLIS
regions with no significant conservation in homologues or genes with only non-
pyrrolysine incorporating homologues.

Our approach is similar to an earlier approach called read-through Similar-
ity Analysis [32]. Asin our approach, the authors extract iORFs from candidate
genomes and perform a reciprocal blast analysis. The query is a 100bp window
pivoting around the read-through codon. In the case of pyrrolysine incorpo-
rating genes this means that the downstream region is shorter than in our case
and may not hold the entire PYLIS structure. They calculate an alignment
score for the region downstream the read-through codon and a measure of sta-
tistical significance by aligning shuffled sequences. Hits with sufficiently high
significance are examined further. These hits are expanded using PSI-BLAST
and manually checked for non read-through codons lining up with read-though
codons. Their driving assumption is that read-through genes will have non
read-through homologues.

Another approach sets out to discover unknown amino acids by conser-
vation of iORFs [73]. The approach is also capable of detecting pyrrolysine
incorporating genes. It also begins with iORF extraction and uses BLAST to
detect homologous sequences. The authors use a query (80bp) centered around
the stop codon. Similar to our approach the BLAST search results in a number
of clusters which is then reduced by pruning rules. Unlike our approach, they
only examine clusters with interspecies matches. To distinguish adjacent genes,
they exploit the synteny, by looking for blast hits to the N-terminal and the
C-terminal of candidates in other genomes. If there are distinct, but closely
arranged hits in other genomes, this is taken to indicate evidence of adjacent
genes rather than a single pyrrolysine incorporating gene. Furthermore, they
filter iORFs clusters based on purifying selection, i.e. they prune hits with
significantly high incidents of non-synonymous codon usage in the sequences
flanking the read-through codon.

However, unlike [32] we do not require non-pyrrolysine homologues, and
unlike [73] our method can detect genes with only paralogoue conservation.
This is reasonable, since some annotated pyrrolysine containing genes are only
found in several copies in the same genome.

Candidate genes

As result of our method we obtain ranking of the clusters in which the known
pyrrolysine incorporating genes occur within the top 25 clusters. The ranked
list is supplied as Additional File 1. Several other high ranking clusters seems
to be false positives, but there are also some interesting candidates.

e An example, which is probably a false positive, is the cluster with rank
11. Although it is conserved in three organisms and is on average 711
bases long, it has the problem that in Thermincola potens it overlaps
with a much longer gene in another reading frame. Either the long gene
(CRISPR-assosiated protein Cas2) is wrongly annotated, or the short
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one (CRISPR-associated protein Casl) “shadows” by incidence the long
one. However, in the two other organisms D. hafniense and D. orientis
the possibility of a direct translation of UAG is more probable since the
two annotated genes are in same reading frame and within the predicted
iORF.

e An example of a probable gene participating in neutral evolution (drift)
is the cluster with rank 7. It consists of only two Thermincola potens
genes, which are almost identical. However, they are both long and the
genes are flanking another gene (putative anaerobic sulfite) which is in
the same reading frame. (a similar neutral evolution has been believed
to occur in the known genes in M. acetivorans as in cluster 19 and 23
[91]). This type of pyrrolysine usage does usually not create new genes
with new functions.

e In cluster 16, a less neutral selection is probable in the evolution towards
using UAG in-frame, since is has occurred in three different Archaea.
The organisms are closely related and the iORF covers a gene (sensory
transduction histidine kinase) and a hypothetical protein in same reading
frame in M. acetivorans, a full pseudogene in M. mahii, and a shadow
part of a sensory transduction histidine kinase in M. barkeri. Likewise are
the three methyl transferases a product of selection towards a function
of producing methane.

All candidates need to be verified experimentally before they can be determined
as pyrrolysine encoding. In addition to this, the clusters containing the three
known methyl transferases include several genes annotated as pseudogenes, as
two genes or not at all. Only 21 of the 46 methyl transferases in the 12 inves-
tigated organisms are annotated correctly, i.e., as one non-pseudo gene with
with an in-frame UAG stop codon. These are likely deficiencies in the existing
annotations and should be corrected/included after further investigation.

14.2.2 Structural conservation and the evolution of genes

It is possible to create a relatively canonical secondary structure® for the PYLIS
region of mtmB and mtbB. The same region in mttB does not show any sign of
common structure. However, since mttB is the gene present in most different
organisms and has a high degree of sequence diversity, an elevated variance in
the structure is possible. See Figure 14.2.2 for predicted structures.

A search using INFERNAL reveals that using predicted structures has a pos-
itive impact on the recall and precision of detecting the pyrrolysine containing
genes mtmB and mtbB, when compared to searching without the predicted
structure (data not shown).

Our assessment of ranking features indicate that the majority of clusters
have a degree of potential structural similarity which is comparable to the
known genes. Consequently, neither the f$i"“cture feature nor the complex

\/ [structure . fdiversity x fsyn_codons) feature is not adequate for recovering

6This structures have more than 90 percent canonical base pairs, a free energy on less
than —15 and base pair probability above 0.6.
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MtbB

TetR

Transposasey Transposases

Figure 14.4: Predicted structures for each of the known pyrroly-
sine incorporating clusters. All structures are predicted using
CLUSTALW|[210]+RNAALIFOLD|16] through the WAR web service [213].
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known genes. The known genes seem to have either high structural simi-
larity and low primary sequence diversity (as is the case for the two trans-
posases) or they have low structural similarity but high primary sequence di-
versity. We see a different picture if we instead consider only the three methyl
transferase clusters when calculating feature significance; Then, the p-value

for rank( i/fs”ucwre X fdi”e”“y X fsy”JOdO”S) is 0.012 which is significant
within the 0.05 limit. This may suggest that the methyl transferases have
important structures although the statistical significance does not necessarily
imply biological relevance. It is more difficult to say if there is an important
structure in the transposases because of the high sequence similarity.

On the other hand the structural clustering of the PYLIS sequences of
known pyrrolysine incorporating genes (see Figure 14.1.5) reveals relatively
compact clusters. One cluster clearly corresponds to transposases, but with
few elements from the mttB and mtmB clusters. The majority of PYLIS se-
quences from the mtmB cluster falls into one of two fairly coherent groupings
which are dominated by mtmB genes. One of these groups, however, include
the methanogenesis marker protein 12 gene from M. evestigatum and the other
mtmB grouping includes one of the TetR genes. The other TetR gene is in
a smaller grouping which include elements from all methyl transferases. The
majority of mtbB members also form a coherent subgroup. The mttB members
does not seem to form any coherent grouping.

While it is possible to observe general trends of the clustering, chance sim-
ilarities distort the clustering accuracy to an undesired degree and outliers
should not be given too much significance. It is, however, clear that the UAG
downstream regions of Pyrrolysine incorporating genes do not all share similar
structures. There are distinct sub groupings which may correspond to distinct
structures and hence it seems that there are several PYLIS structures.

Our findings support that pyrrolysine has different ways to evolve in the
genomes containing the tRN APY! as suggested in [91]. For the methyl trans-
ferases, a selection for producing methane may have conserved the structures
as well as the amino acid residue. In other cases a neutral evolution is believed
to occur, allowing for a single mutation leading to an in-frame amber stop
codon [91]. In our list of candidate genes, a few high ranking candidates had
multiple paralogues of the UAG in-frame codon either within only one genome
or among a few only. These genes are conserved within a given species and
have even accomplished duplication events. However, as the mutation is not
conserved among different species, these may be relatively recent adaptations.

These different gene evolution models constitute a challenge for the ap-

proach to select the clusters that represent true positives among clusters of
iORFs.

14.3 Conclusions

In this work we presented a method for predicting pyrrolysine coding genes.
The method clusters genes with homologue sequences downstream the in-frame
UAG. The clusters are ranked according to observed properties of existing
homologous pyrrolysine incorporating genes so that top ranking candidates
correspond to known pyrrolysine incorporating gene families or to promising
new candidates.
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Our method is successful in recovering conserved pyrrolysine containing
genes and additionally detects several promising candidates which are not cur-
rently annotated. We provide a ranked list of potential pyrrolysine coding gene
candidates.

In addition our method provides insights into the features that characterize
pyrrolysine incorporating genes. We find evidence of conserved structures only
within MtmB and MtbB and provide substantiation to suggest that pyrrolysine
genes may also arise due to neutral evolution.
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Chapter 15

Conclusions and Future Work

15.1 Conclusions

This thesis presents a collection of papers which contribute to the research goal
of answering the questions,

o To what extent is it possible to use probabilistic logic programming for
biological sequence analysis?

e How can constraints relevant to the domain of biological sequence analysis
be combined with probabilistic logic programming?

e What are the limitations with regard to efficiency and how can these be
dealt with?

The first question is perhaps the most central one, but it is difficult to an-
swer precisely. It is trivial to answer whether it is possible to use probabilistic
logic programming for biological sequence analysis with a simple proof of con-
cept. The extent is more difficult to quantify, but it is intricately related to
the next two questions; It depends on how accurately and conveniently con-
straints from the domain of biological sequence analysis can be combined with
probabilistic logic models and it depends on how efficiently this can be done.

The dissertation addresses the questions by providing successful cases of
applications, abstractions and optimizations. This approach results in a non-
exhaustive answer to the questions, but demonstrates the potential of the ap-
proach and shows what is at least possible.

15.1.1 To what extent is it possible to use probabilistic logic
programming for biological sequence analysis?

It is clear that probabilistic logic programming is a powerful abstraction which
is eminently suited for modeling biological sequences. Common types of proba-
bilistic sequence models can be easily and concisely expressed and also extended
to non-standard cases (as demonstrated, e.g., in chapter 4).

Applications of probabilistic logic programming to deal with real biological
problems presented are presented in chapter 13 and chapter 14. This shows
that probabilistic logic programming is not merely a powerful abstraction, but
that it is a valuable and practical tool for biological sequence analysis.

225
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15.1.2 How can constraints relevant to the domain of
biological sequence analysis be combined with
probabilistic logic programming?

When constraints are expressed through a high level language or abstraction
which is closer to the domain, then they enable a user to express what is on
his mind without having to worry about complicated implementation details.

Probabilistic logic programming is a suitable language for building higher
level abstractions which can facilitate more convenient expression of constraints
from the domain. This is demonstrated, e.g., in chapter 5, 6 and 8. The
abstractions presented in this dissertation are motivated by applications to
biological sequence analysis, but are general abstractions which may also be
useful in other domains.

The notion of constraints is difficult to separate from notion of a model.
Indeed, models are typically based on assumptions which may themselves be
seen as inherent constraints. There is a good reason, however, for separating
the two concepts. It is convenient to be able to express standard sequence
models and then later add constraints as a form of rationalization. The ben-
efits are in a sense similar to those obtained by the separation of logic and
control where general algorithms may be reused for different types of models.
With constraints as a separate notion, models may be reused with different
constraints.

The use of probabilistic logic models with constraints has been demon-
strated in a variety of ways. Constraints can serve as the basis of a high-level
language to express biological knowledge and assumptions as demonstrated in
chapter 5, 6 and 8. Constraints have also been demonstrated to be useful
for dealing with efficiency limitations of probabilistic logic models by reducing
the search space (chapter 5). Furthermore, a step towards demonstrating that
constraints (CHR) may serve as the core foundation to express probabilistic
models and related inference algorithms has been taken in chapter 7.

15.1.3 What are the limitations with regard to efficiency and
how can these be dealt with?

While the separation of logic and control enables general inference algorithms
to be used for wide range models, challenges remain with the control part.

The PRISM system for probabilistic logic programming includes brilliant
generalizations of probabilistic inference algorithms which in theory guarantees
identical complexity to the best known algorithms for the types of models being
expressed. Unfortunately, they are not always as efficient in practice as they
could be. Fortunately, because of the separation between logic and control,
models automatically benefit from improvements of algorithms. This separa-
tion also enables approaches based on program transformation as demonstrated
by chapter 11 and [40]. Such transformations would be difficult if logic and
control aspects were thoroughly entangled.

In this dissertation, key limitations regarding efficiency which are problem-
atic when using probabilistic logic programming for biological sequence analysis
have been addressed. Efficiency issues related to tabling — both with regard
to structured data (chapter 11 and 12) and constraints (chapter 5 and 6) —
have been addressed and models for many kinds of interesting problems can
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now be implemented with sufficient efficiency.

When the LoSt project started out, we were able to use PRISM-based
HMMs to analyze sequences of at most a few hundred bases within a few
minutes. Later optimizations, i.e., pertaining to non-discriminating arguments
[40], made it possible analyze sequences of a few thousand bases within the
same timeframe. With the tabling optimizations presented in this thesis, it is
now possible to analyze hundreds of thousands of bases within seconds. For
simple HMMs, efficiency is no longer an issue. The empirical evaluations in
chapter 11 and chapter 12 indicate that inference with tested models occurs
with close to optimal time complexity. At the scale of analyzing hundred of
thousands of bases, other limitations regarding floating point calculations begin
to show up in PRISM even if probabilities are represented in log-scale.

For more complex models, other techniques to improve efficiency have been
devised. Model decomposition using Bayesian Annotation Networks (chapter
9) can be useful when joint-model inference is still not feasible. The BANpipe
pipeline programming language (chapter 10) — which supports this paradigm
— provides automatic parallelization. This may significantly reduce the time
spent on inferences on multicore computers. The incorporation of constraints
has also been demonstrated to be able to reduce running time under certain
conditions (chapter 5).

15.2 Future work

While the research question has to a large degree been resolved, a lot of open
ends remain. Many ideas and opportunities have arisen from working with the
domain and remain to be explored. In this section I describe a few of these,
which I think would be worthwhile to investigate further.

Tabling The explored approaches to efficient tabling of structured result in
efficient inference for a wide range of dynamic programming problems, but the
approaches only work for ground data and variant based tabling. It would be
useful to have techniques which allow for efficient tabling of structured data
with non-ground data. For instance, unsupervised learning in PRISM normally
works by using variables in input data. This scenario would not benefit from the
approaches given in this thesis. Currently, B-Prolog and PRISM use variant-
based tabling, which is restricted to exact matching of terms to tabled terms.
Subsumption-based tabling have been shown to be quite useful, for instance
to develop algebraic variants of probabilistic logic programming frameworks,
i.e.,[162]. This framework essentially enables the programmer to replace the
underlying semantics of the language, with e.g., possibilistic logic programming
rather than probabilistic logic programming. Subsumption-based tabling would
also be interesting to explore for Constrained HMMs, where it could support
integration of advanced types of constraints through tabling-based subsumption
testing.

BANpipe The banpipe language has recently been reimplemented in Logtalk
and now supports most Prolog systems. BANpipe modules can be written
for different Prolog systems, but may still be integrated in the same BANpipe
script. It has thoroughly documented and is available at http://banpipe.org.
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While BANpipe is functional and can be used to develop realistic pipelines
for bioinformatics projects, some work needs to be done to make it sufficiently
usable and accessible for the general bioinformatics community. The most
pressing concerns are documentation with regard to specific sequence analysis
components.

A key issue is portability and integration with existing tools used for bioin-
formatics, in particular in the context of logic programming. A holistic frame-
work for bioinformatics in Prolog — blipkit [140] — has previously been in-
troduced, but its components are very different from the ones in the BANpipe
framework. Since BANpipe now runs on most Prolog systems, it should be
relatively easy to integrate parts of blipkit as banpipe modules.

Nicos Angelopoulos has argued! for a piece-meal approach to bioinformat-
ics which sounds like a more promising way collaborate and reuse logic pro-
gramming based bioinformatics components. Instead of creating holistic frame-
works, it should be easy to integrate smaller tools with specific purposes. BAN-
pipe provides a way to do this, if components are made available as BANpipe
modules, i.e., provides an interface file.

BANpipe is currently restricted to parallel invocation tasks residing on the
same system. In the future, BANpipe may be adapted to support a distributed
setting.

Better genome models and combiners Two of the papers in this thesis
provide two different way to optimize a set of predictions from an underlying
gene finder on the genome level. One is the approach of using global optimiza-
tion and constraints for overlap resolution (chapter 6) and the other is utilizing
the sequence of gene reading frames (chapter 13). By themselves, these meth-
ods have only a little impact in improving accuracy. I believe, however, that
integrating these two techniques may result in significantly better accuracy and
I would like to investigate this.

A limitation of the current implementation of the gene reading frame model
is that it relies on discretization of the continuous confidence scores from gene
finders. This discretization either leads to information loss or to a situation
with sparsity of training data. Recent work on continuous variables in PRISM
[100] seems to be a promising alternative to discretization. This work ex-
tends PRISM, including the main inference algorithms, to support multi-valued
switches which have continuous-valued rather than symbolic outcomes.

Further experiments and investigation needs to be done in order to assess
the possibility and impact of using this approach with the gene reading frame
model.

Furthermore, there is no reason why predictions from only one gene finder
should be considered. Combiners have been very successful for eukaryotic gene
finding and I believe that they could also be useful in prokaryotic gene finding
given this approach.

Alternative Viterbi search strategies for PRISM programs PRISMs
Viterbi inference is usually quite efficient, but with the addition of constraints,
the search may become prohibitively slow. In essence, PRISMs existing search
strategy is depth-first search with a failure-driven loop and using tabling to

Tn his WCB 2012 talk.
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avoid recomputations. This means that in programs with constraints, a lot of
programs branches which will eventually fail will be faithfully (but unnecessar-
ily) explored.

I would like to explore alternative search strategies for PRISM, which may
more efficiently deal with programs with constraints. I believe that a com-
bination of branch-and-bound and a-star search could be much more efficient
than the current approach for such programs. With branch and bound search,
certain low-probability branches could be pruned if (as soon as) their proba-
bility is lower than that of a previously found solution. Similar pruning can
occur with a-star search, but it may be difficult to devise admissible heuristics
which are required by this kind of search. Inspiration may also be drawn from
strategies used in Answer Set Programming. Conflicting sets of constraints
(no-goods) observed in the search may be added as new constraints to further
restrict search. Similarly, the search may be restarted with different strate-
gies, that may be more efficient when enforcing no-goods and low-probability
pruning.

CHR and probabilistic grammars Chapter 7 presents a CHR based ver-
sion of the Viterbi algorithm for HMMs. The use of CHR for expressing prob-
abilistic models has been a relatively hot topic in the LoSt group and for me.
An early (unfinished and unpublished) approach to constrained HMMs tackled
the problem by transforming a CHR representation of unconstrained HMMs
into constrained variants. We have also experimented with other related CHR
based algorithms for working with probabilistic grammars, including an imple-
mentation of the inside-outside algorithm and an algorithm for transforming
PCFGs to HMMs (approximations). This work — which has been conducted in
cooperation with Ole Torp Lassen — is still unfinished. However, from our ex-
periments so far, it seems that these kinds of algorithms can be quite elegantly
expressed with CHR.

Probabilistic regular expressions The current implementation of proba-
bilistic extended regular expressions works, but only for relatively small exam-
ples. I have several ideas on how the implementation can be made much more
scalable and I plan to eventually make a more efficient version available as
stand-alone tool similar to grep. A problem with the current implementation
is that — with backreferences — it may explore a lot of paths which fail. The
engine would generally benefit from a better (Viterbi) search strategy, but I
am also considering to use a suffix tree representation to efficiently identify and
prune paths where it is obvious that the backreference cannot be matched.

Suffix trees can be conveniently represented using tabling, but for inexact
matching a form of subsumption based tabling would be useful.

A lot of other techniques, e.g., partial evaluation, have been proposed for
efficient regular expression matching. Quite possibly, many of these could be
adopted to probabilistic logic programming and applied to probabilistic regular
expressions as well. This, of course, needs further investigation.
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