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Abstract

This dissertation explores the question of how corpus statistics can be combined with
ontological knowledge in information retrieval. The motivation for delving into this
question lies in the intriguing possibilities the two different frameworks of semantic
analysis and descriptive statistics offer individually in information retrieval. Using
corpus statistics, the specific document collection at hand can be described and this
description can be used for matching users’ information needs. Ontologies, on the
other hand, offer a semantic analysis based on world knowledge simply beyond the
reach of statistical analysis.

Information retrieval can be divided into three general processes: The indexing
of documents and queries, the matching of documents and queries, and, finally, the
presentation of the result of the match. A single dominant ontology-based infor-
mation retrieval model that covers all three processes does not yet exist; and this
dissertation does not attempt to present one. Rather, the aim is to present a number
of improvements in the three processes that can be integrated into already existing
ontology-based or keyword-based information retrieval systems.

With respect to indexing, a preliminary machine learning approach for the anal-
ysis of the relations denoted by prepositions is presented aimed at improving the
extraction of conceptual knowledge from a text. An extension of the vector space
model that makes it possible to expand the index by means of an ontology is also
presented. With regard to matching, arguments are presented showing how ontology-
based similarity measures, to a larger extent, could incorporate a statistical element
that modifies the similarity measure to reflect the document collection at hand. Fi-
nally, with an emphasis on the presentation of search results, two ontology-based
clustering approaches are presented as means for navigating through a set of docu-
ments.
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Resumé (in danish)

Denne afhandling udforsker spørgsmålet om, hvordan statistisk analyse af en doku-
mentsamling kan kombineres med ontologisk viden indenfor søgning. Motivationen
for at dykke ned i dette spørgsmål udspringer af de besnærende muligheder, som se-
mantisk analyse og statistisk analyse tilbyder hver for sig indenfor søgning. Ved brug
af statistiske metoder kan en given dokumentsamling blive analyseret og brugt til at
matche brugernes informationsbehov. På den anden side tilbyder ontologier en se-
mantisk analyse baseret på omverdensviden, som simpelthen er udenfor rækkevidde
ved anvendelse af statistisk analyse alene.

Søgning kan opdeles i tre generelle processer: Indekseringen af dokumenter
og forespørgsler, matchning af dokumenter og forespørgsler og endelig præsenta-
tionen af resultatet af matchet. Der eksisterer ikke en dominerende model for on-
tologibaseret søgning, og denne afhandling forsøger ikke at præsentere en. Istedet
er målet at præsentere en række forbedringer i de tre processer, som kan integreres i
allerede eksisterende ontologibaserede eller nøgleordsbaserede søgesystemer.

I forhold til indeksering præsenteres en præliminær maskinindlæringstilgang til
analyse af relationer udtrykt af præpositioner. Formålet er at forbedre udtrækningen
af konceptuel viden fra tekst. En udvidelse af vektorrumsmodellen præsenteres også.
Denne gør det muligt at ekspandere indekset ved hjælp af en ontologi. I relation til
matchning fremføres en række argumenter, som viser, hvordan ontologibaserede sim-
ilaritetsmål i højere grad kan inkorporere et statistisk element, der modificerer simi-
laritetsmålet til at afspejle den givne dokumentsamling. Med særlig fokus på præsen-
tationen af søgeresultater præsenteres til slut to ontologibaserede grupperingsmetoder
som tilgange til at navigere gennem et sæt af dokumenter.
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Chapter 1

Introduction

The company Kids Arts has produced a small package of toys consisting of dough,
an oven, and kitchen utensils. Using several present-day search engines, finding this
product in any store on the Internet using a query like, “kids arts dough oven” is
almost impossible. Why is this the case? The answer is simple: Keyword based
search; we are searching for a page containing the words in the query using simple
string comparison. In the query Kids Arts is thus not in the normal sense of artistic
masterpieces produced by kids, but rather it is in the sense of the company which
produces goods that kids can use in their endeavor to develop artistic skills. Oven is
used in the sense of a toy, and not a real oven for baking dough, which, by the way,
is synonymous in this case with clay and plasticine. The problem with the words
kids, arts, dough, and oven in connection with a simple keyword based information
retrieval approach is that the meaning of the words and the relations between are
ignored. Furthermore, the shear abundance of web pages with these words makes it
impossible to browse through every document. If the search engine ranks relevant
documents far down on the list, the search has brought us no closer to our goal.

Keyword based information retrieval is based on the assumption that we can cap-
ture, or to a large extent approximate, the semantic content of both queries and docu-
ments simply by looking at the lexical level of the text. In other words, the matching
of documents and queries are performed on the surface level of the texts, so a search
for, e.g. hormone will not match insulin or thymosin even though they are indeed both
hormones. The prevalent use of search engines like Google, Yahoo, and MSN Live
shows that in many cases the assumption behind keyword based search is unproblem-
atic. But, as the hormone and toy example illustrate, in some cases the assumption
leads to low quality results.

The topic of this dissertation is ontology-based information retrieval as an alter-
native or a supplement to keyword based information retrieval. In popular terms,
an ontology is a taxonomic ordering of concepts, e.g. insulin is a special kind of
hormone. Ontologies are interesting because they offer the possibility of introduc-
ing semantics at several of the processes involved in information retrieval. In the
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initial content analysis of the text, ontologies can be used to ensure that sentences
paraphrased differently but with identical conceptual content are indexed similarly
so that a query for, e.g. fast memory will also match high speed ram. Moreover,
ontologies enable a semantic expansion of the query with related concepts based on
how similar they are to the concepts in the original query. For instance, ram is more
closely related to memory than, e.g. computer components.

One of the challenges in ontology-based information retrieval is that available
ontologies is a scarce resource for many languages and tasks. In addition, engineer-
ing an ontology that captures all the concepts and relations that can be expressed by
natural language is impossible. Despite this challenge, ontology-based information
retrieval offers a semantic matching which is not possible with information retrieval
relying solely on a keyword based match. The schism between the possibilities of-
fered by ontologies and the challenges in modeling domains and applying strictly
ontology-based systems calls for research in the area of integrating ontology-based
approaches with approaches focused on the lexical level of keywords. The research
presented here has sought to explore how such approaches can be integrated in infor-
mation retrieval.

1.1 Research Question

The purpose of the research presented in this dissertation was to explore the question:

How can corpus statistics be combined with ontological knowledge in
information retrieval?

Important sub questions to be examined in the study included:

1. How can corpus staticstics improve ontology-based content analysis?

2. How can corpus statistics and ontologies be combined in semantic similarity
measures?

3. How can term weighting take into account both the ontology and the frequency
of the concepts in the documents?

4. How can corpus statistics and ontologies be used in the presentation of search
results?

Corpus statistics are here to be understood in a broad sense relating to descriptive
statistical analysis of a document collection.

Given the wide ranging nature of the research, the aim has not been to excavate
all possible solutions to the questions posed, but rather to present possible directions
to pursue.
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1.2 Outline

This dissertation is divided into a foundations part and a contributions part. Chapter
two, three, and four are on the foundations of the work presented here, and chapters
five, six, seven and eight are on the contributions. In this section the content of the
chapters in these two parts will be outlined.

The second chapter will contain an introduction to the field of information re-
trieval. The chapter starts out with a description of the major processes in information
retrieval systems and tries to give an intuitive as well as a more formal understanding
of why some words are more interesting than others from an information retrieval
perspective. The chapter will present the Boolean Model, the Vector Space Model
and the Probabilistic Model, which are the most prominent models of information re-
trieval systems used today. In addition, an extension of the Boolean Model, the Fuzzy
Model, will be presented since it provides an intuitive and an easy way of integrating
ontologies in the retrieval process. The purpose of the chapter is to serve both as a
presentation of the theoretical basis of the research presented in this dissertation and
to give the reader an understanding of the sequencing of the chapters in the rest of the
thesis. The chapter will also indicate why ontology-based information retrieval offer
a valuable alternative to keyword based information retrieval.

Ontologies are introduced in the third chapter, which describes what an ontol-
ogy is, what the different types of ontologies are, and how ontologies are represented.
Special attention is given to the lattice algebraic language ONTOLOG, which serves
as the formal framework for specifying ontologies in all subsequent chapters. The
chapter ends with a presentation of examples of ontological resources. Like the pre-
vious chapter, the aim is to present the underpinning theoretical framework of this
dissertation.

The fourth chapter is devoted to the ONTOQUERY project which the work pre-
sented here is a part of. The chapter will focus on content analysis; namely on how
we get from running text to an ontological representation that can be used as an in-
dex later in the retrieval process. Also the work on semantic similarity done within
the ONTOQUERY project will be described. These two aspects of the ONTOQUERY

project are described because they are of particular relevance for the work presented
here.

The contributions are presented in the subsequent four chapters starting with
chapter five. This chapters presents an experiment with the semantic analysis of
content; more specifically, how machine learning can be used to investigate an as-
sumption of affinity between the relation denoted by a preposition and the concepts
surrounding it. The chapter presents the nature of semantic relations, the effort in-
volved in compiling the used corpus, an introduction to the basics of machine learn-
ing, and, naturally, the results of the experiments. The presented approach enables a
more accurate ontological indexing than previously has been attempted.

The issue of similarity treated in chapter four on the ONTOQUERY project paves
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the way for moving to a more thorough investigation of how to compute similarity
between concepts. This is the topic of the sixth chapter. The first part of the chapter
gives an introduction to ontology-based similarity measures and similarity measures
based on distributional patterns of the co-occurrence of concepts. The second part
of the chapter introduces the novel idea of measuring the similarty between two con-
cepts by these two kinds of measures.

Chapter seven introduces an original approach to index expansion as an alter-
native to the term weighting applied in the Vector Space Model. A the heart of the
model is an approach to term weighting based on the inclusion of an ontology. The
chapter starts out with presenting some fundamental issues of query expansion.

Having presented the steps in ontology-based information retrieval from content
analysis, to indexing and similarity measures, chapter eight presents two different
approaches to conceptual summaries. A conceptual summary is as a way of present-
ing the conceptual content of the result of a query, i.e. a summary of the result set
based on the ontology and a clustering of the concepts appearing in the set of results.
The first approach, connectivity clustering, is based solely on the ontology itself and
the second, similarity clustering, utilizes a similarity measure derived from the on-
tology. Central to both models is the novel idea of letting a set of concepts from the
ontology be the summary rather than a summary in natural language.

Finally, the nineth draws conclusions and presents a discussion of further work.

1.3 Contributions

This dissertation is the result of an industrial PhD funded by Scan·Jour A/S under
the industrial PhD program established by the Ministry of Science, Technology and
Innovation. The aim of this industrial PhD has been to explore the options for com-
bining corpus statistics with ontology-based information retrieval. The research has
taken place within the framework of the ONTOQUERY project, which means that the
research issues involved and the results presented are thus related to the work being
done within this project.

As noted in connection with the research question, the aim has been to explore
appropriate parts of an ontology-based information retrieval system that could benefit
from introducing corpus statistics. In this endeavor, contributions within the follow-
ing subjects have been made:

1. Semantic analysis of the relations denoted by prepositions. Joint work done
with Tine Lassen, Roskilde University, which is presented in chapter 5. The
chapter is to a large part a rendering of Lassen & Terney (2006a,b).

2. A model of descriptor expansion in the Vector Space Model. This previously
unpublished work in chapter 7 is by this author alone.

4



3. Approaches to combining semantic and distributional similarity. What is pre-
sented here in chapter 6 is a further development of the ideas presented in
Terney (2007).

4. Conceptual summaries. Joint work done with Troels Andreasen and Henrik
Bulskov, Roskilde University, is presented in chapter 8. This is to a certain
extend a rendering of Bulskov et al. (2007), Andreasen et al. (2008) except
for the work on “Prioritized connectivity clustering” which subsequently to the
submission of this dissertation has been published in Bulskov et al. (2008).

All the joint work has been characterized by an equal amount of work from all
the participants.
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Part I

Foundations
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Chapter 2

Information Retrieval

Information retrieval deals with the representation, storage, organization and access
to information items. Here, information items can, in principle, be any kind of ob-
jects. However, until now, developed information retrieval systems and research
within the field have, to a large extent, focused on retrieval of documents with a
textual content. Therefore, information retrieval is often used synonymously with
text retrieval. In this context, documents can be of any type or structure, e.g. emails,
web pages, books or fragments hereof, e.g. sections, paragraphs, and sentences.

The following example taken from the Text REtrieval Conferences (TREC) il-
lustrates important processes in information retrieval. TREC is an annual confer-
ence where a variety of research groups competes and exchange ideas on text re-
trieval. One of the tracks that ran in 2003 and 2005, was the High Accuracy Re-
trieval (HARD) track, where the goal was high accuracy retrieval using additional
information about the searcher and/or the search context captured using very targeted
interaction with the searcher. One of the questions posed, or topics using TREC
terminology, in 2005 was (NIST 2007):

Identify positive accomplishments of the Hubble telescope since it was
launched in 1991

Where the criteria for information being relevant was judged by:

Documents are relevant that show the Hubble telescope has produced
new data, better quality data than previously available, data that has
increased human knowledge of the universe, or data that has led to dis-
proving previously existing theories or hypotheses. Documents limited to
the shortcomings of the telescope would be irrelevant. Details of repairs
or modifications to the telescope without reference to positive achieve-
ments would not be relevant

The above question expresses an information need that has to be transformed into
a language interpretable by the system. As formulated, the question above would
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normally not be posed directly as a query to present-day search engines. Instead,
the question would be reformulated into a set of keywords like “accomplishments
Hubble” or “accomplishment Hubble telescope”. This is done both in order to reduce
typing and because most search engines are keywords based.

A collection of documents also exists from which we wish to extract the needed
information. The document collection can be the entire web, the contents of an enter-
prise document management system, a mailbox, a desktop or even a single document.
Then, using some type of function, the system matches the documents, or a represen-
tation hereof, with the query and presents the result. Finally, the result of the retrieval
process can then be presented, typically in the form of a list with the possible ad-
dition of small text excerpts from the documents. The text excerpt is presented in
order for the user to be able to quickly assess the relevance of a retrieved document
without actually having to look through it. This simplification of the retrieval process
is shown in figure 2.1 (inspired by Ingwersen (1992)):

Collection - Matching

6

¾ Query

Result

Figure 2.1: A simple model of the basic processes in information retrieval

The relevance judgment of the result made by the user also shows how infor-
mation retrieval differs from standard data retrieval. In data retrieval, all objects
satisfying clearly stated criteria must be retrieved and only these objects. This is
made possible, for instance, in relational databases by a well-defined structure and
semantics. However, for the most part, information retrieval deals with natural lan-
guage that is not well-structured and that contains many semantic ambiguities. In
other words, we move from matching by means of well-defined criteria to matching
a more uncertain estimation of “what is most likely relevant”.

This chapter begins with a detailed view of the processes involved in information
retrieval. With this view in place terms central to the field of information retrieval will
be described followed by a section on indexing and term weighting. Hereafter, a brief
overview of the three classical retrieval models will be presented: the Boolean model,
the Vector Space model, and the Probabilistic model (Baeza-Yates & Ribeiro-Neto
1999). Also a Fuzzy model is presented. The chapter concludes with a summary and
a discussion. The purpose of this chapter is to provide the fundamental framework
for applying the approaches and models presented in subsequent chapters.
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User - Query

6
Content extraction

6

Presentation

?

Representation

6

Transformation¾

Matching function

Result

System vocabulary

¾

¾

Document and index
storage

?

-

Representation

?

Content extraction

?
Indexing¾

ª
Index

Collection

?

?

Document

Figure 2.2: The major processes in an information retrieval system (a minor modified version
of Lancaster’s (1968) model.)

2.1 A Prototypical Information Retrieval System

Figure 2.2 illustrates in more detail the main processes in an information retrieval
system (a minor modified version of Lancaster’s (1968) model). At the top of the
figure is a collection of documents that undergo a transformation from the original
document format and structure into the system’s internal representation or logical
view of the documents. In classic keyword based information retrieval, this transfor-
mation of the documents results in a set of keywords that can be stored as indexes in
addition to the original document for later fast retrieval. The content extraction, rep-
resentation and storing of the indexes is called indexing. The system’s vocabulary is
the language used by the information retrieval system for describing documents and
queries. For instance, the system’s vocabulary can be the keywords in the collection.

The lower part of the figure is an almost mirror image of the upper part of the
figure. The transformation of the queries, however, is reduced to an extraction of
the content of the query and a representation of this content using the same system
vocabulary as the indexing. By doing so, the system makes it possible to perform
the matching of documents with the queries depicted at the center of the figure. Fi-
nally, the result of the matching is presented to the user, for instance, as a ranked
list of references to the relevant documents, judged by the system as relevant, with
accompanying text excerpts from the documents.
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Before we proceed a definition of a few of the terms used in this dissertation is
appropriate. A term is a lexical unit in the sense of a sequence of characters much
similar to a word, and as noted in the beginning of the chapter word and terms are
here used interchangeably. In information retrieval, however, term can also be an
element in the system vocabulary which does not have to be be a whole word, in
the sense of a meaningful unit of language that native speakers would use. Instead
it can be a part of word like “inform” or “theor” (Jones 1972). The two, “inform”
and “theor”, are examples of the stem which is the part of a word that left when all
affixes has been stripped (Jurafsky & Martin 2000). Stemming refers to the process
of reducing a word to its stem and it has been widely used in information retrieval.
Stem is sometimes confused with lemma which is the head word it appears as the
entry in a lexicon. For instance go, goes, going, went, gone are all different forms
of the same lexeme with go being the lemma. Neither stems or lexemes are of any
particular interest in the context of this dissertation but the terms can be found in
some of the subsequent chapters in the description of related work.

A description is the set of descriptors assigned to a given document. Accordingly
the set of descriptors used to describe all documents constitute the system vocabulary.
It is common to use term and descriptor interchangeably in the information retrieval
literature because commonly terms are used as the system vocabulary. But there is
a difference as later chapters on ontology-based indexing will illustrate. Finally, of
special interest in ontology-based information retrieval, is of course concept in the
sense of an abstract or general idea. A concept can be expressed by using different
word which are then considered as synonyms.

Two important measures for retrieval evaluation are precision and recall. Preci-
sion is measured as the fraction of relevant documents in the set of documents re-
trieved. Recall, on the other hand, is measured as the fraction of relevant documents.
High precision indicates that among the retrieved documents most of them were rel-
evant. High recall indicates that most of the relevant documents were retrieved from
the collection of documents. There is an inherent conflict between achieving both a
high precision and a high recall, since it is difficult to find all the relevant documents
while still maintaining high precision.

With these terms in place we can continue to how to deal with the optimal de-
scription of documents in keyword based information retrieval. We start out with a
continuation of the TREC example from the beginning of the chapter.

2.2 Indexing and Term Weighting

In order to get from the original document to the systems internal representation,
some kind of transformation is necessary. Table 2.1 shows part of speech tags for
first sentence in the TREC evaluation criteria presented on page 9:

This table can be used to exemplify three important aspects in information re-
trieval. First, even though the table splits up the sentence, just looking at the different
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Nouns Verbs Other
DocumentsNN2 areV BB relevantAJ0

HubbleNP0 showV V B thatCJT

telescopeNN1 hasV HZ theAT0

dataNN0 producedV V N newAJ0

qualityNN1 hasV HZ betterAJC

dataNN0 increasedV V N thanCJS

dataNN0 hasV HZ previouslyAV 0

knowledgeNN1 ledV V N availableAJ0

universeNN1 disprovingV V G thatCJT

dataNN0 humanAJ0

theoriesNN2 ofPRF

hypothesesNN2 theAT0

orCJC

thatCJT

toPRP

previouslyAV 0

existingAJ0

orCJC

Table 2.1: The first sentence of the evaluation criteria from the TREC example on page 9.
The sentence is organized by part of speech. The tagging was performed with the online
CLAWS tagger using the C5 tagset, excluding punctuation (Garside & Smith 1997, CLAWS
2008).

words in the table provides a pretty good idea of what the sentence is about. So,
instead of viewing the content of the sentence as a close-knit composition, we can, to
an extent, extract and represent the content of the sentence as a set of words. This is
behind the common assumption of term independence, that is, the distribution of one
term a in the document collection is independent of the distribution of b (Robertson
& Jones 1976). Though unrealistic it makes makes the information retrieval mod-
els, which we shall look at in the next section, much simpler (Salton et al. 1982).
Also assuming term correlation does not necessarily improve retrieval performance
(Baeza-Yates & Ribeiro-Neto 1999).

Second, the table exemplifies how the different part of speech contributes more
or less to the content of the document. Hubble and data are, for instance, much better
at capturing the semantics of the TREC sentence than increased and show, or better
and relevant.

Third, the evaluation sentence and table 2.1 make clear that the word data is key
if one were to describe the criteria, simply because data appears more frequently than
the other words in the sentence. A description based on term independence should
therefore stress the importance of the word data related to the other words in the
criteria. In other words, the word data should be given a higher weight than, say,
theories, which only occurs once in the sentence. With this intuitive understanding
we can now proceed to how indexing and term weighting are treated in keyword
based information retrieval.
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In information retrieval two fundamental notions of indexing are index exhaus-
tivity and term specificity (Salton & Yang 1973). Index exhaustivity denotes the cov-
erage of the description with respect to the topics in a given document, and term
specificity refers to the level of detail a given concept in a given document is de-
scribed (Jones 1972). The more exhaustive a document description is the more likely
it is that relevant documents are retrieved as a response to user queries, and simi-
lar the more specific the terms are the less likely it is that non-relevant documents
are retrieved. The challenge is naturally to find an optimal level of exhaustivity and
specificity in order to ensure that as many relevant documents are being retrieved and
that non-relevant documents are not retrieved.

Besides having the above semantic interpretation the index exhaustivity and term
specificity can also be interpreted as statistical properties of term use. Thus the
exhaustivity of a description is a function of the number of terms it contains and
the specificity of a term is a function of number of documents it pertains to (Jones
1972). Thus there is slight difference in the common semantic and statistical inter-
pretation of the word. A term can be specific from a semantic point of view (e.g.
neuropsychological) but if it is widely used in all the documents in the collection is
non-specific from a statistical point of view. In general, we are looking for terms
that describe the document well, taking into account the term’s frequency in other
documents. If a term is good at describing the entire corpus, i.e. it has a high overall
frequency, then it is usually poor at discriminating among the different documents,
giving it a low resolving power. The term resolving power was introduced by Luhn
(1958), and Salton and his colleagues later introduced discrimination value (Salton
& McGill 1982). Luhns notion of resolving power was based on the assumption that
if your order terms in order of their decreasing frequency, the value of a terms as doc-
ument descriptors has a Gaussian distribution. This is sought illustrated in in figure
2.3.

Where the resolving power of a term is based only on the frequency, the dis-
crimination value proposed by Salton and his colleagues measures to what degree a
terms increases or decreases the average document-pair similarity (Salton & McGill
1982). Thus a term with high discrimination value decreases the average document-
pair similarity, and a term with a low discrimination value either increases the av-
erage document-pair similarity or leaves it unaffected. Though expressed differently
resolving and discrimination value are both notions of the same fundamental concept.

In order to ensure a term weight which takes into account the above factors, a
good term weighting scheme typically includes both a local and a global weight.
Local means how well a given term describes the document and global means how
well a given term describes the entire collection. A commonly used weight is the term
frequency, tf , as the local weight combined with the inverse document frequency,
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High frequency words with low resolving powerOrder of frequency of termsResolving power of termsMedium frequency words withhigh resolving powerLow frequency words withlow resolving powerWords in decreasing order of frequencyFrequency/resolvingpower

Figure 2.3: An illustration of Luhns notion of resolving power (Luhn 1958).

idf , as the global weight measured as Baeza-Yates & Ribeiro-Neto (1999):

tfi,j =
fi,j

maxl(fl,j)
(2.1)

idfi = log
(

N

ni

)
(2.2)

tfidfi,j =
fi,j

maxl(fl,j)
· log

(
N

ni

)
(2.3)

where fi,j is the frequency of term ti in document dj , maxl(fl,j) is the maximum
frequency computed over all terms which are in document dj , and N is the total
number of documents in the corpus/system, and ni is the number of documents where
ti appears.

The weight, tfidf , can be measured in many ways and Salton & Buckley (1988)
is a classic reference on the topic. In relation to figure 2.2, the main task in the two
content extraction processes is often to tokenize the document into terms, perhaps
excluding high frequent words by using of stop lists, and, finally, by adding weights to
each term. In this way, the document and the query can be expressed using the same
system vocabulary and representation, thereby making it possible for the matching
function to perform the matching.

2.3 Retrieval Models

A common trait of all the retrieval models presented in this chapter is that they all
assume term independence and document independence, i.e. a document’s relevance
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is not evaluated relative to the other documents retrieved. Since the information value
of a second document being identical to a previously retrieved document is very small
this independence assumption is clearly erroneous. However, like the term indepen-
dence assumption, the simplification is made in order to get simple models both from
a conceptual and a computational viewpoint. We will now present four different in-
formation retrieval models. The first three: the Boolean model, the Vector Space
model, and the Probabilistic model are the so called classical models (Baeza-Yates
& Ribeiro-Neto 1999). They are interesting in an account of information retrieval
because they show different methods for representing and matching documents and
queries. The Boolean model is characterized by the logical connectives that can be
used in query formulation. The Vector Space model is characterized by its term
weighting and how closeness in the vector space is used as a measure of relatedness
between query and document. The Probabilistic model is especially characterized
by ranking of document based on the probability of a document being relevant to
a query. Besides the three models, fuzzy theory and a fuzzy information retrieval
model is presented. The fuzzy retrieval model presented in this chapter is presented
because it includes a thesaurus in the matching of document and queries.

2.3.1 Boolean Model

The framework of the Boolean information retrieval model is, as the name reveals,
based on Boolean algebra. In the Boolean model the index terms are either present or
absent, i.e. the weighting of the index terms is binary. A document can be represented
as an element in the power set of the set of index terms in the corpus (the system
vocabulary). A query, q, is represented by a set of index terms connected either
explicitly by the user or implicitly by the system with the logical connectives, and, or
and not. Any Boolean expression can be re-represented in disjunctive normal form,
e.g. the query qa “dogs and (mice or not cats)” can be represented in disjunctive
normal form as:

dogs ∧ (mice ∨ ¬cats) ⇒ (dogs ∧mice ∧ cats) ∨
(dogs ∧mice ∧ ¬cats) ∨
(dogs ∧ ¬mice ∧ ¬cats)

Any documents satisfying one of the conjunctive components of the query will
be retrieved by the Boolean Model. A positive term is satisfied if the term is included
in the set of terms representing the document. A negative term is satisfied if the term
is not included. Documents are considered either to be relevant or non-relevant with
no notion of partial match.

In many aspects, the Boolean model is the simplest model, and its straight-
forward formalism and precise and “intuitive” semantics have ensured its popularity
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(Baeza-Yates & Ribeiro-Neto 1999). However, as with many other simple models,
the Boolean model suffers from some major drawbacks. The intuitivity of the seman-
tics is deceptive, e.g. most people with no background in logic would be surprised
that with, e.g. the query “dogs and (mice or not cats)” will retrieve a document
containing the term dogs, mice and cats as illustrated in figure 2.4.

d ∧ ¬m ∧ ¬c

d ∧m ∧ ¬c

d ∧m ∧ c

d

m

c

Figure 2.4: Venn diagram of the Boolean expression “dogs and (mice or not cats)” d∧ (m∧
¬c) that shows its disjunctive components.

In addition, the common interpretation of and is union not intersection, and users
generally find it difficult to express their information needs in the Boolean model
(Topi & Lucas 2005, Cooper 1997, Avrahami & Kareev 1993). Surveys indicate
that end users queries might be getting more sophisticated (Jansen & Pooch 2001)
though most studies show that less than 2% of end users use the not operator and
less than 3% of the end users use the or operator (Markey 2007). Another problem
with the Boolean model is the notion of relevance since documents are regarded as
either relevant or not relevant with no ranking. Owing to the lack of partial match,
systems based on the Boolean model often retrieve too many or too few results. To a
certain extent, this can be remedied by ranking by the cardinality of the intersection
of the query and the document. Though usually perceived as an information retrieval
model, the Boolean model is therefore in fact much more of a data retrieval model.

2.3.2 Vector Space Model

Salton and his associates pioneered the vector space model working on the SMART
retrieval system (Salton & Buckley 1988, Salton et al. 1975, Salton & Lesk 1968,
Baeza-Yates & Ribeiro-Neto 1999). At the heart of the Vector space model is the
possibility of representing the system vocabulary as an n-dimensional vector space,
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where each document and query can be viewed as a vector in this space. Similarity or
relatedness can then be evaluated as the closeness between the document vector and
the query vector in the vector space. The vector space model opens up for the use of
a more sophisticated representation since we can now add weights to each term, use
partial matching, and rank the retrieved documents based on the similarity between
the document and the query. A common measure of similarity between two vectors
is the cosine. If wi,d and wi,q denote the weight of term i in document d and query q
respectively, then the cosine can be expressed as:

sim(d, q) = cos(d, q) =
∑n

i=1 wi,d · wi,q√∑n
i=1 wi,d ·

√∑n
i=1 wi,d

(2.4)

In principle, one could chose to simply apply the inner product as a similarity
measure, but the cosine takes into account the length of the vectors, and can thus
be regarded as a normalization of the similarity. Assume, for example, that we have
a query, q, a document, d, and three terms in our vocabulary. For simplicity, we
presume each term is weighted by its number of occurrences in the document and in
the query. The weights of the terms and the positions of the vectors in the space are
illustrated in figure 2.5:

q

*

6

1
q

¸

d

cos

d q

t1 1 1
t2 2 0
t3 1 1

Figure 2.5: An illustration of a document, d, and a query, q, in the vector space model.

Based on this, the cosine can be calculated as:

cos(d, q) =
1× 1 + 2× 0 + 1× 1√

12 + 22 + 12 · √12 + 02 + 12
= 0.58

The obvious advantages of the vector space model compared to the Boolean
model is the option of introducing advanced term weighting, the ranking of results,
and partial matching. The main drawback –and this goes for all models that are more
advanced than the Boolean Model– is that the clear connection between the interpre-
tation of the query and participation in the result is lost. This makes it more difficult
for users to figure out how to restate their information needs, if the information is
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not found immediately, unless e.g. relevance feedback is applied (Salton & Buckley
1990).

2.3.3 Probabilistic Model

This section will describe the classic probabilistic model introduced by Robertson
& Jones (1976) known as the binary independence model (Baeza-Yates & Ribeiro-
Neto 1999). The fundamental idea of the binary independence model is that the best
ordering of documents, presented to the user as a response to a query, is a ranking
where the documents most likely to be relevant are nearest the top (Robertson & Jones
1976). The challenge is naturally how to asses the probability that a document is rel-
evant. In the binary independence model this challenge is met by some independence
assumptions and an ordering principle. First the model assumes that the occurrences
of different terms are independent within the set of relevant documents, and that the
occurrences of different terms are independent within the set of non-relevant docu-
ments. Second the model assumes, as ordering principles, that the probability of a
document being relevant should be calculated from the terms present in the document
and from the terms absent in the document Robertson & Jones (1976).

Following Baeza-Yates & Ribeiro-Neto (1999) let the index term weight wi in
document dj and query q be all binary i.e. wi,j ∈ {0, 1}, wi,q ∈ {0, 1}. Let R be
the set of relevant documents and R̄ be the set of non-relevant documents. Also let
P (R|dj) be the probability that document dj is relevant to the query and let P (R|dj)
be the probability that document dj is not relevant to the query. The odds of document
dj being relevant to the query can be expressed as:

sim(dj , q) =
P (R|dj)
P (R|dj)

, (2.5)

which also can be interpreted as the similarity between document dj and query q.
Using Bayes’ rule:

P (R|dj) =
P (dj |R)× P (R)

P (dj)
, (2.6)

equation 2.5 can be restated as:

sim(dj , q) =
P (dj |R)× P (R)
P (dj |R)× P (R)

(2.7)

Since we are only interested in the ranking of the retrieved documents, and since
P (R) and P (R) are constant for all documents, we can instead of equation 2.7 use:

sim(dj , q) ≈ P (dj |R)
P (dj |R)

(2.8)
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The independence assumptions noted above enables us to rewrite the probability of
dj being in R and R respectively as

sim(dj , q) ≈
∏n

i=1,wi,j=1 P (ti|R)×∏n
i=1,wi,j=0 P (ti|R)

∏n
i=1,wi,j=1 P (ti|R)×∏n

i=1,wi,j=0 P (ti|R)
(2.9)

where P (ti|R) expresses the probability of index term ti is present in a document
selected randomly from R, and P (ti|R) expresses the probability of index term ti
is not present in a document selected randomly from R. The probabilities with R
has analogous meaning. Here n denotes the cardinality of the set of terms. The
similarity between dj and q is thus the product of the probabilities of the index terms
in document dj being present in a document randomly selected from R, and the
probabilities of the index terms not in dj not being present in a randomly selected
document from R. This is then divided by the analogous probabilities of for the
index terms in R. An implicit assumption is naturally, that the similarity is only
based on the terms in the documents and in the query.

By ignoring factors which are constant to all documents given the same query the
similarity expressed in equation 2.9 can be written as

sim(dj , q) ≈
n∑

i=1

wi,q × wi,j

(
log

P (ti|R)
1− P (ti|R)

+ log
P (ti|R)

1− P (ti|R)

)
(2.10)

which is an important expression for ranking documents in the probabilistic model
Baeza-Yates & Ribeiro-Neto (1999).

The major challenge in the model is that R is not known at query time, and thus
a method is needed to estimate P (ti|R) and P (ti|R). One approach is to have the
user identify a small subset of the relevant documents, and then iteratively refine the
estimated probabilities. Alternatively assume that all terms in the query are equally
likely to appear in a document randomly chosen from R, and to chose an initial
estimate of this probability, say, 0.5 (Baeza-Yates & Ribeiro-Neto 1999). By these
assumptions and initial ranking of the documents can be provided which again can
be iteratively improved.

The advantage of the binary independence model is the ranking of results, but the
challenge is to estimate the initial probability of a document being relevant or not.
Also, it is not advantageous to only be able to interpret results and index terms within
a binary framework. There has, to best of our knowledge, not been any attempts to
create an ontology-based probabilistic model.

2.3.4 Fuzzy Information Retrieval

One of the important features of the Boolean model is the possibility to use the con-
nectives, and, or, and not, which are not present in the vector space model or in
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the Probabilistic Model. Being able to use logical connectives gives users a more ad-
vanced query language, which more experienced users especially can benefit from. A
major problem, however, with the two-valued logic applied in the Boolean Model is
the inability to handle borderline cases. If an element is (very) close to the precisely
defined border, it will only be taken as evidence of one of the states.

Boolean logic operates with only two truth values, true and false. Fuzzy logic,
on the other hand, operates with the degree of something being true. A common
example is the set of tall men. When is a man tall? When he is taller than 1.8 meters
or perhaps two meters? Most people would agree that a man who is two meters tall is
tall, whereas a man who is 1.8 meters tall can be considered tall to a certain degree.
Following this intuitive notion, a document can be considered relevant to a query to
a certain degree.

Compared to the other models there is not a well established fuzzy model but
rather different applications of fuzzy sets in information retrieval (see e.g. Miyamoto
(1990),Kraft et al. (1999),Pasi (2008)). With respect to query languages for instance
fuzzy logic offers a soft interpretation of the Boolean connectives and thus query
languages that are more flexible and well suited for expressing imprecise user needs.
However, here the focus will be on fuzzy information retrieval using a fuzzy the-
saurus because it is of particular interest in the context of ontology-based information
retrieval. Since fuzzy logic is also central to chapter 8 on conceptual summaries the
following sections will briefly state the basics of fuzzy set theory based on Klir &
Yuan (1995).

The Fuzzy Membership Function

In Boolean logic, elements can be either members or non-members of a given set.
These sets are referred to as crisp sets. If X denotes the universe of discourse, then
the members of a crisp set, A, can be defined by a characteristic function, χA. This
characteristic function maps elements of X to the set {0,1} declaring their member-
ship or non-membership of A:

χA : X → {0, 1} (2.11)

This characteristic function is generalized in fuzzy logic by the membership func-
tion µA which for all elements in X denotes their degree of membership of the fuzzy
set A. The universal set is always a crisp set. The degree of membership can be
expressed by a real valued number in the interval [0,1]:

µA : X → [0, 1] (2.12)

where 1 denotes full membership, 0 denotes no membership and 0 < µA(x) < 1
denotes partial membership. Another notation of the membership function commonly
used is simply A where there is no distinction between the set and the membership
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function (Klir & Yuan 1995):

A : X → [0, 1] (2.13)

Similar to the characteristic function in classical set theory, the membership function
represents a given concept, e.g. the set of tall men. The membership function could
be designed in an infinite number of ways if it adheres to the fundamental properties
of the concept (Klir & Yuan 1995).

Cardinality, α− cut and Strong α− cut

Two important concepts in fuzzy logic are the α − cut and strong α − cut. Two
special crisp sets, αA and α+A, result from applying the α− cut and strong α− cut,
respectively:

αA = {x|µA(x) ≥ α} (α− cut)
α+A = {x|µA(x) > α} (strong α− cut)

(2.14)

That is, αA is the crisp set of all the elements in A having a degree of membership
equal to or above the threshold α ∈ [0, 1]. As a further restriction hereof, α+A is the
crisp set of all the elements in A having a membership strictly above the threshold
α ∈ [0, 1]. In the special case of α = 0, α+A is called the support of A. When α = 1,
αA is called the core of A. For sets having a finite support set, the elements in A can
be specified using the following notation, where ai is the degree of membership in A
of element xi:

A = a1/x1 + a2/x2 + . . . + an/xn =
n∑

i=1

ai/xi (2.15)

Scalar cardinality, or the sigma count as it is also referred to, is defined as:

|A| =
∑

x∈X

µA(x) (2.16)

The scalar cardinality is thus the sum of all the degrees of membership (the ai’s in
equation 2.15). Note the difference in the use of Σ here. In equation 2.15, Σ, denotes
an enumeration whereas in 2.16, Σ, denotes the actual sum of the membership values
of the elements.

Union, Intersection and Complement

The fuzzy generalizations of the Boolean intersection and union are the T-norms,
(T), and the T-conorms, (S). There are several possible ways of defining union and
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intersection that still follow the fundamental ideas about intersection and union (Klir
& Yuan 1995). The standard definition of intersection and union in fuzzy logic is:

µA∩B(x) = min(µA(x), µB(x)) (2.17)

µA∪B(x) = max(µA(x), µB(x)) (2.18)

Like union and intersection, the complement can be defined in various ways.
Though the standard complement is defined as:

µA(x) = 1− µA(x) (2.19)

Inclusion and Subsethood

Given the two fuzzy sets A and B, A is a subset of B if for all x:

µA(x) ≤ µB(x) (2.20)

This corresponds to our intuitive notion of inclusion, since for all elements, x, they
have a higher or equal degree of membership in B than their degree of membership
in A. However, sometimes there will be cases where 2.20 is violated for some x.
The degree of subset measures to what extend 2.20 is violated, i.e. to what degree
elements in X have a higher degree of membership in A than in B:

subsethood(A,B) =
1
|A|

(
|A| −

∑

x∈X

max[0, µA(x)− µB(x)]

)
(2.21)

Clearly, equation 2.21 sums to one if equation 2.20 is not violated (everything after∑
equals 0 and then only |A|/|A| is left).

Information Retrieval Using a Fuzzy Thesaurus

Here we will use the notation and example of fuzzy information retrieval using a the-
saurus given in Klir & Yuan (1995). Similar presentations can be found in Miyamoto
(1990), and in Baeza-Yates & Ribeiro-Neto (1999).

There are two important relations in fuzzy information retrieval using a fuzzy
thesaurus. First there is the indexing relation and second there is the fuzzy thesaurus.

Assuming we have a corpus of documents, D, and a vocabulary of terms, T , the
relevance of index terms to individual documents can be expressed by a binary fuzzy
indexing relation, I , as

I : T ×D → [0, 1] (2.22)

The membership value I(ti, dj) specifies for each t ∈ T and each d ∈ D the degree
to which term ti describes document dj . The degree could for instance be set to the
tfidf weight described previously in this chapter.
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The fuzzy thesaurus is a reflexive fuzzy relation O defined on T 2. For each pair
of index terms 〈ti, tk〉 ∈ T 2, O(ti, tk) expresses the degree of association between ti
and tk:

O : T × T → [0, 1] (2.23)

The degree of association can be asserted in numerous ways, and this topic will be
treated in details in chapters to come. For now let us presume this degree of associa-
tion is just given by the thesaurus.

Given the fuzzy indexing relation and the fuzzy thesaurus a model for a thesaurus
based fuzzy information retrieval can now be expressed in the following manner.
A query Q can be expressed as any fuzzy subset of the set of terms T . By using
the fuzzy thesaurus the set of query terms can be expanded with associated terms.
The expanded query E can be obtained by composing the query Q with the fuzzy
thesaurus O:

Q ◦O = E, (2.24)

where ◦ can be understood as the max-min composition, so that:

E(tk) = max
ti∈T

[min(Q(ti), O(ti, tk))] (2.25)

forall tk in T.The set of retrieved documents can now be expressed as the fuzzy result
set R defined on D. R is obtained by composing the expanded query E with the
relevance relation I:

E ◦ I = R, (2.26)

where ◦ again can be understood as the max-min composition.
As an illustration of the retrieval process consider the following simple example

where the query only contains the three index terms:

t1 = fuzzy logic

t2 = fuzzy relation equation

t3 = fuzzy modus ponens

Thus the support 0+Q = {t1, t2, t3} is the fuzzy set expressing the query. Let the
vector representation of Q be

t1 t2 t3
Q = [ 1 .4 1 ]

Assume also that the thesaurus O looks like the following matrix restricted to the
support of Q and nonzero columns:

t1 t2 t3 t4 t5 t6
t1

O = t2
t3




1 .2 1 1 .5 1
.2 1 .1 .7 .9 0
1 .4 1 .9 .3 1




24



where the columns express the association to t1, t2, t3 of the terms t1, t2, . . . , t6 with:

t4 = approximate reasoning

t5 = max-min composition

t6 = fuzzy implication

By equation 2.25 the expanded query E can be expressed as a composition Q and
O. With Q and O as given above this results in an E which in vector form can be
expressed as:

E = [ 1 .4 1 1 .5 1]

Assume now that the relevant part of the relevance relation I , that is, I restricted to
the support of E and nonzero columns is given by the matrix:

I =

d1 d2 d3 d4 d5 d6 d7 d8 d9 d10

t1
t2
t3
t4
t5
t6




.2 0 1 0 0 0 1 0 0 0
1 0 0 .3 0 .4 0 0 1 0
0 0 .8 0 .4 0 1 0 0 0
0 1 0 0 0 0 0 .9 .7 .5
1 0 .5 0 0 .6 0 0 0 0
0 1 0 0 .2 0 1 0 0 .5




In other words d1, . . . , d10 are the only documents related to the terms t1, . . . , t6.
The fuzzy result set R can now be obtained by composing E and I with results in:

d1 d2 d3 d4 d5 d6 d7 d8 d9 d10

R = [ .5 1 1 .3 .4 .5 1 .9 .7 .5 ]

The result for d2 is at first surprising given that the document does not contain
any of the query terms t1, t2, t3. However, document d2 contains the terms t4 (ap-
proximate reasoning), and t6 (fuzzy implication) which by thesaurus is associated
with term t1 (fuzzy logic) to a degree of 1.

2.4 Ontology-Based Information Retrieval

After having set the overall scene for information retrieval we now turn to ontology-
based information retrieval as it will be treated in this dissertation. The introduction
in the first chapter sought to give an intuitive understanding of the merits of ontology-
based information retrieval. The motivation behind ontology-based information re-
trieval is that natural language is ambiguous. The example in the introduction “kids
arts dough oven” was an illustration hereof. Jurafsky & Martin (2000) gives with the
sentence “I made her duck” another example. This sentence could at least have the
following five different meanings:
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1. I cooked waterfowl for her

2. I cooked waterfowl belonging to her

3. I created the (plaster?) duck she owns

4. I caused her to quickly lower her head or body

5. I waved my magic wand and turned her into undifferentiated waterfowl

The different meanings are caused by different sources of ambiguity of natural
language. First duck and her are syntactically ambiguous. Duck can be both a noun
and a verb and her can be a dative pronoun or a possessive pronoun. Make is also
syntactically ambiguous. It can be transitive, i.e., taking a single direct object as in
(2); or it can be ditransitive taking two objects (5), meaning that the first object her
got made into the second object i.e. the duck. Also make can take a direct object and
a verb as in (4), meaning that the object her got caused to perform the action duck.
Finally make is also semantically ambiguous, that is, it can mean to cook something
or to create something. In short, natural language is highly ambiguous.

Research in ontology-based information retrieval can be motivated by continuing
on Jurafsky & Martin’s example. Try to compare the sentences “I made her duck”
and “she cooked me drake”. From a lexical point of view there is no match between
the sentences: they do not have a single word in common. However, from a seman-
tic point of view the two sentences are highly related. Ontologies offers here the
possibility of moving from lexical matching to conceptual matching of queries and
documents. What an ontology exactly is will be treated in the next chapter, so let us
for now suffice with a general notion of an ontology as some sort of structure that
relates different concepts. For instance, if we know that drake and duck are related
with an “is a” relation or “is a kind of” relation, then we can chose to expand the
query “I made her duck” with drake or vice versa. If our information retrieval model
allows us to use weights in the index, we can even add drake to the index to a degree
that reflects how similar we perceive duck and drake to be. In the same manner we
would be able to add foie gras and confit to the index.

Given the many sources of ambiguity in natural language, and in expressing con-
ceptual knowledge in itself, ontology-based information retrieval system design is of
course a difficult task. The focus in this dissertation will be on a subset of the im-
portant challenges involved and their possible solutions. Chapter 5 differs here from
the other three chapters in the contribution part in the sense that it is the only chapter
focused on content analysis of natural language. More precisely it will demonstrate
an approach to extract semantic relations between concepts. In all the other chapters
we will presume the meaning of the documents has already been extracted through
some content analysis. Chapter 6 will look at how to measure the similarity between
concepts (e.g. between duck and drake). Chapter 7 will present a previously unpub-
lished model of how to determine what the weights of the expansion could be in the
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vector space model. Finally, chapter 8 will present a way of summarizing the results
of a query based on the ontology. Common for all the contributions are though that
they can be perceived as “black box” from the users perspective. That is, the user
is not required to have any knowledge of ontologies or being supplied with any kind
of ontology-based query language or query assistance tools. Neither is the presented
work in opposition to such tools or knowledge.

At this point it is important to note that ontology-based information retrieval is
not a single framework, and there is no such thing as such thing as the ontology-based
information retrieval model. Also there is not a common agreement of what model
is the best basis of ontology-based information retrieval. Lee et al. (1993), Mihal-
cea & Moldovan (2000), Zhou et al. (2006) have for instance adopted the boolean
model, while others like Gonzalo et al. (1998), Vallet et al. (2005), Nagypal (2005),
Hliaoutakis et al. (2006), Li & Ramani (2007) have adopted the vector space model.
This dissertation will focus on how to strengthen ontology-based information re-
trieval by including corpus statistics.

2.5 Discussion and Summary

The primary purpose of this chapter and the next chapter on ontologies is to establish
a framework upon which the succeeding chapters on the various options for using
statistics in ontology-based information retrieval can be built. This chapter has de-
scribed the important processes involved in information retrieval. Different retrieval
models have been presented that each differs in the way they represent documents
and queries, and how the matching of the two is performed. Central to each of the
models as they are presented here, however, is that they all index content at the lexical
level of keywords. In other words, we index and match documents and queries on a
lexical level by using a “bag-of-words” approach, i.e. words are just considered as a
bag with no internal syntactic or semantic ordering.

The motivation for pursuing the path of ontology-based information retrieval is
naturally that ignoring semantics or world knowledge in an information retrieval sys-
tem might lead to suboptimal search results. If the user types the query “accomplish-
ment Hubble telescope” based on an information need of “Identify positive accom-
plishments of the Hubble telescope since it was launched in 1991”, many relevant
documents might be ranked very low, or not even be found. For instance, NASA’s
own website listing “Hubble’s Top Achievements” (NASA 2007) only matches on
the single keyword Hubble. The same goes for documents with attainment, (amaz-
ing) results, etc. In other words, a simple keyword based approach is unable to han-
dle paraphrases. Here, ontology-based information retrieval offers the possibility of
indexing and matching on a conceptual level where “top achievements” and “posi-
tive results” become highly related as opposed to the lexical level, where they have
nothing in common. In general, ontology-based information retrieval is a way of
introducing semantics to the search process.
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With reference to figure 2.2, shown on page 11, this thesis will present an ontology-
based perspective of all the processes: System vocabulary (chapter 3), content ex-
traction (chapter 4 and 5), indexing (chapter 7), matching (chapter 6), and, finally,
presentation (chapter 8).
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Chapter 3

Ontologies

Ontology in its classical sense refers to a philosophical discipline stretching back
to Parmenides and Aristotle that concerns the nature and the organization of reality,
i.e. what things are (Gómez-Pérez et al. 2004). In the discipline of knowledge engi-
neering, which is our concern here, an ontology refers to an organization of a shared
conceptualization, i.e. a knowledge model in the form of concepts and their relations
as they are shared by a community.1 A concept is a general notion of something or an
idea of something formed by a combination of its characteristics, e.g. a car or legal
action. Relations or roles are significant semantic associations between concepts, e.g.
in the sentence “The chair is in the room”, the chair is located in the room, or e.g.
in the sentence “Five percent of all accidents are due to drunk driving”, the accidents
are caused by drunk driving.

Ontologies are typically visualized as a taxonomic ordering, an ISA hierarchy in
the form of a directed graph where nodes resemble concepts and edges between nodes
resemble relations. An excerpt from WordNet (Fellbaum 1998b), a general linguistic
ontology illustrating this hierarchy, is depicted in figure 3.1

self-propelled vehicle

motor vehicle locomotive

motorcycle truck car

Figure 3.1: An excerpt of WordNet showing the taxonomic ordering of concepts in the form
of a directed graph.

Ontologies can vary greatly in their degree of generality. The core or upper level

1Following Guarino & Giaretta’s 1995 proposal, the philosophical discipline is denoted by a capital
O versus a lower case o for ontology as a model of knowledge.
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ontology of SIMPLE used in our work on semantic analysis presented in chapter 5
only includes abstract concepts like natural substance and state. WordNet, on the
other hand, distinguishes, for example, between bass as an adult male singer with the
lowest voice and bass as the lowest adult male singing voice. Ontologies can also
vary greatly in their degree of formality. Both SIMPLE and WordNet are lightweight
ontologies with a limited or no degree of logic formalism. DOLCE, on the other
hand, is described in first order logic and implemented in description logic. Each of
these three ontologies will be presented in section 3.2 in greater detail.

The primary purpose of this chapter is to introduce the notion of ontologies, i.e.
what an ontology is, what its main components are and how they can be represented.
Similar to the previous chapter, this chapter serves as a foundation for the succeeding
chapters, which attempt to demonstrate how ontologies can be applied in information
retrieval.

3.1 What Is An Ontology?

Studer et al. (1998) provide one of several existing loose definitions of what consti-
tutes an ontology:

An ontology is a formal, explicit specification of a shared conceptual-
ization. A “conceptualization” refers to an abstract model of some phe-
nomenon in the world by having identified the relevant concepts of that
phenomenon. “Explicit” means that the type of concepts used, and the
constraints on their use are explicitly defined. For example, in medical
domains, the concepts are diseases and symptoms, the relations between
them are causal and a constraint is that a disease cannot cause itself.
“Formal” refers to the fact that the ontology should be machine read-
able, which excludes natural language. “Shared” reflects the notion that
an ontology captures consensual knowledge, that is, it is not private to
some individual, but accepted by a group.

The different definitions of ontology vary mostly regarding how much they em-
phasize the formal aspects. Lassila & McGuinness (2001) consider a spectrum of
interpretations of what an ontology is as depicted in figure 3.2, where the slanted line
separates the strictly hierarchical from the non-strictly hierarchical. The direction of
the horizontal line marks both an increasing degree of formality and the richness of
the internal structure of the ontology. The terms heavyweight and lightweight ontolo-
gies are often used to describe formal ontologies with rich internal structures versus
less formal and structurally limited ontologies.

The distinction between lightweight and heavyweight ontologies is thus by Las-
sila & McGuinness (2001) based on the formality of the ISA relation. Let us assume
to concepts A and B where A subsumes B. In informal ISA hierarchies an instance
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Figure 3.2: A visualization of the spectrum of formality in Lassila & McGuinness’ (2001)
interpretation of the word ontology. Ontologies on the left side of the spectrum are typically
labeled lightweight and the ontologies on the right side of the spectrum are typically labeled
heavyweight.

of the concept B is not necessarily a member of A. In formal ISA hierarchies if an
instance of B is necessarily an instance of A as well.

3.1.1 Types of ontologies

Besides having a rich internal structure, ontologies can also be categorized according
to their subject of conceptualization (Gómez-Pérez et al. 2004). Some ontologies
model highly specific tasks, while others are abstract philosophical models.

General or common ontologies model common sense and are reusable across do-
mains. WordNet and Cyc (Lenat 1995) are probably the most well known on-
tologies within this category.

Application ontologies model knowledge at the application level, e.g. the devel-
opment and maintenance of a “skill management” ontology for Swiss Life,
an insurance company (Lau & Sure 2002). The upper parts of an application
ontology are usually connected to a more general domain ontology.

Domain ontologies model the knowledge within a given domain such as law or
medicine. Like application ontologies, they are generally not reusable out-
side their scope, though they can overlap with other domain ontologies. The
Unified Medical Language System (U.S. National Library of Medicine 2007),
UMLS, and the Gene Ontology (Consortium 2000) are good examples of do-
main ontologies. The upper parts of a domain ontology are usually connected
to a top or upper-level ontology.

Top or upper-level ontologies model the most generic concepts, such as how ab-
stract entities are connected to the concept “Thing” (Sowa 2000). Despite their
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very general nature, several different proposals for top ontologies exist, e.g.
the SIMPLE core ontology described later in this chapter.

A final and important group of ontologies is linguistic ontologies. They differ
from conceptual ontologies like Cyc in that they model word or lexical knowledge
rather than world knowledge or encyclopedic knowledge. Thus, linguistic ontolo-
gies only contain concepts that are used in natural language, and they usually do not
exhibit the same richness in relations generally found in non-linguistic ontologies.
However, since natural language is closely connected to our conceptual model or the
encyclopedic knowledge of a given phenomenon, linguistic ontologies are often used
as a surrogate for other ontologies.

3.1.2 Lexical Appearance

The distinction between linguistic and more formal ontologies is tied to the fact that
there is a difference between word forms and meaning. Different authors may use
different terminology, but the distinction between words and meanings remains the
same; words are used to denote a deeper semantic or conceptual meaning. Words in
the sense of references to a concept are sometimes also termed signs for concepts or
the surface form of a word. Table 3.1 illustrates the different levels of meaning using
the noun phrase (NP) thrombosis in the heart.

Surface Form thrombosis in the heart
Syntactic Structure head of first NP preposition head of second NP
Ontological Level disease location body part

Table 3.1: The different layers of meaning in the noun phrase “thrombosis in the heart”.

In ontology-based information retrieval noun phrases are vital because nouns de-
note the concepts that form the backbone of the ontology. To formally characterize
the relationship between the ontological level and the word level, let us first define
a minimal ontology, Omin, as a partially ordered set (poset) consisting of a set of
concepts, C, and the conceptual inclusion relationship, ISA, as the partial ordering,
≤, of these concepts:

Omin = 〈C,≤〉 (3.1)

In other words, a minimal ontology constitutes a hierarchy of concepts ordered by
inclusion. A prerequisite for doing ontology-based information retrieval is the ability
to establish a relation between the word level and the concepts in the ontology, Omin.
To meet this end, we define the relation as lex ⊂ W × C, where W is the set of
surface forms of the concepts in C:

lex = (W,C) (3.2)
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For example, in the following list:

lex(pupil, center of the eye)
lex(pupil, student)
lex(car, car)
lex(automobile, car)

As Jensen & Nilsson (2003) notes, lex is not a “true” lexical relation since it does
not relate lexical units but rather relates a lexical unit and a non linguistic object,
namely a concept. In order to establish the relation between the surface form of a
word and the underlying concept, identifying the sense of the word given the context
of the word must be possible. To disambiguate between the various possible senses is
by no means simple. WordNet, for instance, has more than 15,000 polysemous nouns
(WordNet 3.0) while more than 250 of these nouns have at least five different senses,
some of which are also high frequency nouns like, e.g. break, pass and counter.

As a result, though the relation between word and concepts, in many cases, can
be solved by simply using a lexicon, for a large fraction of the words, some kind
of automatic word sense disambiguation is required. There are different approaches
to handling word sense disambiguation and Ide & Véronis (1998) provide a solid
overview of the topic.

3.2 Representing Ontologies

Different languages can be used to represent ontological knowledge, e.g. conceptual
graphs (Sowa 2000), first order logic, description logic (Masolo et al. 2003, Nardi &
Brachman 2002) and lattice algebra (Nilsson 2001). The lattice algebraic language
ONTOLOG is presented here because it includes a generative constructor that is useful
in the indexing process described in chapter 4, and it also supports a view on the
ontology as a directed graph, which is natural when focusing on semantic similarity
measures, as is the case in chapter 6. Description logic will also be presented in a very
condensed form since, in different variations, it constitutes the language backbone
within the semantic web community.

3.2.1 ONTOLOG

ONTOLOG (Nilsson 2001) is a lattice algebraic ontology language used in the ONTO-
QUERY project which extends the simple definition of an ontology given in section
3.1.2. The presentation of ONTOLOG here is based on Nilsson (2001). However,
Partee et al. (1990) and Brink et al. (1994) are used to explain details of lattice alge-
bra and the Pierce product not made explicit in Nilsson (2001). O denotes the actual
ontology and O denotes the algebra for expressing and manipulating the ontology.

In equation 3.1, a minimal ontology was defined as the partially ordered set
Omin = 〈C,≤〉. In an arbitrary poset, C, c is an upper bound of elements in A,
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A ⊆ C, if for all a ∈ A, a ≤ c. If for all the upper bounds b of A, c is the smallest
element and c ≤ b, then c is the supremum or least upper bound, lub(A) = c (Partee
et al. 1990). Let the upper bounds UC of a set A, with A ⊆ C, be defined as:

UC(A) = {C|c ∈ C,∀a ∈ A : a ≤ c} (3.3)

The least upper bound, lubC , of A can then be defined as:

lubC(A) = {c|c ∈ UC(A),¬∃b ∈ C : b ≤ c} (3.4)

The infimum or greatest lower bound, glb, can be defined in the same manner. Least
upper bounds are especially interesting from an ontological perspective because they
are the most specific concepts that subsume all the concepts for which they are the
upper bound. Least upper bounds play a central part in later chapters, especially in
the last chapter on conceptual summaries where a fuzzyfied notion of least upper
bounds is also introduced.

In ONTOLOG, the conceptual sum of two concepts, a + b, is defined as their least
upper bound, a + b = lub({a, b}), which corresponds to the lattice algebraic meet
operator, a∨b. In addition, the conceptual product of two concepts, a×b, is defined as
their greatest lower bound, a×b = glb({a, b}), corresponding to the lattice algebraic
join operator, a ∧ b. A lattice is a special kind of poset characterized by a unique
least upper bound and greatest lower bound for all element pairs, a, b ∈ C. With the
adoption of the empty null concept or bottom concept, ⊥, and the top concept, >,
as the identity elements, we can express and manipulate an ontology with the lattice
algebra Ola:

Ola = 〈C,≤,+,×,⊥,>〉 (3.5)

The basic reasoning in the ontology includes that if the product of two concepts is
not explicitly stated, then it is considered to be null. The lattice algebraic definition
enables us to represent and construct new concepts in a compact form as, for example,
in the following:

breakfast + lunch = meal
breakfast× lunch = brunch
cat× dog = null

Another advantage regarding lattices is that they can naturally be interpreted and
visualized in a graphical form. This supports an intuitive notion of what is general
and “upper” in the ontology and what is specific and “lower” in the ontology.

meal

breakfast

88pppppppppp
lunch

eeKKKKKKKKKK

brunch

ffNNNNNNNNNN
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The lattice algebra, Ola, defined above constitutes the language for expressing
a skeleton ontology that positions all the atomic or primitive concepts in the lattice.
This lattice algebraic framework is in ONTOLOG enriched by adding a supplementary
set of semantic relations, R, and an algebra for relations interacting with sets, a so
called Boolean module (Brink et al. 1994). A closer look at the set of semantic rela-
tions will be presented in the next two chapters, but an open set of possible semantic
relations is listed in table 3.2.

Abbreviation Description
TMP Temporal anchoring, duration, inception etc.
LOC Place, position
PRP Purpose, function
WRT With respect to
CHR Characteristic (Property ascription)
CUM Cum (i.e. with accompanying)
BMO Means to end, instrument
CAU Inanimate force/actor
CBY Inverse CAU
POF Part of whole, member of set
CMP Inverse POF, whole constituted of parts
AGT Animate being acting intentionally
PNT Affected entity, effected entity
SRC Source, origin, point of departure
RST Result of act or process
DST Destination of a moving process
? ?

Table 3.2: The open set of relations proposed by Nilsson (2001).

A Boolean module is a two-sorted algebra, which with the so called Pierce prod-
uct, “:”, can be used to combine an ontology, O, with the set of relations, R, by the
mapping O ×R → O written as r : c (Brink et al. 1994). The Pierce product is used
to form compound concepts using the conceptual product:

c1 × (r : c2) (3.6)

As, e.g. “black dog”:

dog × (characterized by : black), (3.7)

which should be interpreted as the product of the concept dog and the concept characterized by black.
This ability to construct, in principle, an infinite amount of compound concepts from
the initial set of concepts and the set of relations makes the ontology generative. The
definition of our conceptual algebra thus becomes the Boolean module O:

O = 〈C,≤, +,×,⊥,>, R, :〉 (3.8)
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with C being the set of concepts, ≤ the ordering relation, + the conceptual sum,
× the conceptual product, ⊥ the bottom concept, > the top concept, R the set of
relations, and finally “:” as the Pierce operator.

With ONTOLOG as a conceptual algebra, the constructed compound concept can
be interpreted as, and are conventionally written in ONTOLOG, the feature structure
of the general form:

a[r1 : b1, ..., rn : bn] (3.9)

Both nesting and multiple attributions can thus be described. For instance, the
concept “dark blue screen” can be described as screen[CHR : blue[CHR : dark]], and
the concept “big blue screen” can be described as screen[CHR : blue[CHR : big]].

3.2.2 Description logics

It can be argued that all formalisms for knowledge representation can be seen as a
fragment of first order logic, and in this naive sense, all knowledge might as well be
modeled in first order logic (Davis et al. 1993). Central to the research on descrip-
tion logic, however, is that only fragments of first order logic are needed for most
knowledge-based systems, and that there is a tradeoff between the expressiveness of
the language and the tractability of reasoning. Research has focused on how differ-
ent concept-forming constructs or constructors influence tractability, i.e. to receive
an answer in finite time does not necessarily imply that the answer was received in
reasonable time (Baader & Nutt 2003). More specifically, inference with respect to
subsumption has played a vital role, because ISA relationships are not specified by a
knowledge engineer as in, e.g. semantic networks, but rather they are inferred from
the definition of concepts.

In keeping with this fundamental aspect of description logic, the various language
variants are defined and named by the set of constructors that they offer. Table 3.3
gives an overview of the different languages. Based on the application, and a thereby
implied need for constructors, a sufficiently expressive language with the smallest
possible complexity can be chosen.

In description logic the fundamental building blocks are atomic concepts, roles
(relations), and instances. Atomic concepts are defined using symbolic names for
more complex description. For instance, using the constructors of the most simple
language, FL0, in table 3.3 as an example the concept Mother can be defined as:

Mother ≡ Woman u ∀hasChild.Person

which includes intersection, the concepts Woman and Person, the role hasChild and
the value restriction ∀ on the role hasChild. Thus mother is a person having a child
and a woman. More complex concept expressions can also be constructed, e.g. “a
woman having at most two daughters”:

WomanMax2Daughters = Womanu(6 2(hasChilduhasFemaleRelative))
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Construct Syntax Language
Concept A

FL0

FL−
AL

S

Role name R
Intersection CuD
Value restriction ∀R.C
Limited existential quantification ∃R
Top or universal >
Bottom ⊥
Atomic negation ¬ A
Negation ¬C C
Union CtD U
Existential restriction ∃R.C E
Number restrictions (≥ n R) (≤ n R) N
Nominals {a1 . . .an} O
Role hierarchy R⊆S H
Inverse role R− H
Qualified number restriction (≥ n R.C) (≤ n R.C) Q

Table 3.3: The various description logic languages (Gómez-Pérez et al. 2004).

which illustrates how the number restrictions on roles can be used. A set of defi-
nitions like the one above Mother and WomanMax2Daughters constitutes the Tbox
(terminological box) of the knowledge base. The Tbox introduces the terminological
knowledge, i.e. the vocabulary that describes the domain. In addition to the Tbox,
a description logic knowledge base also contains an Abox (assertional box), which
contains assertions about the world, e.g.:

Mother(Jane)
WomanMax2Daughters(Mary)

Based on this Abox, one could infer that Mary is also a Mother if the TBox con-
tains the necessary definitions, and more generally, that Mother is the subsumer of
WomanMax2Daughters.

3.2.3 On the choice of formalism

The expressive power of ONTOLOG as a lattice algebra extended with the Pierce
product is limited compared to many of the description logic languages in that it
does not include, e.g. quantifiers or negation. However, as noted, given the trade-
off between expressiveness and tractability, the least expressive language, given the
application at hand, should be chosen.

The basic assumption behind the work presented in this dissertation is that a
vaguer notion of conceptual nearness or conceptual similarity, rather than inference
of conceptual subsumption, can be successfully applied in information retrieval. This
notion of conceptual nearness centers around viewing the ontology as a graph. This
graph structure can naturally be inferred in description logic from the definitions of
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concepts but is inherent to the lattice structure of the conceptual algebra defined by
ONTOLOG. As it shall become evident, especially in chapter 6 on semantic similarity,
the logical reasoning power behind the formalism used to represent the ontology is to
a certain extent ignored in information retrieval because we are not interested solely
in strict subsumption. For instance, a sibling concept can be of higher relevance
than a subsumed concept far down a chain of subsumption relations. In general, if
we perceive the ontology as a graph structure, we can chose to interpret nearness
in the graph as an indicator of semantic relatedness. This perception of relatedness
or similarity is in fact adopted in all the semantic similarity measures described in
chapter 6. Thus, the focus in information retrieval can be shifted towards viewing the
ontology as a graph structure which renders the reasoning power of the formalism
of little importance. The graph structure is more inherent to the lattice algebraic
framework used in ONTOLOG than in description logic.

Another difference between the description logics and the lattice algebra is the in-
tended use or the spirit of the representation (Davis et al. 1993). In description logics
the knowledge base is divided in a Tbox and an Abox. The Tbox contains descrip-
tions of concepts and relations ranging from simple ones like Mother to more com-
plex concept definitions like WomanMax2Daughters. Posing a query that in some
form specified the notion of WomanMax2Daughters to a system, one would expect
the result set to be all women having at most two daughters and nothing else. In
chapter 2, this kind of retrieval is characterized as data retrieval as performed in, e.g.
relation database systems. The spirit of description logic can thus be argued to be
more akin to the ideas behind data retrieval than to the ideas and assumptions of un-
certainty of information made in information retrieval, for instance, regarding partial
matching. In other words, the spirit of description logics revolves more around build-
ing a knowledge base of precise facts than a knowledge base of vague and uncertain
information. Because of this, a lattice algebraic framework seems more appropriate
for the task at hand than description logic, though keeping in mind that a description
logic language can also be used.

3.3 Resources

This section presents three different ontologies: WordNet, SIMPLE, and DOLCE.
The experiments presented in later chapters involved WordNet and SIMPLE. Word-
Net was used to illustrate the suggested methodology on how to perform conceptual
summaries as presented in chapter 8. SIMPLE was used in the experiments on the
ontology-based disambiguation of semantic relations presented in chapter 5.

The three ontologies are presented in order of increasing level of formality. SIM-
PLE includes a much wider set of relations and a more strict notion of what con-
stitutes word meaning than WordNet does, but as it is the case with WordNet it is
a lexical ontology, and thus concepts and relations are modeled with a lexical off-
set. DOLCE is on the other hand a formal or heavy weight ontology which makes
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formal distinctions that SIMPLE and WordNet does not. For instance, DOLCE dis-
tinct between endurants and perdurants and has also a much more formal notion of
the instance-of relation. The purpose of presenting DOLCE here in conjunction with
WordNet and SIMPLE is thus to give the reader examples of ontologies on the spec-
trum of level of formality presented by Lassila & McGuinness (2001) shown in figure
3.2 on page 31.

3.3.1 WordNet

WordNet is a large lexical database for English created at Princeton University by
Miller and colleges (Fellbaum 1998b). The basic unit in WordNet is words, though
it does, to a certain extent, contain idiomatic phrases, collocations, phrasal verbs and
compounds. The four open word classes (nouns, verbs, adjectives and adverbs) are
organized into four large separate semantic nets. In linguistics, an open word class is a
word class where new items are added on a regular basis, through e.g. compounding,
derivation, coining etc. A closed word class is a word class to which no new items are
normally added e.g. determiners, conjunctions, and pronouns. In WordNet nouns are
by far the most numerous with 117,798 noun word forms organized in 82,115 synsets
(version 3.0). The synsets are semantically related to each other by e.g. hypernymy
and meronymy (see below) thereby forming a semantic net of nouns.

A synset is a set of synonyms containing words which are interchangeable in
some contexts. As noted previously, there is a difference between modeling concepts
or world knowledge in an ontology and modeling word knowledge in a linguistic on-
tology. However, it is convenient to think of synsets as a form of lexicalized concepts,
i.e. words that are used to denote a given concept. Many synsets are accompanied
by a definition, gloss, explaining the notion behind the synset. The definitions are in-
tended as an aid in distinguishing closely related synsets and as an aid for explaining
uncommon concepts.

There are seven different kinds of relations between objects in WordNet, and
the most fundamental from a linguistic point of view is synonymy, which glues to-
gether the synsets as the basic building blocks of WordNet. Synonymy is a symmetric
lexical relation relating a single lexical unit to another lexical unit that can then be
combined in synsets, e.g. {dog,domestic dog,Canis familiaris}. However, it is the
other relations that link the synsets together that make WordNet interesting for many
applications:

Hypernymy and its inverse, hyponymy, are the semantic generalization/ specializa-
tion relation that connects noun synsets in a tree-like structure that enables
WordNet to be used, in some contexts, as an ontology, e.g. mustang ISA pony
ISA horse. Hypernymy, also sometimes denoted as inclusion or subsumption,
is a transitive asymmetric relation.

Meronymy and its inverse, holonymy, are a semantic part-whole/whole-part relation
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connecting noun synsets. In principle, the meronymy relation can be used to
form tree-like structures similar to hyponymy, though the network tends to be
more tangled. Like hyponymy, meronymy is a transitive asymmetric relation,
though its transitivity from a linguistic point of view is somewhat limited. For
instance, it is reasonable to say the handle is part of the door and the door is
part of the house, but saying *the handle is part of the house sounds odd.

Entailment is when one verb entails another, e.g. snoring entails sleeping. En-
tailment is a transitive asymmetric semantic relation, e.g. sleeping does not
necessarily entail snoring.

Troponymy is the verb synset equivalent of hypernymy and is a special kind of
entailment where every troponym, v1, of a more general verb, v2, also entails
v2 ((Fellbaum 1998a). For instance, march is a troponym of walk, but marching
also entails walking.

Antonymy is a symmetric lexical relation that denotes the opposition of meaning,
for example, the nouns victory <> defeat or the adjectives fast <> slow.
Antonymy is clearly a relation between word forms and not concepts, since
even though fast and prompt are similar, the latter is not antonymous to slow.
Since antonymy is an important feature of adjectives, adjectives in WordNet
are organized by a similarity relation forming related sets of adjectives with
similar meanings. Adjectives in the different sets can then be related by the
antonymy relation, so slow can be reached from prompt via fast.

Similarity is used in WordNet to link adjectives with similar meanings as noted
under antonymy. In WordNet, similarity is a symmetric lexical relation, but
in research on semantic similarity measures, the term similarity is most often
used to denote a semantic relation between concepts connected by hypernymy
and hyponymy. Here, similarity is a transitive relation that can be viewed as
either symmetric or asymmetric. Chapter 6 covers this kind of similarity.

The relations used in WordNet are generalizations of a more fine-grained set of
relations. The hypernymy relation in WordNet covers, e.g. both a formal and a telic
hypernymy relation. For a fuller discussion of the different meronymy and hyper-
nymy relations at work, see e.g. Miller (1998).

3.3.2 SIMPLE

The SIMPLE project was a research effort intended to create a semantic lexicon for
twelve European languages, including Danish (Lenci, Bel, Busa, Calzolari, Gola,
Monachini, Ogonowski, Peters, Peters, Ruimy, Villegas & Zampolli 2000, Lenci,
Busam, Ruimy, Gola, Monachini, Calzolari & Zampolli 2000, Pedersen 1999). An
important research objective of the project was to make the lexicons corpus based.

40



The SIMPLE project can be seen as an extension of the PAROLE project since the
PAROLE corpora was used in the creation of the SIMPLE lexicons (Pedersen 1999,
Braasch et al. 1998).

The project builds on Pustejovsky’s (1991, 1995) work on generative lexicons
where he introduces the notion of generative lexicons as opposed to enumerative lex-
icons. The central idea is that rather than enumerating all possible lexemes and their
meaning, the meaning of lexemes is represented by their relations to other lexemes,
i.e. by their inheritance structure. The perspective is thus one of compositionality
in the sense that large structures can be described by their smaller components. The
relational structure of a word is denoted as its qualia or qualia structure, and qualia
can be thought of as a set of properties or events that explains what a word means
(Pustejovsky 1995). The motivation for introducing a generative lexicon is, from
Pustejovsky’s perspective, to be able to account for the creative use of words and the
permeability of word senses. Permeability meaning that word senses are not atomic
but tend to overlap.

Based on Pustejovsky’s ideas 1991, a word sense in SIMPLE corresponds to a
semantic type that bears a cluster of semantic information (Pedersen 1999). This
information can be in the form of a simple type or a unified type that is related to
other semantic types. In order to describe the complex types, Pustejovsky’s qualia
structure is used, thereby achieving a richer structure than the one obtained using a
one-dimensional subsumption hierarchy. Using the example of a puzzle, the qualia
structure is composed of (Pedersen 1999):

• The formal role, which provides information about the positioning of the se-
mantic type by its hypernymy relations to other semantic types, e.g. a puzzle
is a kind of game.

• The constitutive role, which expresses a wide array of semantic relations, all
describing the internal structure of the semantic types, e.g. wooden or card-
board pieces are part of a puzzle.

• The telic role, which describes the typical function of a semantic type, e.g. a
puzzle is used for assembling.

• The agentive role, which concerns the origin of the semantic type primarily
concerned with the origin of an entity, e.g. a puzzle is produced.

The top level above the different language specific lexicons is the SIMPLE Core
Ontology. There are 151 different semantic types contained in the top ontology and
formal, constitutive, telic and agentive are immediately under the top. Only the Core
Ontology has been used for the experiments described in chapter 5.
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3.3.3 DOLCE

The Descriptive Ontology for Linguistic and Cognitive Engineering (DOLCE) on-
tology was created in the WonderWeb project that came to a close in 2004 (Masolo
et al. 2003). One of the main goals of the WonderWeb project was to explicate the
ontological choices being made when constructing ontologies and not to create a sin-
gle monolithic top-level ontology. The reason for including this field of work in this
chapter is to illustrate some of the challenges when moving from a lightweight to a
heavyweight ontology. In addition, DOLCE has been used in Gangemi et al. (2003)
to examine the ontological choices made in the creation of WordNet. Several of the
issues arising from Gangemi et al.’s critique have, however, later been corrected in
WordNet.

An important distinction in DOLCE is between universals and particulars. A
universal is an entity or concept that has instances, e.g. car, whereas particulars
are entities that cannot have instances, e.g. my car. In other words, particulars are
instances of universals but universals can have other universals as instances, e.g. car
is an instance of type in DOLCE. In the construction of WordNet, this distinction has
not been drawn so the synsets contain both universals and particulars and there are
several inconsistencies from a formal ontological viewpoint (Gangemi et al. 2003).

Another distinction drawn is between endurants and perdurants, which are some-
times also referred to as continuants and occurents. Endurants and perdurants can be
distinguished by their behavior in time, where endurants are wholly present at any
point in time and perdurants are only partially present at any point in time. To sim-
plify, endurants are objects, e.g. President Bush, a piece of wood and Copenhagen,
whereas perdurants are events, e.g. life, running and youth. Endurants and perdu-
rants have a different unfolding in time and space since endurants are easy to place
in space but are placed in time according to the perdurants they participate in. On
the other hand, perdurants are easy to place in time but they can only be placed in
space according to their participating endurants. For a discussion of endurants and
perdurants, see e.g. Bittner et al. (2004) and Grenon & Smith (2004).

DOLCE is an ontology of particulars in the sense that it consists of related uni-
versals modeling a domain of particulars. As the words linguistic and cognitive in the
name DOLCE indicate, it is not an attempt to model the intrinsic nature of the world,
but rather as the world is perceived by human beings. As a result, no claim is made
regarding its robustness in relation to cutting edge scientific research. Guarino &
Welty (2000) have earlier developed an ontology of universals that formally models
the domain of properties.

Figure 3.3 shows an example of how concepts in a given domain can be linked
to DOLCE. As the concepts/universals of the domain, car and traveler are linked
by a subclass relation to the middle triangle labeled “top level of particulars”. The
instance-of links illustrate the ontological ambiguity of the instance-of relation (Gangemi
et al. 2001). Car and traveler are instance-of entities in the top-level ontology of uni-
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top level of particulars

car traveler

my car Jonh Smith

instance of instance of

PARTICULARS

UNIVERSALS

subclass ofsubclass of

instance ofinstance of

type role

top level of universals

Figure 3.3: An illustration of DOLCE from López & Pérez (2002).

versals, whereas my car and John Smith are instances of car and traveler, respectively.
In other words, they are all instances of something but at different ontological levels.

3.4 Discussion and Summary

This chapter has presented the notion of ontologies. Initially, different perspectives
on what constitutes an ontology were illustrated by a spectrum of possible interpre-
tations leading from informal structures of world knowledge to rigid formal specifi-
cations of conceptual knowledge. Different types of ontologies were also presented
along with a more detailed description of the following three different ontologies:
WordNet, SIMPLE and DOLCE. The first two of the three ontologies listed were
presented because they were used in the experiments presented in chapters 5 and 8;
WordNet will also be used in examples in the succeeding chapters. DOLCE was
mainly presented because it has a much more formal basis, and because the research
around DOLCE focuses on explicating the ontological choices made in the knowl-
edge engineering process. The chapter also presented the lattice algebraic language
ONTOLOG as an algebra for expressing and manipulating ontologies followed by a
short presentation of the fundamentals of description logics. Most of what is pre-
sented in the subsequent chapters relies on viewing the ontology as a hierarchical
graph that is inherent to the lattice algebra but not to the various description logics.
More specifically, as will become clearer later on, it is not the logical reasoning sup-
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plied by the different formalism that is in focus here, but the ability to use a graph
in order to derive the conceptual similarity of a query rather than strict satisfiability.
Therefore, ontologies expressed in ONTOLOG are well suited for forming the basis
of an ontology-based information retrieval system as it is presented here.

Moreover, it was argued that a vaguer notion of conceptual nearness or concep-
tual similarity, rather than inference of conceptual subsumption, can be successfully
applied in information retrieval. Much of the research on ontology-based information
retrieval is thus based on the assumption that we can use the shortest path between
two concepts as a measure of their similarity, and then use this measure in the match-
ing of documents and queries. This assumption will also be a main thread throughout
the remainder of this dissertation.
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Chapter 4

The Ontoquery Project

Chapter one presented a schematic view of term-based information retrieval by de-
scribing the processes involved and how they are connected. In the indexing process,
content is extracted in the form of descriptive terms, and later the description can
be transformed into a representation suitable to the choice of information retrieval
model. For instance, in the Vector Space model a weighted term-based description is
represented as a vector where matching can be performed by vector-based similarity
measures.

In ontology-based information retrieval, the fundamental building blocks of the
system vocabulary are concepts. In this sense, the previous chapter on ontologies
served as an introduction to the formal language or notation needed to express the
system vocabulary of an ontology-based information retrieval system. This chapter
will present some of the research performed within the ONTOQUERY project. Al-
ready at this stage it is important to note that the research within the ONTOQUERY

project should not be perceived as having the goal of presenting a unified approach
to ontology-based information retrieval, but rather the research is characterized by
different contributions within a common conceptual framework. A special emphasis
will thus be put on the areas of particular importance to the contributions presented in
this dissertation. First the previous work done within content analysis will presented
based on Andreasen et al. (2001, 2002), Andreasen & Nilsson (2004), and Andreasen
et al. (2004), and subsequently the previous work measures of semantic analysis will
be presented based on Knappe et al. (2007), Andreasen et al. (2005a, 2003), Bulskov
et al. (2004), and Bulskov et al. (2002).

4.1 Content Analysis

Content analysis, semantic analysis, or semantic parsing as it is also labeled is a
process in which natural language is related to a formal representation of meaning.
In content analysis a coarse distinction can be made between deep and shallow ap-
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proaches. In deep semantic parsing, the goal is a close to full understanding of the
semantics of the document. A prerequisite for achieving a high level of understand-
ing in deep semantic parsing approaches is the ready access to a vast body of lin-
guistic and world knowledge. We need to know, for instance, how sentences are
structured, what the concepts are and how they are semantically related. However,
bodies of linguistic and world knowledge are scarce resources and the knowledge
embedded within them is sometimes difficult and complex to apply on a larger scale.
Hence, deep parsing has almost exclusively been applied in small, well-structured
domains. Shallow semantic parsing, on the other hand, presumes less linguistic and
world knowledge and aims at a level of understanding where known concepts are
identified and potentially important relations are recognized. To a certain extent,
the following simple example illustrates the difference between deep and shallow
approaches: Peter is in the restaurant where he is finishing his pizza. A deep se-
mantic understanding of this sentence would allow questions like who is eating the
pizza to be answered. Solving the anaphoric reference shows that Peter is eating the
pizza and not just he. A deep semantic understanding also makes deducing what they
serve at the restaurant possible. Pizza is edible, and since it is being consumed at
the restaurant, we presume the restaurant is serving the pizza. On the other hand, a
shallow understanding of the sentence would simply be that Peter is in the restaurant,
and someone, anyone, is eating pizza. As stated, the distinction is coarse, but as the
example demonstrates, there is a distinction to be made.

In the ONTOQUERY project, content analysis is performed through both lexical
and conceptual analysis in that it incorporates both simple linguistic heuristics and
ontological knowledge in the process. With respect to indexing, the aim has been to
recognize possibly compound concepts expressed as noun phrases, and to ensure that
noun phrases with almost identical conceptual content, but with potential different
lexicalizations, are described identically. The aim of the analysis has been to facilitate
an ontology-based information retrieval that utilizes a lattice structure of the ontology
for matching rather than strict logical inference described in chapter 3. Therefore, the
perspective on noun phrase analysis presented here is limited to information retrieval
rather than being an elaborate account of noun phrase analysis in general.

Noun phrases in OntoQuery are represented in ONTOLOG, which is naturally
able to represent compound concepts. For instance, the phrases “lack of vitamin
D”, “deficiency with respect to vitamin D” and “vitamin D deficiency” can all be
represented by the descriptor lack[WITH RESPECT TO : vitamin D]. The general form
of a descriptor is shown in equation 4.1 where c is a concept name, ri is a relation,
and di is a descriptor that can be a compound descriptor or a simple concept name:

c




r1 : d1
...

...
rn : dn


 (4.1)

Hence, both nested and non-nested multiple prepositional phrases can be described
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as presented in detail in the section on ONTOLOG in chapter 3. In short, a descrip-
tor is the result of a content analysis, in this case, a noun phrase represented as an
ONTOLOG expression.

4.1.1 Analyzing noun phrases

In order to create descriptors for compound an anterior analysis of the semantic re-
lations connecting the constituents is performed. This conceptual analysis of noun
phrases is facilitated by acquiring syntactic knowledge about the structure of the noun
phrases, since the syntactic structure, to a certain extent, exposes the semantic struc-
ture of the noun phrase (for a more general discussion of this assumption, see e.g.
Nirenburg & Raskin (2004)). Leaving out determiners, the head of the noun phrase
can be modified by pre-modifiers and post-modifiers, which roughly corresponds to
adjective phrases and prepositional phrases, respectively. Since the constituents of
adjective phrases and prepositional phrases typically relate in different ways, the syn-
tactic structure of noun phrases thereby serves as a clue as to how the constituents are
related.

With respect to adjective phrases, WordNet, for example, divides adjectives into
two major classes, descriptive and relational, which is roughly equivalent to the dis-
tinction drawn in SIMPLE (Mendes 2006, Peters & Peters 2000). In WordNet, de-
scriptive adjectives are organized, like nouns, into synsets, and they are related to
other adjectives at the lexical level by the antonymy relation. Descriptive adjectives
like “beautiful”, “fast”, and “tall” characterize the nouns they modify, e.g. “a beauti-
ful house”, “a fast car”, and “a tall man”. Ontologically, adjective phrases like these
are therefore, in the ONTOQUERY approach, chosen to be described by a character-
ized by relation, i.e. man[CHR : tall].

The relational adjectives, which are much fewer in number, are also organized in
synsets, but there is usually only a single adjective in each synset, and they are not
related to other adjectives by the antonymy relation. Instead, there is a pointer to the
noun they pertain to, e.g. “environmental” points to “environment” and “chemical”
points to “chemistry”. The relation “pertains to” is modeled by the relation “with
respect to” (WRT) and ontologically, a phrase like “a chemical engineer” is there-
fore described by the descriptor engineer[WITH RESPECT TO : chemistry]. Although
the distinction between descriptive and relational adjectives is not always clear, the
approach sketched here solves the ambiguity to a certain extent, and functions in
ONTOQUERY as a heuristic.

Compared to adjective phrases, prepositional phrases are much more difficult to
analyze because of the wide range of relations between the constituents that can be
denoted by prepositions. Table 4.1 contains some common Danish prepositions and
some of the relations they can denote as well as an example text excerpt (Jensen &
Nilsson 2003).

The ambiguity of the denoted relation can be handled in different ways. A sim-
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Preposition Role set Example Gloss
af AGT Behandling af læge Treatment by a physician

PNT Behandling af børn Treatment of children
POF Siden af hovedet The side of the head
MAT Pude af læder Leather cushion

i LOC Betændelse i øjnene Inflammation of the eyes
TMP I to dage For two days
POF Celler i øjet Cells in the eye

med BMO Behandling med medicin Treatment with medicine
CHR Børn med diabetes Children with diabetes

fra SRC Blødning fra tarmen Intestinal haemorrhaging
TMP Fra sidste år From last year
POF En agent fra CIA An agent from the CIA

Table 4.1: Examples of some of the relations four common Danish prepositions can denote.
The complete set of relations proposed by Nilsson (2001) can be seen in the previous chapter
on page 35.

ple solution is to express a generic relation, rel, and generate descriptors of the form,
c[REL : d], e.g. “treatment of children” can be described by treatment[REL : children],
indicating that the nature of the relation is unknown. This preserves the information
from the syntactic analysis, i.e. that the preposition expresses some kind of rela-
tion between c and d. A second alternative is to describe the noun phrase using the
different possible interpretations of the relation denoted by the particular preposition:

{treatment[PNT : children], treatment[POF : children], ...}
A third possibility, which is an extension of the previous alternative, is to reduce
the ambiguity by ruling out ontologically inadmissible readings or by indicating
likely readings. The ability to rule out ontologically inadmissible readings could
be achieved, e.g. by some form of selectional restrictions or the specification of an
ontological grammar (Jensen & Nilsson 2003, Jensen et al. 2001). For instance, the
Danish preposition af (of) sometimes expresses a part of relation, e.g. “The side of
the head”. However, in the phrase “decomposition of material” we can rule out the
reading *decomposition[PART OF : material] because a material cannot be part of a
process. Chapter 5 explores the possibility of indicating likely ontological readings
of prepositional phrases by using machine learning and an annotated corpus.

4.1.2 Description and descriptors

In OntoQuery, descriptions are initially derived at the sentence level, since the syn-
tactic analysis required to perform noun phrase recognition presupposes a sentence
structure. This is somewhat different from the approaches presented in the chapter on
information retrieval where descriptions were derived at document level. However,
since the nesting of descriptions can be infinite, the question concerning the level of
description is a purely practical matter (see e.g. Andreasen & Bulskov (2007b)).
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In the ONTOQUERY project, descriptions, D, are sets of sets of descriptors, d,
and since descriptions can be nested, the description of a sentence takes the following
form:

D = {D1, . . . , D2} = {{d11, . . . , d1m1}, . . . , {dn1, . . . , dnmn}} (4.2)

A set of descriptors, Di, corresponds to a noun phrase, NPi, in the sentence. Depend-
ing on our system’s ability to create accurate descriptions through the noun phrase
analysis, the description can exhibit varying levels of accuracy. The most accurate
description is a single descriptor for each noun phrase, i.e. Di = {di} rather than
Di = {di1, ..., din}.

Consider the phrase, “dietary treatment and disorder due to lack of vitamin D”.
This phrase can be described in several possible ways where the most general is a
description which consists of all the concepts in the noun phrase:

D = {{dietary}, {treatment}, {disorder}, {lack}, {vitaminD}} (4.3)

For a more accurate description, concepts can be grouped according to the noun
phrase in which they occur. This grouping corresponds to expressing the existence of
a generic relation between the constituents as described in the previous section:

D = {{dietary, treatment}, {disorder}, {lack, vitaminD}} (4.4)

If it is possible to determine the nature of the relation between the constituents, an
even more accurate description can be created:

D = {{dietary[CHR : treatment], {disorder[CBY : lack[WRT : vitaminD]]}}
(4.5)

The generative aspect of the ontology makes the creation of a single descriptor of
a compound concept possible. Although emphasis has been put on the analysis of
noun phrases, the formalism puts no constraints on the words included in the initial
description. In a practical setting, the description, D, would most likely also include,
e.g. verbs.

4.2 Similarity measures

Based on the need for matching descriptions of document and query the question of
similarity emerges. How does one measure similarity between two descriptors? A
wide range of similarity measures and their basis are considered in chapter 6 but here
we will present the research on similarity measures within the ONTOQUERY project.

The two main contributions within similarity measures has been with weighted
shortest path presented e.g. in Bulskov et al. (2002) and (weighted) shared nodes
presented in e.g. Bulskov et al. (2004), and Andreasen et al. (2003).
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4.2.1 Weighted Shortest Path

In information retrieval, the specializations of concepts appearing in a query can be
argued to be more relevant than generalizations (Knappe et al. 2007). For instance,
in a search for motorcycle, documents where specializations of motorcycles such as
offroader or cruiser appear are interesting because they are subsumed by motorcycle.
On the other hand, documents where motor vehicles appear are less interesting, be-
cause they can cover topics other than motorcycles, such as cars, trucks or even tanks.
Following this assumption, a similarity measure must therefore be asymmetric, i.e.
resulting in offroader being more similar to motorcycle than motorcycle to offroader.
A measure that adheres to this idea is the weighted shortest path measure where a
smaller similarity is given to steps leading upwards in the ontology (along the hy-
pernymy relation) than to steps leading downwards (along the hyponymy relation)
(Bulskov et al. 2002). The principle of weighted shortest path is illustrated in figure

motor vehicle

motorcycle

0.9 0.4

truck car

0.4 0.9

offroader

0.9 0.4

cruiser

Figure 4.1: An illustration of the weighted shortest path measure of offroader and car with
sim(offroader, car) = 0.4 × 0.4 × 0.9 = 0.14 and sim(car, offroader) = 0.4 × 0.9 ×
0.9 = 0.32.

4.1, where direct hypernymy weights are set at 0.4, direct hyponymy weights are set
at 0.9 and weights are multiplied rather than summed up.

4.2.2 Shared nodes

The weighted shortest path approach described above is straightforward, but only
the shortest path contributes to the similarity and all other paths are ignored. In e.g.
Knappe et al. (2007) it is argued that it must be assumed that all the paths contribute
to the similarity. Consider for instance the three following text excepts and their
descriptors in ONTOLOG :

1. The black cat - cat[CHR : black]

2. The brown poodle - poodle[CHR : black]

3. The poodle in the garden - poodle[LOC : garden]
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The intuition is that text except (1) and (2) has more in common than text except
(1) and (3) because they are connected by their color attribution. This naive example
shows that ideally a similarity measure should take into account all possible paths
connecting two descriptors. However, in large ontologies, computing all possible
paths between any combination of two concepts is not a realistic approach. Instead
Bulskov et al. (2004), and Andreasen et al. (2003) suggest a similarity measure that
reflects all possible paths by comparing so-called shared nodes without actually de-
riving paths. The set of shared nodes is the set of all nodes in the ontology graph
that are hypernyms of both concepts. Fig. 4.2 taken from Andreasen et al. (2003)
shows an example of the set hypernyms {anything,animal,color} that are both the
hypernyms of cat[CHR : black] and poodle[CHR : black].

anything

animal

ISA

color

ISA

cat

ISA

dog

ISA

black

ISA

cat[CHR:black]

ISA

poodle

ISA

poodle[CHR:black]

ISA

CHR

CHR

Figure 4.2: An example of the shared nodes for the descriptors cat[CHR : black] and
poodle[CHR : black] from (Andreasen et al. 2003). Shared nodes are shaded.

With α(x) as the set of hypernyms of x, Andreasen et al. (2003) presents the
different variations of a normalized similarity measure based on the shared nodes
principle with one of them being:

sim(x, y) =
|α(x) ∩ α(y)|
|α(x) ∪ α(y)| (4.6)

(4.7)

In Andreasen et al. (2005a) a fuzzy generalization termed weighted shared nodes
is introduced. In weighted shared nodes the concepts are weighted based on how they
are related to the original descriptor, e.g. ISA can be higher weighted than CHR.
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4.3 Related Work

The content analysis presented by the ONTOQUERY project is related to both biomed-
ical term identification (Krauthammer & Nenadic 2004, Zhou et al. 2006), and key
phrase indexing (Jacquemin & Tzoukermann 1999, Jacquemin & Bourigault 2003).
Jacquemin & Tzoukermann (1999) presents an approach to conflating multi word
terms like signal frequency controllers, frequency controllers for signals, and control
of frequency for signals into a single descriptor. The presented approach is based an
inflectional analyzer for single word conflation, i.e. a form of stemming, and syn-
tactic rules focused on noun phrase analysis like the heuristics presented in 4.1.1.
Compared to Jacquemin & Tzoukermann (1999) the ONTOQUERY approach differs
in the central role played by the ontology. Both as a mean of representing the com-
plex concepts expressed by noun phrases and as a mean for analyzing these. The next
chapter will further explore one approach to utilize the ontology in the analysis.

Due to the constant creation of new multi word terms in the biomedical literature
much research has focused on how to extract and identify these terms Krauthammer
& Nenadic (2004). In the context of ONTOQUERY the work by Zhou et al. (2006) is
interesting because it is characterized by the use of an ontology as a vessel for iden-
tifying concept pairs. Concept pairs are by Zhou et al. defined as pairs of concepts
sharing both a semantic relation specified by the ontology and a reoccurring syntactic
relation. If these two characteristics are met the concept pair is identified as a sin-
gle new concept to be used in the indexing. Compared to ONTOQUERY the type of
relation is not determined, and neither is the ontology used actively in the analysis.
The experimental results presented by Zhou et al. are encouraging, and they show a
considerable improvement in precision on the TREC 2004 Genomics Track.

Similarity measures will be treated in a detail in chapter 6 so related work on this
topic will be described there.

4.4 Discussion and Summary

This chapter presented the approach to ontology-based indexing forged within the
ONTOQUERY project. The focus of this approach is an analysis which ensures that
noun phrases with almost identical conceptual content, but with possibly different
lexicalizations, are described identically. For instance, the text excerpt “lack of vita-
min D”, “deficiency with respect to vitamin D” and “vitamin D deficiency” can all
be represented as lack[WRT : vitamin D]. Also it was described that a sentence can be
analyzed and represented at various levels of specificity depending on the system’s
ability to perform the appropriate natural language processing needed, e.g. the abil-
ity to identify the relations between the concepts. However, in order to determine
that “lack of vitamin D” can be represented as lack[WRT : vitamin D] a deeper con-
tent analysis than the one presented in this chapter is needed. This content analysis
must be is able to recognize that of, in this case, denotes the relation WRT and not
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for instance a comprised of, CMP, relation as it does in the text excerpt “depot of
Vitamin D” (depot[CMP : vitamin D]). The need for a deeper content analysis is the
motivation for the work presented in the next chapter. With an offset in prepositional
phrases an approach is presented which, with a high degree of precision, is able to
correctly recognize the type of relation being expressed. This greatly improves the
quality of the ontological indexing.

The second part of the ONTOQUERY research which were presented in this chap-
ter was the work on ontology-based similarity measures. Both the weighted shortest
path and the shared nodes approach was described. All of chapter 6 is devoted to
similarity measures, and thus there is no need for a lengthy discussion of the topic
here. There are though a commonality and a difference between the previous con-
tributions within ONTOQUERY and the contribution presented in chapter 6. Both
weighted shortest path, weighted shared nodes presented here, and the distributional
density measure presented in chapter 6 are based on the acknowledgement that some
relations are of higher importance than others. As chapter 6 will show, the principle
that some relations are more important than others in measures of similarity, is in
fact acknowledged in most of the previous research on the topic. What differs is how
to value the different relations in the ontology. Here are the measures introduced in
the final part of chapter 6 novel because they combine patterns of co-occurrence of
concepts with ontology-based similarity measures.

This chapter concludes the foundation part of this dissertation. Chapter 2 pre-
sented the different components in a prototypical information retrieval system, the
different information retrieval models, and an introduction to ontology-based infor-
mation retrieval. Here two of the main reasons for research on ontology-based infor-
mation retrieval was described. First reason was that pure lexical-based information
retrieval is inept to deal with the ambiguity of natural language. Second that ontolo-
gies enables the retrieval of semantically related information. As mentioned above
the next chapter will describe an approach to semantic analysis dealing with the am-
biguity of natural language. The chapter hereafter, chapter 6, presents three different
but highly related similarity measures that continues on the same thread as the ones
presented in this chapter, but are novel in their combination of ontology-based simi-
larity measures and co-occurrence based measures of similarity. These measures can
be used in the previously unpublished model for index expansion presented in chapter
7. This model enables the retrieval of documents that are semantically related to the
query rather than only lexically related. Finally the contribution part will end with
chapter chapter 8 which will present a way of summarizing the results of a query
in the form the of a modified ontology in itself rather than a set of documents or a
summary in natural language.
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Part II

Contributions

55





Chapter 5

Finding Semantic Relations
Expressed in Natural Language

Semantic analysis is the study of meaning. For example, what meaning do the linguis-
tic utterances “lack of vitamin D” and ”deficiency with respect to vitamin D” share?
Lack and deficiency clearly convey the same meaning, as do of and with respect to.
From an ontological perspective, lack and deficiency denote the same concept and of
and with respect to denote the same semantic relation. Of and with respect to, how-
ever, do not always denote the same relation, e.g. of denotes an entirely different
relation in “soup of the day”. The identification of the different semantic relations at
play in a text is an important part of the extraction of conceptual content in ontology-
based information retrieval.

As described in the previous chapter, the intent of the ONTOQUERY project has
been to devise a semantic analysis of noun phrases that ensures that phrases with
identical meaning or conceptual content, but with different lexicalizations, are de-
scribed identically. The motivation for doing so is the objective of ontology-based
information retrieval to retrieve documents that convey the same meaning but are
lexicalized differently. This chapter describes a preliminary approach to the con-
ceptual extraction of the relations denoted by prepositions in constructs like “lack
of vitamin D”. The presented approach enables a much more accurate analysis of
such constructs than previously has been attempted. By this approach, more spe-
cific descriptors of the document and query content can be created, thus enabling
more precise ontology-based information retrieval. It is shown that knowledge at a
general level about the participating concepts is sufficient in order to determine the
relation type with high precision. For instance it is sufficient to know that “vitamin
D” is a natural substance. A less elaborate account of this research has already been
presented in Lassen & Terney (2006a,b).

Prepositions have been characterized as “semantically vacuous and distribution-
ally highly promiscuous” (Baldwin 2006), and, indeed, in most keyword-based search
engines, prepositions are considered to bear little meaning. Admittedly, prepositions
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are some of the most frequent words and their use and meaning are not confined to
a limited number of domains or text types. Therefore, in a classic keyword-based
approach, it makes sense to exclude prepositions either before the indexing via a
list of stop words, or in the indexing via a threshold leaving out all words with low
discrimination value. However, in ontology-based information retrieval, we are mov-
ing away from the keyword-based approach and have begun looking at the relations
between concepts. As the vitamin example above demonstrates, a preposition can
denote different kind of relations, and identifying the current relation in a text might
be valuable in information retrieval.

Consider, for instance, the following example. In the query “treatment of cancer”,
there are two nouns and a preposition denoting a relation between them. In this
case, the preposition of expresses a patient relation between treatment and cancer
(more on relations in the following section). Texts dealing with, for example, what
effects the development of cancer could be considered relevant to this query. Consider
the following two text excerpts: “. . .nutrition has a high effect on cancer. . .” and
“. . .weight loss can occur as a result of cancer. . .”. In the first case, on expresses a
patient relation between effect and cancer and should therefore be ranked high in the
result set. In the second case, because of denotes a source relation between result
and cancer, this text excerpt is of less relevance than the first. The question this
chapter tries to answer is the extent to which the type of concepts expressed in noun
phrase-preposition-noun phrase (NP-P-NP) constructs can serve as a clue as to what
kind of relation the preposition denotes. If this in fact is the case, ontologies can be
used in the semantic analysis of these constructs despite the “promiscuous” nature of
prepositions.

Our assumption behind the work presented is naturally that there is an affinity be-
tween the concepts denoted by the heads of the noun phrases and the relation denoted
by the preposition. For instance, if the first noun is a kind of disease and the second
noun is a body part, then in very likely expresses a locative relation, e.g. “thrombosis
in the heart”, “oedema in the legs”, “cancer in the uterus”, etc. If the second noun, on
the other hand, has something to do with time, in expresses a temporal relation, e.g.
“plague in the Middle Ages”, “vitamin deficiency in childhood”, etc.

The following steps were taken to examine this assumption. First, NP-P-NP ex-
cerpts in Danish were found. Second, the head of the noun phrases was mapped into
SIMPLE and the semantic relation denoted by the preposition with a relation type
from a finite set of relations was annotated. Last, a machine learning approach was
used to explore the affinity between the preposition and the concepts denoted by the
heads of the surrounding nouns, i.e. the relation was classified based on the surround-
ing context. In a sense, these experiments are a type of word sense disambiguation;
we want to discover on a semantic level what kind of relation a preposition denotes
given its context. The following section presents each of the three steps taken in the
study and the results of the experiments.
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5.1 Semantic relations

In general, relations can exist between all entities referred to in discourse and at dif-
ferent syntactical levels across sentence boundaries, or within a sentence, a phrase
or a word. The relations can be denoted by different word classes, such as a verb,
a preposition or an adjective, or they can be implicitly present in compounds and
genitive constructions. In the experiments, only binary relations denoted by preposi-
tions are considered. A preposition can be ambiguous in regard to which relation it
denotes. Consider, for example, the Danish preposition i (Eng: in): The surface form
i in “A i B” can denote at least five different relations between A and B:

1. A patient relation (PNT): A relation where one of the arguments’ case roles is
a patient, e.g. “ændringer i stofskiftet” (changes in the metabolism).

2. A locational relation (LOC): A relation that denotes the location/position of one
argument compared to another argument, e.g. “skader i hjertemuskulaturen”
(injuries in the heart muscle).

3. A temporal relation (TMP): A relation that denotes the placement in time of
one argument compared to another, e.g. “mikrobiologien i 1800-tallet” (mi-
crobiology in the nineteenth century).

4. A property ascription relation (CHR): A relation that denotes a characterization
relation between one of the arguments and a property, e.g. “antioxidanter i
renfremstillet form” (antioxidants in a pure form).

5. A “with respect to” relation (WRT): an underspecified relation that denotes an
“aboutness” relation between the arguments, e.g. “forskelle i saltindtagelsen”
(differences in the salt intake).

The set of possible semantic relations is in principle infinite, ranging from more
general relations denoting relationships between general concepts or sets of concepts
to very finely grained relations between very specific concepts. An attempt to arrive
at a general complete list of relations is, therefore, futile. In the research presented
here, semantic relations are to be perceived as general thematic roles linking concepts
in the world. For instance, with an example taken from Dowty (1991), consider three
situations where a murders b, a accuses b and a interrogates b. Even though the
three verbs have very different meanings, they all share that a commits a volitional
act, that committing the act is a’s intention, and that a causes some event to take
place involving b. Expressed using thematic roles, a can be said to be the agent in
that he deliberately performs the act, while b can be said to be the patient in that he
undergoes the action and his state is changed.

As a basis for these experiments, we selected the set of relations proposed by
Jensen & Nilsson (2003) in their work on ontology-based semantics for prepositions.
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This set of relations is summarized in table 5.1 and, for the most part, is exemplified
in table 5.2, which is also shown in chapter 3.

Role Relation Abbreviation Description
TEMPORALITY TMP Temporal anchoring, duration, inception etc.
LOCATION LOC Place, position
WITH RESPECT TO WRT With respect to
CHARACTERIZE CHR Characteristic (Property ascription)
BY MEANS OF BMO Means to end, instrument
CAUSED BY CBY Inverse CAU
COMPRISE CMP Inverse POF, whole constituted of parts
AGENT AGT Animate being acting intentionally
PATIENT PNT Affected entity, effected entity
SOURCE SRC Source, origin, point of departure

Table 5.1: The set of relations found expressed in the data set used in the experiments pre-
sented in this chapter.

Besides the relations in table 5.1, a WRT relation was introduced. The annotation
with WRT was done in the appropriate cases and when none of the other relations
denoted the relation being expressed.

5.2 Corpus and Annotation

Most natural language processing experiments are performed on English texts where
resources like ontologies are much more abundant and easily accessible. One im-
portant goal of this research is to contribute, in a small way, to the advancement of
research on the Danish language, hence conducting these studies in Danish has been
an essential aspect of this project.

A small tagged corpus was obtained from Hansen (2005) that was compiled from

Preposition Role Set Example Gloss
af AGT Behandling af læge Treatment by a physician

PNT Behandling af børn Treatment of children
POF Siden af hovedet The side of the head
MAT Pude af læder Leather cushion

i LOC Betændelse i øjnene Inflammation of the eyes
TMP I to dage For two days
POF Celler i øjet Cells in the eye

med BMO Behandling med medicin Treatment with medicine
CHR Børn med diabetes Children with diabetes

fra SRC Blødning fra tarmen Intestinal hemorrhaging
TMP Fra sidste år From last year
POF En agent fra CIA An agent from the CIA

Table 5.2: Examples of some of the relations four common Danish prepositions can denote.
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The Danish National Encyclopedia on nutrition (Lund 1994). From this corpus, NP-
P-NP excerpts were extracted based on the original part of speech tagging. Subse-
quently, the head of the nouns was mapped automatically (ontology look-up) and
manually (for heads not present in the ontology) to the concepts in SIMPLE. How-
ever, it quickly became evident that SIMPLE’s coverage was a problem since only a
fraction of the heads were to be found in the ontology. As a result, the heads were
mapped to the most specific concepts in the core ontology of SIMPLE, primarily to
avoid the ontology engineering process involved in finding out exactly where to posi-
tion the missing concepts in the ontology. Figure 5.1 illustrates, e.g. how thrombosis
maps to disease by the transitivity of hypernymy, since disease is the most specific
concept that thrombosis can be mapped to in the top ontology of SIMPLE.

top

entity

eventagentive

phenomenon

disease

thrombosis

y
µ

I

:

6

6

6

cardiovascular disease

6
Top ontology
Domain ontology

Figure 5.1: An illustration of the path from thrombosis to the top level of the SIMPLE
ontology. If thrombosis had not been in SIMPLE, it would have been mapped directly to
disease because disease is the most specific concept in the core of SIMPLE that subsumes
thrombosis.

Table 5.3 shows the annotation of the corpus by listing the text excerpt and the
conceptual content of the text excerpt as an ONTOLOG expression. For instance,
sammensætningen (composition) maps to constitutive state, kosten (food) to food,
påvirkning (effect) to cause change, etc.

5.2.1 Descriptive statistics of the corpus

The compiled corpus consists of 952 text excerpts or instances, giving a total of about
18,500 running words. In general, the distribution of the data is highly skewed and
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Text excerpt Annotation
sammensætningen af kosten constitutive state[WRT : food]
(the composition of the food)
påvirking af huden cause change[PATIENT : body part]
effect on the skin
undersøgelser af kvælstofbalancen act[WRT : state]
examination of the nitrogen balance
person på 80 kg human[CHR : unit of measurement]
person at 80 kg
virkning på hjernen cause change[PNT : body part]
effect on the brain

Table 5.3: Examples of text excerpts from the corpus with their annotation.

data sparseness is a serious problem. The data consists of the concepts denoted by the
heads of the phrases, the lemmatized heads, the prepositions and, finally, the relation
denoted by the preposition.

The following account gives an idea of the distribution of the data: Of the 74 dis-
tinct concepts of the first head of the phrases, 23 are unique, and six concepts account
for slightly fewer than half the instances (act, change, state, natural substance, phys-
ical property, and creation in that order). Of the 64 distinct concepts of the second
head of the phrases, 20 are unique and only four concepts account for approximately
half of the instances (natural substance, body part, disease, human). Looking at the
combinations of the concepts, there are 332 different combinations and 197 of them
are unique. In short, most types of combinations only appear once or just a few times,
which makes the data set difficult to visualize.

At the word level, there are 443 distinct lemmas as first heads, with 324 occurring
only once as the first head, and 482 distinct lemmas as the second head, with 343
occurring only once as a second head. Compared to the ontological level, the mass
of unique lemmas constitutes about 37 percent, where only about two percent of the
concepts were unique. Compared to the conceptual level, the data set is obviously
even sparser at the word level.

Slightly more than half of the instances are of the relation type WRT or PNT, and
the rest of the instances are distributed among the remaining ten relations with only
14 instances scattered across the three smallest classes. The distribution is shown in
figure 5.2.

The same skewness in distribution is true for the distribution of the prepositions.
Here, af (of) and i (in) also account for more than half the instances. The distribution
of each of the 15 relations found in the corpus is shown in figure 5.3.
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0

50

100

150

200

250

300

350

af i
fo

r
m

ed pa
a til fra ho

s
pg

a.

un
de

r
om

ud
en

ge
nn

em ov
er

Figure 5.3: The distribution of the 15 prepositions in the corpus.

5.3 Machine Learning

Machine learning is a broad subfield within artificial intelligence where the purpose
is to design a learner, i.e. a system or an algorithm that improves with experience
concerning a given task with respect to some performance measure (Mitchell 1997).
The task can be anything from driving an autonomous vehicle based on sensory in-
put, to identifying patients likely to catch a specific illness based on patient records
or finding trends in consumer purchases. The motivation for applying machine learn-
ing to all these tasks is that they are either impossible or too cumbersome to solve
manually – or that computers simply perform better.
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Machine learning can be subdivided into supervised, unsupervised, and reinforce-
ment learning. Supervised learning is the situation where the data set consists of
a number of instances, where each instance is classified according to some func-
tion. The function can, for instance, be to determine the kind of customer based on
the content of their shopping basket. If the basket contains diapers, plasticine, and
organic milk, the consumer is probably a parent with small children. On the other
hand, if the basket contains Eurowoman, a bottle of Evian, and rice biscuits, the cus-
tomer is probably a young female. In supervised learning, training the learner would
consist of presenting a number of customers with their shopping baskets to make the
learner capable of recognizing the different characteristics of the different customers.
Because the learner is presented initially with the correct label or classification of
each instance, in this the items in the shopping basket and the customer who bought
the items, the learning is termed supervised learning. Some kind of supervisor is
necessary to create the data set of labeled instances by identifying each instance as
a parent, young female, etc. The classification of the supervisor is often denoted the
true function. The precision of the result produced by a learner is measured by the
difference between the classification by the true function and the classification by the
learner.

In unsupervised learning, there is no supervisor present in the form of labeled in-
stances, and the causal connections explored between input and output in supervised
learning are focused upon less in unsupervised learning. The objective is typically to
explore the data set using various statistical measures; for example, in the classical
market analysis where supermarkets try to identify the correlation between sales of
different goods to optimize the placement of the goods. Beer and diapers are often
mentioned as a surprising correlation between everyday goods often bought at the
same time. Clustering, which will be a main component of chapter 8, is another ex-
ample of an unsupervised task where instances are grouped based on their similarity.
Again, using the shopping basket example, a clustering task could be to group cus-
tomers based on the content of their shopping baskets. The result of such a clustering
process could then be presented to the market analysts in order to verify and label the
groups found.

Finally, reinforcement learning is a dynamic setting where the output of the learn-
ing system serves as an input to the next iteration of learning, and where the desired
outcome is the result of a series of successful steps instead of a single step. Also,
the value of taking each step is not known. Examples of reinforcement settings are,
e.g. autonomous agents moving around in a specific environment and in games like
chess.

Since the aim here is to explore to what extent semantic relations denoted by
prepositions in NP-P-NP constructs can be learned, the setup of the experiments took
place within the supervised framework.
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5.3.1 Symbolic and non-symbolic learners

Supervised learning algorithms can be divided into symbolic and non-symbolic learn-
ers. The difference between the two groups lies in the kind of model or hypothesis
they produce. Symbolic learners produce models in logic like formalisms that eas-
ily can be interpreted by humans, e.g. in the form of rules such as “if first con-
cept=human then relation=patient”. Non-symbolic learners, on the other hand, pro-
duce models that are not easily interpreted by humans. A good example of a non-
symbolic learner is the instance-based learning algorithm KNN, where the instance is
classified based on the classification of its K Nearest Neighbors measured by some
similarity measure. In this case, the relation expressed in a text excerpt would be
classified as the same as its K most similar text excerpts. Another example of a
non-symbolic learner is support vector machines (SVM), which is among the state-
of-the-art approaches with respect to precision in classification. Support vector ma-
chines are a family of rather complex algorithms that produce a model by mapping
the original feature space into a new space by a mapping function, θ, where the out-
put can be linearly separated. The idea behind support vector machines is that data
sets that are difficult to separate into the right classes can more easily be separated in
a transformed vector space (Cristianini & Shawe-Taylor 2000).
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Figure 5.4: An illustration of the mapping θ of the feature space to a new space where the
instances can be separated linearly.

From a performance perspective with respect to accuracy, non-symbolic learners
usually produce better models than symbolic learners. However, given their non-
symbolic nature, they provide less insight into the domain than symbolic learners –
at least from an end user perspective.
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5.3.2 Our experiments

In the example with the shopping basket in supervised machine learning, the possible
content of the basket constituted the input features available to the learner. The set of
features available to the learner is often termed the feature space. With respect to our
corpus and experiments, the feature space is a six dimensional space that includes (1)
the first concept, (2) first head, (3) relation, (4) preposition, (5) second concept, and
(6) second head.

The function we are trying to learn is which relation a preposition denotes in a
given context. To meet this end both a support vector machine algorithm (Keerthi
et al. 2001) and the rule producing algorithm JRip (Cohen 1995) has been applied.
Support vector machines were applied to the task in order to estimate the maximum
precision one could expect from a content extraction module in an information re-
trieval system. JRIP was applied to the task in order to explore the affinities in the
data set, and to get a rough idea of whether a simpler learner could solve the task
adequately.

The experiment was performed using ten-fold cross validation (Mitchell 1997,
Manning & Schütze 2003). The approach is to partition the data set in ten subsets.
Out of these ten subsets, the first nine are used for training the learner and the final
set is used for testing what the learner has learned. Then, the first eight and the
tenth subsets are used for training, while the ninth subset is used for testing and so
on. The overall accuracy of the learner is the average performance on all ten runs
of the experiments. This experimental approach was chosen in order to avoid the
risk of partitioning the data set into a training set and a test set with a dissimilar
distribution. Moreover, all the instances in the data set can be used in the assessment
of the precision of the learner.

5.4 Results

Seven experiments were run on different combinations of the feature space, ranging
from using only the heads to using heads, the preposition and the concepts denoted
by the heads. This was done to gain insight into the importance of using concepts in
the learning. The results of these experiments are shown in table 5.4. The last column
shows the precision for a projected classifier (PC) in the cases where it outperforms
the trivial rejector. The projected classifier, in this case, assigns the relation that is
most common for the corresponding input pair of concepts, e.g. if the concepts are
disease or human, then the most common relation is PNT. The trivial rejector that
assigns the most common relation to all the instances, in this case PNT, achieves a
precision of 37.8%. Precision was measured as the percentage of instances where the
relation were correctly classified by the learner. Statistical significance was measured
using a two-tailed test at a .05 significance level.

The support vector machine algorithm produces a result which, in all cases, is
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Feature Space JRip SVM PC
1 Prepositions 68.4 68.5 67.6
2 Concepts 74.4 77.0 61.8
3 Lemmas 66.8 73.3 –
4 Lemmas and preposition 72.3 83.4 –
5 Concepts and lemmas 74.7 81.7 –
6 Concepts and preposition 82.6 86.6 –
7 Concepts, preposition and lemmas 84.0 88.3 –

Table 5.4: The precision of SVM, JRip and a projected classifier for the seven different
combinations of input features. “Lemma” is short for lemmatized NP head.

better than the baseline, i.e. we are able to produce a model that generalizes well
over the training instances compared to the projected classifier or the trivial rejector.
The fact that both JRip and SVM perform better than the projected classifier when the
input is only the preposition is due to statistical variation: Given just the preposition,
the only reasonable model that can be built by the learner is an assignment of the
most frequent relation denoted by each preposition, which is exactly what defines the
projected classifier. The following trends can be identified in table 5.4 based on the
performance of the SVM algorithm.

A comparison of experiments 1, 2 and 3 shows that training on concepts seems
to be superior to using the lemmatized heads of the noun phrases or prepositions, but
this superiority is only statistically significant when the comparison is made to the
preposition and not to the lemmatized heads. Based on this reduced feature space,
nothing significant is apparently gained from introducing concepts into the classifi-
cation process.

When comparing experiments 4, 5, 6, and 7, the difference between the results
from using the different input features is not statistically significant either. How-
ever, when comparing experiments 1, 2 and 3 to experiment 6 or 7, the improvement
of using all the features compared to just one of the features is statistically signif-
icant. Also, experiment 6 shows that, in comparison to experiments 1 and 2, both
the preposition and the concepts contribute significantly to the determination of the
relation type.

A simple comparison between the precision scores shows that the concepts from
the core of SIMPLE are the most important input feature, followed by the preposition,
and, finally, the lemmatized heads of the noun phrases. The hypothesis stated in the
beginning of the chapter is thus confirmed. There is an affinity between the concepts
denoted by the heads of the noun phrases and the relation denoted by the preposition,
as experiment 2 shows. However, the conclusion cannot be made that the concepts
are of greater importance in the classification of the relation than the preposition and
the lemmas. The results only indicate that this is probably the case.

In general, the results reveal an unexplored opportunity to include the concepts
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and the relations that prepositions denote in information retrieval. In the next section,
we examine the rules produced by JRip on the data set with only the concepts, since
they are the most interesting in this context.

5.4.1 Analyzing the rules

The JRip algorithm produced, on average, 21 rules. The most general rule covering
almost half of the instances is the default rule that assigns all instances to the WRT re-
lation if no other rules apply. At the other end of the spectrum, there are ten rules that
cover, all in all, no more than 34 instances, but with a precision of 100%. Analyzing
these rules is difficult, since they cover the most infrequent relations and, hence, may
overfit the data set. However, this does not seem to be the case with a rule like, “IF
the concept of the first head is disease and the concept of the second head is human
THEN the relation is patient covering an instance, for example, like “iron deficiency
in females”.

The rule with the second highest coverage, and a fairly low precision of around
66%, is the rule: “IF the concept of the second head is body part THEN the relation
type is locative”. The rule covers instances such as “thrombosis in the heart” but
also incorrectly classifies all instances as locative where the relation type should be
source. E.g. the phrase “iron absorption from the intestine”, which is annotated as a
source relation, but is classified as locative by the rule. However, in this case, from
expresses a source relation very similar to a locative relation.

One of the least surprising and most precise rules is: “IF the concept of the sec-
ond head is time THEN the relation type is temporal” covering an instance such as
“diet for many months”. We would expect a similar rule to be produced, if we had
performed the learning task on a general language corpus.

With respect to speed of classification and ease of implementation, a simple set
of rules like the ones produced by JRip is a viable alternative to the much more
advanced model produced by a SVM algorithm. Therefore, in the implementation of
an information retrieval system, a natural choice might be a set of rules even at the
loss of some classification accuracy. Shown below is an example rule set produced
by JRip based on the corpus:

1. IF second head is quality THEN the relation is CAUSED BY

2. IF second head is state and first head is natural substance THEN the relation
is TEMPORAL ASPECTS

3. IF second head is event THEN the relation is TEMPORAL ASPECTS

4. IF second head is amount and first head is food THEN the relation is CHARACTERIZED BY

5. IF first head is institution THEN the relation is CHARACTERIZED BY
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6. IF first head is body depot and second head is natural substance THEN the
relation is COMPRISING

7. IF second head is state and first head is change THEN the relation is TEMPORAL ASPECTS

8. IF first head is agent of temporary activity THEN the relation is CHARAC-
TERISTIC

9. IF first head is disease and second head is change THEN the relation is CHARACTERIZED BY

10. IF first head is cause change of state THEN the relation is PATIENT

11. IF first head is natural substance and second head is microorganism THEN the
relation is LOCATIVE

12. IF first head is disease and second head is human THEN the relation is PATIENT

13. IF second head is artifact and first head is act THEN the relation is BY MEANS OF

14. IF second head is time THEN the relation is TEMPORAL ASPECTS

15. IF first head is cause change THEN the relation is PATIENT

16. IF first head is human THEN the relation is CHARACTERIZED BY

17. IF second head is unit of measurement THEN the relation is CHARACTERIZED BY

18. IF first head is creation THEN the relation is PATIENT

19. IF first head is change THEN the relation is PATIENT

20. IF first head is act THEN the relation is PATIENT

21. IF second head is body part THEN the relation is LOCATIVE

22. In all other cases the relation is WITH RESPECT TO

5.5 Related Work

As noted at the beginning of this chapter, with no previous studies of this kind ever
having been performed in Danish before, conducting the experiments in Danish was a
priority. However, a large amount of research on the behavior and semantics of prepo-
sitions exists and ACL-SIGSEM has had frequent workshops on the topic (Toulouse
2003, Colchester 2005, Trento 2006, and Prague 2007). SemEval 2006 also had a
task on the word sense disambiguation of prepositions based on the Framenet corpus.
The task originated within The Preposition Project, whose goal is to provide a com-
prehensive characterization of English preposition senses suitable for use in natural
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language processing (TPP 2007). There is a difference, though, in word sense dis-
ambiguation and ontological relation disambiguation in that the former has a lexical
starting point rather than an ontological one. Compared to what has been presented
here, the general focus has been on deep linguistic studies of individual prepositions
or, e.g. locative or spatial prepositions (Litkowski 2004), rather than learning to
identify the semantic relation denoted by prepositions in general through corpus an-
notation. To the best of our knowledge there has been no previous research to Lassen
& Terney (2006a,b) on what kind of semantic relations there exists between concepts
based on general ontological knowledge about the participating concepts.

5.6 Discussion and Summary

The experiments presented in this chapter confirm the hypothesis that there is an affin-
ity between the concepts denoted by the heads of two noun phrases and the relation
denoted by the preposition between these two noun phrases. It is shown that general
ontological knowledge about the concepts is sufficient to achieve high precision in
categorizing the type of relation. Also by applying a relatively small set of rules we
are able to gain a high precision. Thus a more detailed and accurate semantic analysis
of both documents and queries can be achieved by this relatively simple mean which
again results in more specific descriptors.

The manual relation annotation has been done by one annotator. The ideal sit-
uation would naturally be to have several annotators annotate the corpus. If two or
more people annotate the same corpus, they are almost certain to disagree on some
occasions. This disagreement can have two sources. First, it can be due to cognitive
differences. Two people exposed to the same utterance are not guaranteed to perceive
the same content, or to perceive the content intended by the producer of the utterance.
Many factors are at play here: Cultural background, knowledge, memory, etc. Mul-
tiple annotators, of course, would have been better. In fact, the experiments can only
tell us if learning the relations as interpreted by a single annotator is possible. Since
no experiments with multiple annotators have been performed, the conclusion cannot
be extended to a more general statement, but a multiple annotator scenario is unlikely
to create a result very different from the one presented here, given that the relations
are generic relations with relatively little overlap (except perhaps the locative and
partitive relation as described in Lassen (2007)).

The data set is too small to conclude that the concepts are of greater importance
than the preposition and the lemmatized heads, although this is what the experiments
certainly indicate. Currently, a larger general language corpus in the form of excerpts
from the Bergenholtz corpus is in the process of being compiled. This work is in an
early phase, but the intent is to be able to refine the conclusions already drawn here,
and to test their validity in general language.

The fact that a relatively small rule set covers many of the instances and provides
a precision in classification comparable to that of a state-of-the-art approach like
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support vector machines is encouraging. There is, in other words, a tradeoff between
simplicity and precision in classification. That the best solution is high precision and
slow classification in an information retrieval system is not at all a given.

There are several aspects of these studies that warrant future work. From a lin-
guistic and ontological perspective, it is interesting that “with respect to” (WRT) is
used widely in the annotation. Most likely due to the broadness of WRT, an ex-
amination of the need for expanding the set of relations or possibly replacing some
relations by more finely grained sub types is called for. In an exploratory study like
this, it might be relevant to perform different kinds of clustering on the set of in-
stances labeled with the WRT relation in order to find possible natural groupings of
the instances.

Another interesting future task is to base the learning process on a semantic si-
milarity measure, i.e. a similarity measure derived from the ontology. Since approxi-
mately 120 of the instances have both nouns mapped into a concept beneath the level
of the core of SIMPLE, it could be interesting to perform an experiment with a se-
mantic similarity measure on this subset of the data or with a larger set of data with
more nouns being mapped at a more specific level than at the core level of SIMPLE.
The aim would be to examine if semantic similarity measures are better at captur-
ing the similarity between the instances than the similarity measures based on the
vector space representation used in the experiments presented here. Naturally, one
would assume a much more accurate classification when using a semantic similarity
measure.
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Chapter 6

Combining semantic and
distributional similarity

Is the concept of a dog more similar to the concept of a cat than to the concept of a
mammal? And are dogs and cats more similar than, say, bikes and automobiles? And
what does similarity actually imply? This chapter explores two different notions of
similarity, one based on ontologies and one based on corpus statistics, to answer these
questions. In addition, this chapter presents three different approaches for combining
these two notions of similarity.

We restrict the use of semantic similarity measures to denote similarity measures
based on some sort of world knowledge typically expressed in the form of an ontol-
ogy. Thus, dog is not just a three letter word comprised of d-o-g. It is our conception
of a dog as a special canine somewhat different from, say, a wolf. The intuition
behind semantic similarity measures is that it is possible to derive a measure of simi-
larity which corresponds to a human perception of semantic similarity. Distributional
similarity measures, on the other hand, are based solely on corpus statistics and simi-
larity is used to denote the appropriateness of substituting lexical unit a with lexical
unit b; thus, dog is only a three-letter word made up of d-o-g. Distributional simila-
rity measures are intended to measure the appropriateness of substituting dog with,
e.g. pet. However, when we later attempt to combine semantic and distributional
similarity measures, we use the term distributional similarity in a more general way,
namely to denote the appropriateness of substituting object a with object b, thereby
enabling the distributional similarity of concepts rather than mere terms.

The question of how to model similarity or relatedness is central to many natural
language processing applications, for example, word sense disambiguation, resolving
prepositional phrase attachment ambiguities, etc. (for an overview see, e.g. Weeds
(2003)). Since ontologies and taxonomies can be viewed as structural encodings of
the semantic similarity between different concepts, various methods have been pro-
posed for using these structures as a basis for measuring semantic similarity. An
early method proposed for measuring similarity is simply to use the shortest path be-
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tween two concepts as a measure of their semantic similarity (Rada et al. 1989). A
problem with this simple approach, however, is that it, “relies on the notion that links
in taxonomy represent uniform distances” (Resnik 1999). For instance, in WordNet,
horse is the immediate subsumer of pony, and biology is the immediate subsumer of
zoology. Most would agree, however, that horse and pony are more closely related
than biology and zoology. Several semantic similarity measures have later been pro-
posed that modify the link distance; some of them are corpus based, and some of
them modify the link distance based on the taxonomic structure itself, e.g. the den-
sity and depth of concepts in the hierarchy. We will return to the different semantic
similarity measures in the next section.

Distributional similarity measures have been suggested as an approximation of
semantic similarity measures (Dagan et al. 1999, Weeds & Weir 2005, Mohammad &
Hirst 2005) and are based on the co-occurrence of words or concepts with no knowl-
edge of their ontological relatedness. The underlying assumption behind the dis-
tributional similarity measure is the distributional hypothesis, which Harris (1968))
describes as, “The meaning of entities, and the meaning of grammatical relations
among them, is related to the restriction of combinations of these entities relative to
other entities”. Or to put in more simple terms; words that occur in the same context
tends to have related meaning.

The previously suggested methods for semantic similarity that incorporate cor-
pus statistics apply information theoretic measures that only use concept or word
frequency. Intuitively, as the distributional hypothesis states, we would consider co-
occurring concepts as being more related than concepts that are rarely used in the
same context. As a result, taking advantage of the knowledge embedded in the ontol-
ogy while taking into account the distributional patterns of concepts as they appear
in a particular corpus seems like an obvious step. This opens up for a tailoring of
the similarity measure to a specific corpus for use in, e.g. information retrieval, for
instance, to achieve a co-occurrence-based modification of the link distance central to
many semantic similarity measures. This chapter introduces three general approaches
that combine semantic similarity measures with distributional similarity measures.
The presentation of the contribution in this chapter is a further development of the
ideas presented in Terney (2007).

Section 6.1 contains a short introduction to some of the semantic similarity mea-
sures, while section 6.2 introduces distributional similarity and the importance of
context definition. The main concern of both of these sections is to provide an in-
tuitive understanding of the main principles of the different measures using visu-
alization and examples. Section 6.3 follows with the presentation of three general
approaches for combining semantic similarity measures with distributional similarity
measures. Finally, section 6.4 ends the chapter with a discussion and a summary.
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6.1 Semantic Similarity

Resnik (1995) argues that semantic similarity is a special case of the more general
notion of semantic relatedness. He exemplifies his claim with cars, bikes and gaso-
line. Cars and gasoline, he argues, are normally considered to be more related than
cars and bikes. On the other hand, cars andbikes are certainly perceived to be much
more similar than cars and gasoline. In ontological terms, this perspective narrows
semantic similarity measures down to including only the hypernomic links between
the concepts. Relatedness is a broader notion that can be any kind of links between
the concepts in the ontology, e.g. meronymy or causality. The use of distance, Resnik
notes, is more ambiguous than similarity and relatedness, since it is used as the in-
verse of both. Resnik’s distinction between similarity and relatedness is adopted here.

In their evaluation and overview of various semantic similarity measures, Budan-
itsky & Hirst (2006) present the following two possible groupings: 1) edge-based
methods, and 2) information theoretic measures and combined measures. The first
group bases its similarity model solely on the structure of the taxonomy, while the
second group uses information theoretic measures derived from corpus statistics.

6.1.1 Edge-based methods

An early method proposed for measuring semantic similarity is simply to use the
shortest path between two concepts. Using this method, Rada et al. (1989) show
good results for their information retrieval task on Medline using Mesh as an ontol-
ogy1. With respect to atomic concepts, semantic similarity was calculated here as the
minimum number of edges connecting two concepts in the ontology. With respect
to sets of concepts, Rada et al. (1989) measure semantic similarity as the average
distance between all pairwise combinations of concepts.

In his experiments on word sense disambiguation on the Time corpus using WordNet,
Sussna (1993) notes that there often is a varying semantic similarity between super-
classes and subclasses in different parts of the ontology. Because concepts appearing
in the lower parts of the ontology are usually more closely related than concepts ap-
pearing in the upper parts, Sussna devises an edge-based weighting scheme as an ex-
tension to the shortest path approach that takes into account the depth of the concepts
in the tree. This weight is termed relative depth scaling. Concepts that are positioned
deep in the ontology get a higher similarity rating than concepts positioned close to
the top. The principle of relative depth scaling is also implemented in a different form
in the similarity measures by Leacock & Chodorow (1998) and Wu & Palmer (1994).
In addition to the relative depth scaling, Sussna also adds a type specific fanout factor
that adjusts the weight based on the number of children of a given concept, which can
be thought of as the density of the immediate area of the graph covered by the con-

1Note that the ordering relation in Mesh is BROADER-THAN, which besides hypernomy also in-
cludes meronomy.
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cept. The intuition is that a high number of children indicates a broad concept, thus
the similarity between subsumer and subsumed should be low compared to concepts
in the ontology with fewer children. The principle of a type specific fanout factor is
illustrated in figure 6.1. Overall, Sussna’s approach is based on the shortest path with
a modification of the edge distance via the relative depth scaling and the type specific
fanout factor.

authorization

certification license

acquisition

restitution procurement inheritance purchase moneymaking annexation acceptance

Figure 6.1: An illustration of Sussna’s fanout factor principle. Given that the two ontology
excerpts are positioned at the same level of depth in the ontology (which is the case in Word-
Net), certification and authorization are given a higher similarity than the similarity between
restitution and acquisition.

6.1.2 Information theoretic and combined measures

Resnik (1995, 1999) suggests a different solution to the problem of measuring seman-
tic similarity than Sussna (1993), though his approach is based on the same obser-
vation that, “A widely acknowledged problem with this approach [the shortest path],
however, is that it relies on the notion that links in the taxonomy represents uniform
distance”. Using information content, Resnik devises a new similarity measure and
applies it to the problems of syntactic and semantic ambiguity. With these tasks, it
clearly outperforms the shortest path approach. The measure is based on the infor-
mation content of concept c given by − log(p(c1)), where p(c1) is the probability of
encountering c. The probability estimates used by Resnik are undisambiguated word
frequencies, i.e. every occurrence of “bank” counts towards the same total regardless
of its sense being either river bank or financial institution. If a is the subsumer of
b, the information content of a will always be equal to or less than the information
content of b, since every occurrence of b counts as an occurrence of a. Therefore,
the information content is monotonically decreasing when moving upwards in the
hierarchy, which intuitively makes sense since the concepts become more and more
abstract. The similarity between two concepts is defined as the information content
of the least upper bound with the highest information content. This is illustrated in
figure 6.2 with the similarity between trout and salmon, which share two least upper
bounds. Since salmonid has the highest information content of the two least upper
bounds, sim(trout, salmon) = 17.8.

Jiang & Conrath (1997) suggest a combined method based on the proposed meth-
ods presented earlier. The offset is the shortest path approach, but each edge in the
ontology is scaled by a parameterized factorization of density of the graph (i.e. a

76



salmonid
 (IC=17,80)

trout salmon

food fish
 (IC=16,80)

Figure 6.2: An illustration of Resnik’s similarity measure showing that
sim(trout, salmon) = 17.8 given that salmonid is their least upper bound with the
highest information content.

modified fanout factor), relative depth scaling, a weighting of the relation type (all
three factors, similar to Sussna’s proposal), and, finally, difference in information
content of a subsumer and a subsumed (an idea similar to Resnik’s). In empirical
studies, this approach has shown good, if not the best, results when compared to hu-
man evaluation of semantic similarity and the detection and correction of real-word
spelling errors in open-class words, i.e., malapropisms.(Budanitsky & Hirst 2006).

For a more detailed and formal description of the measures presented here and
of other measures of semantic similarity, see, e.g. Budanitsky & Hirst (2006) or
Andreasen & Bulskov (2007b).

6.2 Distributional Similarity

Distributional similarity measures, which have been suggested as an alternative to se-
mantic similarity measures, have been applied to some of the same tasks (Dagan et al.
1999, Weeds & Weir 2005). Formally, the distributional similarity of two events, e1

and e2, is their tendency to co-occur in the same context. Several different mea-
surements have been proposed to measure this tendency, e.g. the cosine, pointwise
mutual information, the Kullback-Leibler divergence and Jaccard’s coefficient, etc.
The principles of these measures will be presented shortly, however, the definition of
context profoundly influences the distributional similarities found. A presentation of
the definition of context should therefore always precede the exact measures chosen.

6.2.1 Context

Next, we analyze how the different possible definitions of context influence the sim-
ilarities found. Context in natural language processing can be defined along the fol-
lowing three dimensions:
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1. Syntactic

2. Affinity

3. Entity

The first dimension is whether the context is derived syntactically or whether it is just
a window frame. Syntactically derived context can be, for instance, the surrounding
noun phrase, verb phrase, sentence, or perhaps even special syntactic functions like
verb-object relations. A window frame around the word can be, e.g. ± a 5 or 10-word
window or even the entire document.

The second dimension is the order of affinity influences. Grefenstette (1994a)
distinguishes between different orders of affinity. A first order affinity is a word often
occurring in immediate vicinity of another word. Examples of affinities found this
way are topical affinities like the affinity between pairs such as doctor. . . nurse and
save. . . from found by Church & Hanks (1990) using a non-grammatical context.

Second order affinity is words that share the same environments, i.e. a second
order affinity is not between words in the immediate vicinity of each other but words
that share first order affinities. An example of a second order affinity is between
the words tumor and tumour, where the two different spelling variations are unlikely
to occur in the immediate vicinity of one another; however, they will very likely
share the same kind of context. Affinities found in this way are often between words
from the same syntactic classes and general semantic classes, similar to the affinities
found by Hindle (1990). Hindle, who examines the affinity between nouns based
on their distribution with respect to subject-verb-object relations in a corpus of news
stories, finds, e.g. that the most similar noun to boat is ship. When he lists a set
of “reciprocally most similar” nouns, i.e. pairs of nouns that are each other’s most
similar noun, many of them are near synonyms.

The third dimension in defining context is the issue of what kind of entities is ana-
lyzed: Word senses, lexical units or perhaps characters. Using a context of characters
has proven to be successful, for instance, in spelling error correction. Third order
affinity is defined by Grefenstette (1994a) as words senses sharing the same context.
Though it is interesting that Grefenstette includes the notion of senses and thereby
concepts in his work on distributional similarity, the question of senses is in principle
unrelated to the other two orders of affinity or to the question of syntactically derived
context.

Clearly, the distributional similarity is able to capture some kind of relatedness
between lexical units. However, their relatedness is influenced by the order of affinity
between the two entities and whether the context is syntactical or not. The first order
affinity word pairs found by, e.g. Church & Hanks (1990) using a five-word window,
were of a topical nature. The word pairs found with second order affinity and related
by a specific syntactic relation found by, e.g. Hindle (1990), were near synonyms.

In the following, the principles behind four different kinds of distributional simi-
larity measures are presented. As with the semantic similarity measures, the focus is
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1. bomb – device 16. peace – stability
2. ruling – decision 17. property – land
3. street – road 18. star – editor
4. protest – strike 19. trend – pattern
5. list – field 20. quake – earthquake
6. debt – deficit 21. economist – analyst
7. guerrilla – rebel 22. remark – comment
8. fear – concern 23. data – information
9. higher – lower 24. explosion – blast
10. freedom – right 25. tie – relation
11. battle – fight 26. protester – demonstrator
12. jet – plane 27. college – school
13. shot – bullet 28. radio – IRNA
14. truck – car 29. 2 – 3
15. researcher – scientist

Table 6.1: Reciprocally similar nouns from Associated Press news stories (Hindle 1990).

on an intuitive understanding of the measures rather than their formal aspects. See,
e.g. Cover & Thomas (1991), Dagan (2000), Weeds (2003), Terra & Clarke (2003),
and Mohammad & Hirst (2005) concerning the formal aspects.

6.2.2 Set theoretic measures

A common trait of measures like Dice, Jaccard, Tanimoto (Dagan 2000, Manning &
Schütze 2003) is that they measure similarity, or inversely, distance, as the proportion
of features or elements shared by the two entities compared to all the features or
elements characterizing both the entities. Let the set A, depicted in the Venn diagram
in figure 6.3, be all the elements in the context of concept a, and B be the set of
elements appearing in the context of b. Elements can be neighboring concepts, words
or whatever the definition of context is.

A BA ∩B

Figure 6.3: An illustration of the sets of context elements A and B included in the majority
of set theoretic similarity measures.
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The Jaccard measure of similarity is defined as:

simJaccard(a, b) =
|A ∩B|
|A ∪B| (6.1)

As a refinement to the Jaccard measure, Grefenstette (1994b) introduces a weighted
version where each element in A and B are weighted according to the degree of their
affinity with a and b, respectively:

simwJaccard(a, b) =
∑

x∈A∩B(min(weight(a, x), weight(b, x))∑
x∈A∪B(max(weight(a, x), weight(b, x))

(6.2)

The weighted Jaccard measure is in effect, thus, the fuzzy generalization of the
crisp Jaccard measure with union and intersection being the standard fuzzy intersec-
tion (the minimum affinity) and union (the maximum affinity).

6.2.3 Geometrical measures

The different geometrical distributional similarity measures build on a vector space
model representation of context. Given this vector representation of entities to com-
pare, similarity can be measured by, e.g. the cosine as presented in chapter 2 or by the
Minkowski distance (Weeds & Weir 2005). If, for instance, sim(c, e) is a weight de-
noting the affinity between concept c and the element e, then the Minkowski distance
between concept a and b is defined as:

distm(a, b) = m

√∑

e∈E

|sim(a, e)− sim(b, e)|m (6.3)

where E is the set of possible elements that can appear in the context of a and b.
If m = 2, this gives the familiar Euclidian distance, and if m = 1, it gives the L1

norm (Weeds & Weir 2005, Manning & Schütze 2003, Dagan 2000). The L1 norm
is also called the Manhattan distance or city block distance because it measures the
distance between two points if you are only able to travel in orthogonal directions.
The geometrical interpretation of similarity in a two dimensional space is illustrated
in figure 6.4. The second order affinity between car and bus can be measured by
representing each concept in the vector space with the dimension ride and drive.
The L1 norm would in this case, thus, be calculated as:

distm=1(car, bus) = |sim(car, drive)− sim(bus, drive)|+
|sim(car, ride)− sim(car, ride)|

= 0.55
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Figure 6.4: An illustration of the geometrical interpretation of similarity leading to distribu-
tional similarity measures like, e.g. the cosine.

6.2.4 Information theoretic measures

In contrast to the previously presented distributional measures, the probabilistic Kullback-
Leibler divergence is an asymmetrical measure of similarity (Cover & Thomas 1991,
Manning & Schütze 2003, Dagan 2000). The Kullback-Leibler divergence measures
the similarity between two probability distributions as given by the formula2:

D(p||q) =
∑

e∈E

p(e)× log
p(e)
q(e)

(6.4)

where p and q are the two different probability distributions over some discrete ran-
dom variable, E. The Kullback-Leibler divergence measures the total divergence of
the probability distribution, p, to the probability distribution of q.

For instance, p and q can be the probability distributions of the set of verbs that
the concepts car and bus are the direct objects of. If the cardinality of the set of
verbs is 15, then the probability distributions can be depicted as illustrated in figure
6.5. The Kullback-Leibler divergence measures the total similarity of p(v), the white
bars, to q(v), the shaded bars, i.e. how much the white bars differ from the shaded
bars.

The mathematic convention p(v) × log(p(v)/0) = ∞ and 0 × log(0/q(v)) = 0
(Cover & Thomas 1991) is required otherwise the Kullback-Leibler divergence is
undefined when either p or q have a probability estimate of 0. Probability estimates of
0 can be avoided by applying some form of smoothing prior to applying the Kullback-
Leibler divergence, i.e. adjusting the likelihood estimates of low frequency words
and especially assigning a non-zero probability to unseen words. The rationale for

2Please note, that following Cover & Thomas (1991), Manning & Schütze (2003) we let p(x) denote
the probability mass function pX(x) for convenience.
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Figure 6.5: An illustration of the probability distributions of the concepts car (p) and bus (q)
over the set of verbs, (v), of which they are the direct object. The Kullback-Leibler divergence
measures the total similarity of p(v), the white bars, to q(v), the shaded bars. Note that this
is just an illustration, and that the numbers are generated randomly.

applying smoothing is that because drive and car are never seen in context in our
corpus assuming a zero probability of them ever appearing is unreasonable (for more
on smoothing see e.g. (Manning & Schütze 2003)).

The Jensen-Shannon divergence (Dagan et al. 1999) measures the total diver-
gence to the average of the two distributions, p and q, as given by the formula:

Djs(p, q) =
1
2

[
D

(
p||p + q

2

)
+ D

(
q||p + q

2

)]
(6.5)

Thus the Jensen-Shannon divergence eliminates the problem of smoothing since nei-
ther of the probability estimates appears in the denominator. The Jensen-Shannon
divergence also differs from the Kullback-Leibler divergence by being symmetric in
that it measures the divergence to the average of the two distributions.

Pointwise mutual information is another probability-based measure that has been
used by several researchers as a basis for measuring the strength of affinity in natural
language processing, e.g. the experiments by Church & Hanks (1990) and Hindle
(1990) referred to in the section on context definition. Mutual information is the
reduction in uncertainty of one random variable due to knowing the value of the
other variable. This can be defined as (Cover & Thomas 1991):

I(C;E) =
∑
c,e

p(c, e)× log
p(c, e)

p(c)× p(e)
(6.6)

where E is the set of elements, C is the set of concepts and p(c, e) is their joint
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probability distribution. For instance, if the elements are verbs in a direct object-verb
construction with the concept c, then climb, to a larger extent, reduces the uncertainty
of what concept c is than if the verb had been have, which is natural because a good
deal fewer concepts appear as the direct object of climb than as the direct object of
have.

The mutual information of two variables can be thought of as a measure of their
independence, which in the case of the direct object-verb relation is how independent
the verb is of the direct object and vice versa. Pointwise mutual information is the
independence between two specific variables, c and e:

I(c, e) = log
p(c, e)

p(e)× p(c)
= log

p(c|e)
p(c)

= log
p(e|c)
p(e)

(6.7)

Based on pointwise mutual information, Hindle (1990) defines a measure of simila-
rity between two nouns as:

simHindle(n1, n2) =
∑

v

f(I(v, n1), I(v, n2)) (6.8)

where:

f(a, b) =





min(a, b) if a > 0, b > 0
abs(a, b) if a < 0, b < 0
0 otherwise

(6.9)

One of the problems with using pointwise mutual information is that it tends to
overemphasize low frequency co-locations, which is counter intuitive to what we
expect of a good similarity measure (Manning & Schütze 2003).

6.3 Combining Semantic and Distributional
Measures of Similarity

We now turn to approaches for combining semantic and distributional similarity mea-
sures. As described in the introduction, the purpose of combining semantic simila-
rity and distributional similarity is to arrive at a similarity measure that utilizes the
knowledge embedded in the taxonomy while taking into account the distributional
similarities between concepts as found in a particular corpus.

The motivation for proposing this combined measure of similarity is closely con-
nected to the discipline of ontological engineering. If the semantic similarity measure
used to search in a corpus is not application or corpus specific, it is likely that not all
relevant relations are modeled in the ontology. This is partly because the ontologi-
cal coverage of the conceptual structure of a domain can never be guaranteed to be
complete, but more importantly, also because there are relevant relations from an in-
formation retrieval viewpoint that are not reasonable to model. For instance, is Iraq
closer to war than, e.g. Sweden? From an ontological viewpoint this is not the case;
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but all things being equal, Iraq is currently more closely related to the concept of
war than Sweden. In a corpus on historical events, associating war more closely to
especially war faring nations compared to largely peaceful nations, as measured by
how often they appear in the context of war, would make sense from an information
retrieval perspective. Another example is the different associations oil would have
in a corpus on foreign policy compared to a corpus on environmental issues. In the
former, oil probably has strong associative links to OPEC, whereas in the latter, oil
probably has strong associative links to concepts like beach and tanker. In summary,
the argument put forward here is that from an information retrieval perspective on si-
milarity measurement, dynamically establishing associative links between concepts
in the ontology is relevant, i.e. links where grounding them more formally in the
ontology is not reasonable.

Another perspective on combining semantic and distributional similarity is that
some links are more important than others, and that this importance, to a certain de-
gree, is corpus dependent. Rather than establishing dynamic links, the intent is thus to
adjust the similarity based on the strength of the associativity along existing relational
links between the concepts. For instance, in the domain of agriculture, pesticide and
its generalization chemical is probably more closely related both conceptually and
distributionally than in a corpus on toys where chemical is probably more related to
its generalization softener.

From the perspective of distributional similarity, there is also a reason for trying
to combine with more knowledge-based methods of measuring similarity. In his over-
view of different distributional similarity measures, Dagan (2000) argues that there is
still ample room for future research in distributional similarity measures since many
of the patterns found can be regarded as noise. The addition of ontological knowl-
edge can guide the process of finding relevant distributional patterns. If a concept,
a, has a high distributional similarity with several concepts situated closely to con-
cept b in the ontology, these patterns should not be regarded as noise but rather as
expressing special affinities in the corpus. Dagan, for instance, finds that shipment
has a high distributional similarity with both sale and contract which on a conceptual
level are a type of agreement. That shipment also has a high distributional similarity
with election is probably less relevant if it is the only link between the two areas in
the ontology.

The proposed methodology here is related to ontology learning based on the sta-
tistical analysis of corpora as described in, e.g. Maedche & Staab (2004). In ontology
learning, the aim is to find permanent and, to a large extent, verified ontological re-
lations that can be used for various information system tasks. However, the main
concern focuses on measuring similarity between concepts for use in information re-
trieval based on the possible dynamic and temporary associativity of concepts, i.e.
associativity as expressed through their distributional similarity and their conceptual
similarity.

In the following, we suggest three possible approaches for combining semantic
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similarity and distributional similarity. First, a direct approach where the semantic
similarity of two concepts, a and b, and the distributional similarity are directly com-
bined. Second, an approach where the semantic similarity is combined with what
we will refer to as the “distributional density” of all the concepts on the path leading
from a to b. Third, an integrated approach where the link strength between parent
and child concepts is modified by their distributional similarity.

6.3.1 A direct approach

The similarity of two concepts, a and b, can be measured with both a semantic simila-
rity measure, sims, and a distributional similarity measure, simd. A straightforward
approach is a weighted combination of the two similarity measures, for instance, as
a weighted average or possibly the product:

simdirect(a, b) = sims(a, b)α · simd(a, b)β (6.10)

When the parameter α = 1 and β = 0 simdirect is the semantic similarity, and
when the parameter α = 0 and β = 1 simdirect is the distributional similarity. This
straightforward kind of combination is illustrated in the taxonomy fragment in figure
6.6, where the taxonomic path leading from a to b, represented by a solid line, is used
for calculating the semantic similarity which, in turn, is modified by the distributional
similarity represented by the dotted line. The advantage of the direct combination is
its simplicity and that any kind of semantic and distributional similarity measures can
be used.

a

b

lub(a, b)

Figure 6.6: An illustration of the connections taken into account in the direct approach. The
concept pair for which distributional similarity is measured is shown with a dotted line and
taxonomic links are shown with solid lines. lub(a, b) denotes the least upper bound of a and
b.

6.3.2 A density-based approach

Even though the direct approach is simple and therefore appealing, we do not fully
benefit from the taxonomy when calculating the distributional similarity. High dis-
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tributional similarity of any pair of concepts along the path from a to b should have
an effect on the combined similarity measure. For instance, in a corpus on environ-
mental issues, a high similarity between chemical and pollution should affect the
similarity of pollution to any specific kind of chemical, e.g. pesticide or herbicide.

To capture this aspect, we introduce the notion of distributional density. Distri-
butional density is concerned with the general notion of an aggregated distributional
similarity derived from concepts in the structural vicinity of a and b in the ontology.
Let Va and Vb be the concepts in the vicinity of a and b, respectively. The distribu-
tional density can then be expressed as:

d(a, b) =
1

|Va × Vb|
∑

(x,y)∈Va×Vb

simd(x, y) (6.11)

With Vi, for instance, given by:

Vi = {c|len(ci, c) < x} (6.12)

with len(ci, c) being the shortest path length from ci to c. The notion of distributional
density is illustrated in the taxonomy fragment in figure 6.7.

pesticide

chemical pollution

lub(pesticide, pollution)

Figure 6.7: An illustration of the connections taken into account in the distributional density
approach. Concepts are considered relevant if they are at a distance of 1 from chemical or
pollution.

Similar to the direct measure, the combined similarity can be calculated as a
product of the semantic similarity and distributional density:

simdensity(a, b) = sims(a, b)α · d(a, b)β

The direct method introduced earlier is in fact a special case of the density based
method with Vi as in equation 6.12 where x = 0. Similar to the direct method
distributional density approach, this method can be a combination of any kind of
semantic and distributional similarity measure.
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6.3.3 A weighted link approach

While the two other suggested approaches modify the result of the semantic similarity
measure, the integrated approach introduced in the following is based on a modifi-
cation of the basis for calculating semantic similarity. The purpose is to reduce the
distance between child and parent concepts if there is a minor difference in their use
in the corpus. The inspiration for this approach is taken from the combined approach
proposed by Jiang & Conrath (1997) described in 6.1.2. Jiang & Conrath adjust the
link strength between a child and a parent node based on, among other things, their
difference in information content. A small difference indicates high similarity and a
large difference indicate low similarity.

Figure 6.8 illustrates a scenario where agreement is the subsumer of settlement
and conspiracy, and where the number of occurrences in the corpus is indicated in
parentheses. The concept agreement appears a total of 200 times, 150 of which are

Agreement(200)

Settlement(100) Conspiracy(50)

Figure 6.8: An illustration of the number of occurrences of the three concepts agreement
settlement, and conspiracy and their relation. Note that agreement occurs 200 times because
each timesettlement and conspiracy appear, they count as an occurrence of agreement.

because each occurrence of conspiracy and settlement counts as an occurrence of
agreement and 50 of which are when agreement occurs alone. Let us assume that the
50 times agreement occurs, it actually co-occurs with conspiracy. Using informa-
tion content to adjust the edge distance would result in agreement and settlement
having a high degree of similarity compared to agreement and conspiracy, de-
spite agreement and conspiracy having a distributional similarity that is much
higher (simd(agreement, settlement) << simd(agreement, conspiracy)). In
other words, the use of information content can lead to a counter-intuitive weighting
of the link distance between two concepts.

An alternative to the information-based link adjustment can be achieved by weight-
ing the link strength between a parent concept and a child concept based on their co-
occurrence. Like the information-based weight, a co-occurrence-based weight can
be combined with any of the previously suggested edge-based weighting schemes or
all of them (as Jiang & Conrath in essence also propose). The result would thus be
a weight that incorporates diverse information about density, depth, information con-
tent, relation type and, finally, distributional similarity. This method is illustrated in
the taxonomy fragment in figure 6.9. As noted, only edge-based semantic similarity
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measures are suited for this combination with distributional similarity measures.

a

b

lub(a, b)

Figure 6.9: An illustration of the integrated method.

If swp denotes the sum of the total weights on the links on path p from concept a
to b, and P is the set of all paths, then the similarity between the two concepts can be
expressed by applying the shortest path principle as:

simintegrated(a, b) = min
p∈P

[swp]

6.4 Discussion and Summary

The purpose of the research described in this chapter has been to explore approaches
for combining semantic similarity measures based on ontologies with distributional
similarity measures based on corpus statistics. We suggest three approaches that com-
bine these two types of similarity measures in a common measure of similarity. The
first approach combines the result of any semantic similarity measure with the distri-
butional similarity of the concepts and the path between the two concepts. The second
approach combines the result of any semantic similarity measure with the distribu-
tional density of the path between the two concepts, and, as such, is a generalization
of the first approach. The third approach modifies the basis of an edge-based semantic
similarity measure by including knowledge about the co-occurrence of parent-child
concepts in a corpus. This method can be seen as a supplement to existing edge-based
approaches, thereby offering another option for adjusting the link distance used for
similarity measurement in ontologies. Though distributional similarity and semantic
similarity are related it is a novel idea to combine the two measures in one.

This chapter introduces the notion of the distributional density of two concepts,
a and b, as the distributional similarity of the pairwise combination of all concepts
closely situated to the two concepts in the ontology. Two possible expressions of what
closely situated implies are suggested, namely as the average of the distributional
similarity of all the concepts on the path from a to b via either their least upper bound
or their greatest lower bound, and as the average distributional similarity of concepts
at a certain distance from either a or b. Future work should include a measure of
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distributional density based on semantic expansion as described in chapter 4, rather
than on edge distance. An open research question is naturally how much the different
definitions of distributional density positively affect information retrieval based on
different semantic similarity measures.

An issue that has yet to be examined is what the optimal definition of context
is. With the first two approaches suggested, the attempt is to capture a more general
relatedness as expressed in the corpus; hence, first order affinity concept pairs found
using a sliding window might be most useful. With the integrated approach, on the
other hand, the attempt is to find child-parent concepts that are used synonymously
to a certain extent. Therefore, second order affinity word pairs using a syntactically
derived context might be most useful.
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Chapter 7

Index Expansion in the Vector
Space Model

One of the main reasons for introducing ontology-based information retrieval is the
possibility of retrieving documents semantically related to the query rather than simi-
lar documents based on pure lexical match. Chapter 2, for instance, used the example
“I made her duck” and “she cooked me drake”. Though the two sentences has very
little in common on a lexical level they are semantically similar because drake is spe-
cial kind of duck, and make and cook are synonyms. A match between the query I
made her duck and the document containing she cooked me drake can be achieved by
expanding the query with related terms as defined by the ontology. If WordNet 3.0
(WordNet 2009) is used as the basis, and we chose to expand nouns and verbs with
synonyms and immediate specializations, the query I made her duck can expanded to
the query:

{I, made, cooked, fixed, prepared, her, duck, drake, quack-quack, duck-
ling, diving duck, dabbling duck, dabbler, mallard, Anas platyrhynchos,
black duck, Anas rubripes, teal, widgeon, wigeon, Anas penelope, shov-
eler, shoveller, broadbill, Anas clypeata, pintail, pin-tailed duck, Anas
acuta, sheldrake, ruddy duck, Oxyura jamaicensis, bufflehead, butter-
ball, dipper, Bucephela albeola, goldeneye, whistler, Bucephela clan-
gula, canvasback, canvasback duck, Aythya valisineria, pochard, Aythya
ferina, redhead, Aythya americana, scaup, scaup duck, bluebill, broad-
bill, wild duck, wood duck, summer duck, wood widgeon, Aix sponsa,
mandarin duck, Aix galericulata, muscovy duck, musk duck, Cairina
moschata, sea duck}1

The expanded query would provide the basis for at least a partial lexical match to
the document containing she cooked me drake because drake is added to the query.

1Please note that this is example contains a simplification in that we have ignored morphology by
expanding to verbs in the same tense as made.
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Thus by expanding the query based on the ontology we have made it possible to
retrieve semantically related documents to the original query I made her duck. An
obvious alternative to expanding the query is to expand the index, and this chapter
will present a previously unpublished model for ontology-based expansion of the
index in the vector space model. The principle idea in the presented model is to
expand the index rather than the query in order to make the expansion sensitive to the
discriminative power of the concepts included in the expansion. This is achieved by
introducing a new generalized measure of term frequency and the parameter λ that
emphasizes either lexical matching or conceptual matching. The presented model
has three major strengths. First, it can with relative ease be adopted in information
retrieval systems already based on the vector space model because it only modifies
the term weighting, and thus leaves the rest of model unchanged. Second, the model
takes of advantage of expanding at the time of indexing by including the resolution
power of the concepts in the expansion.

The chapter will begin with presenting some basic considerations in ontology-
based query expansion, and then continue to the presentation of the model for index
expansion.

7.1 Query Expansion

Query expansion or query refinement has been an active research area for a long
time. Query expansion is the process of supplementing the original query with addi-
tional terms, and it can be done manually, automatically or interactively also known
as semi-automatic, user mediated, and user assisted respectively (Efthimiadis 1996).
The focus here is not a general account of the various perspectives on query expan-
sion, but to give the reader a basic understanding of ontology-based automatic query
expansion. This will in turn serve as the basis for understanding how expansion can
be used in the model for index expansion considered in the next section.

In ontology-based query expansion the selection of good concepts for query ex-
pansion is based on their similarity to the original concept c in the query2. Identifying
similar concepts can be performed by including closely related concepts defined by
the ontology as expressed by nearness in the ontology. The original concept is used
as a starting point and the concepts most similar to this are added to the description.
The fundamental assumption is that concepts situated close together in the ontology
are more closely related than concepts situated far apart.

The principle of concept expansion is illustrated in figure 7.1 with the descriptor
dietary[CHR : treatment], where the light gray items indicate a decreasing degree of
similarity compared to the original concept measured as simple path length.

Chapter 3 discusses why the logical reasoning capabilities in some aspects of

2Here we shall only consider a query with one concept but the formalism introduced here is straight-
forward to generalize to sets of concepts.
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top

carefare

treatmentdietary

treatment[CHR:dietary] massage medical care

Figure 7.1: An illustration of the principle of the semantic expansion of the concept
treatment[CHR : dietary], where the gray shading indicates a decreasing degree of similarity
with the original concept

ontology-based information retrieval are less important and interesting than the graph
representation of the ontology. Figure 7.1 also illustrates this issue.

Since the continuous addition of related concepts quickly can result in a large
number of concepts being included in the expansion, the process typically continues
until some stop criterion is met, allowing only pertinent concepts to be included in the
expansion. As the example with {I, made, her, duck} illustrated the expanded query
can quickly become significantly larger than the original query. In general, the stop
criterion can take two different forms. First, it can be a similarity threshold, which
results in a stop in the spreading when the similarity of concepts is too low compared
to the original concept. If the fuzzy set of similar concepts to concept c is defined as:

S = {sim(c, c′)/c′|c, c′ ∈ C} (7.1)

then the set of expanded concepts based on the similarity threshold, π, can be ex-
pressed as the α− cut on S:

αS = {c|µS(c) ≥ α, α = π} (7.2)

Similarity can be measured here by, e.g. path length, so concepts far away in the
ontology will not be included. Alternatively, the addition of similar concepts to the
query can be stopped when the expansion has reached a certain size measured by
a threshold on the cardinality of the expanded query. Let τ denote the cardinality
threshold, then the α−cut on S, which gives a cardinality less than τ , can be defined
as:

α =
{

1 if |1S| > τ
min{β||βS| < τ}, otherwise

(7.3)
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The similarity threshold ensures a relatively small set of nodes only if a few con-
cepts have a high similarity with c. On the other hand, if many concepts have a
high similarity with c, only the cardinality threshold ensures a relatively small set.
The challenge, however, is that both problems can occur within the same taxonomy.
Therefore, a conjunction of the two thresholds will in most cases be appropriate. The
set of expanded concepts can thus be defined as:

αS, where α = min{β||βS| < τ, α > π} (7.4)

For a recent and very thorough overview of ontology-based query expansion see
Bhogal et al. (2007) which also describes numerous experiments applying either the
similarity or the cardinality threshold. Another important and often cited reference
on the topic is Voorhees (1994) which showed that assigning lower weights to re-
lated concepts improves retrieval accuracy, and that automatic query expansion us-
ing weighted synsets and hyponyms yielded the best results. Mihalcea & Moldovan
(2000) achieved even better results with unweighted synset-based expansion which is
likely due to an improved word sense disambiguation compared to Voorhees (1994).

That synsets and hyponyms yields the best results in query expansion is supported
by experiments with thesaurus-based query expansion. However in thesaurus-based
query expansion the relations are lumped together in equivalence (synonymy), hier-
archical (include both hyponymy and meronymy), and associative relationships (all
other relations) (Kristensen 1993, Greenberg 2001a,b, Tudhope et al. 2006). The
findings by Kristensen (1993), Greenberg (2001a,b) are that narrower terms and syn-
onyms can increase recall at only a slight precision penalty. Broader terms and related
terms naturally increase recall but results in lower precision. Tudhope et al. (2006)
does not report in quantitative measures on their findings. Kristensen (1993), and
Greenberg (2001a,b) both used unweighted expansion and include only concepts in
the immediate vicinity of the original query. In other words the similarity thresh-
old in the expansion is thus applied. Tudhope et al. (2006) on the other hand uses a
weighted expansion and directly applies a similarity threshold in their expansion.

Besides being of general interest in ontology-based information retrieval, expan-
sion plays an important role in the next section, which presents an ontology-based
information retrieval model based on the vector space model. An important compo-
nent here is the expansion of the index with related concepts.

7.2 An Ontology-Based Vector Space Model

A fundamental prerequisite for ontology-based information retrieval is obviously on-
tologies. Unfortunately, for a great number of languages, an expansive publically
available ontology like WordNet and Cyc simply does not exist. Also, domain spe-
cific ontologies are a scarce resource even for English. For Danish the only available
general language ontology for a number of years has been SIMPLE, which covers
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an estimated 10,000 words. This is too little coverage for general information re-
trieval systems relying solely on the ontology for indexing and matching. Despite
these obstacles, even a small ontology offers the addition of semantics to informa-
tion retrieval. The challenge is thus to design flexible information retrieval models or
techniques that provide the means for integrating keyword-based and ontology-based
information retrieval.

An ontology-based vector space model will be introduced here. The idea is to
expand the index with related terms based on a similarity measure, for instance, by
adding car to the index if jeep and coupe appear in the document. The expansion of
the index, rather than the query, has the advantage of making it possible to take the
frequencies of the terms in the document collection into account, i.e. if both jeep and
coupe appear in a document, car should probably be given a higher weight than if
only one of them appears.

Before proceeding to the index expansion itself, let us briefly recapitulate from
chapter 2. In the vector space model, the set of terms in the document collection
constitutes the dimensions of the vector space, so the number of dimensions of the
vector space is equal to the cardinality of the set of terms, |T |. The j’th document
can be represented as a weighted vector where each weight, wij , indicates the weight
of term ti in document dj as assigned by some index function, index(dj , ti). This
weight is typically some variation of the tfidf as, for instance, given by:

tfi,j =
fi,j

maxl(fl,j)

idfi = log
(

N

ni

)

tfidfi,j =
fi,j

maxl(fl,j)
· log

(
N

ni

)

where fi,j is the frequency of term ti in document dj , ni is the number of documents
in which term ti appears and N is the number of documents in the collection. Doc-
ument dj can thus be described as the vector dj , and similarity between query and
document vectors can, for example, be measured by the cosine.

7.2.1 A generalized tfidf measure

In the ontology-based vector space model the term space, T , is the union of the set
of terms in the document collection and the set of terms denoting concepts in the
ontology. As a weighting scheme, we apply a generalized measure, tfidf ′, where the
frequency of a term is influenced by the frequency of related terms. How much the
frequency is affected is determined by how similar the terms are. First an ontology-
based term frequency measure f ′, as the local weight, is introduced followed by an
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example of how to calculate the weight given a toy example. Subsequently we turn
to a global weight in the form of an ontology-based inverse document frequency idf ′.

Local weight

Let us assume a similarity measure of sim(ta, tb) ∈ [0, 1] that expresses the simila-
rity between the terms ta and tb. In the ontology-based expansion, this similarity is
measured by how similar the underlying concepts are, derived, for instance, from the
shortest path between the concepts. We propose that the generalized frequency, f ′i,j ,
of a term, ti, can be calculated as:

f ′i,j =
m∑

k=1

sim(tk, ti)× fk,j (7.5)

The generalized frequency, f ′i,j , of a term, ti, is thus the sum of ti’s frequency and the
frequency of conceptually related terms modified by their similarity to term ti. Here
m denotes the size of the vector space. When the similarity measure is strict (in the
sense that it assigns a similarity of zero to anything but the terms itself), the frequency
of a term given by equation 7.5 is identical to the frequency applied in standard tfidf .
In all other cases, terms are expanded based on the similarity measure.

Global weight

With the term frequency in place, we now turn to inverse document frequency. The
most direct approach would be to simply use the generalized frequency f ′. The
intuition being that if a term is in a document it should be counted fully towards its
document frequency; this irrespective of whether the term is present in the document
or whether its frequency is due to the expansion of related terms. In this approach,
the number of documents where term ti appears, n∗i , can be expressed as:

n∗i = |{dj |f ′i,j > 0}| (7.6)

The problem with using such an approach is that many terms, and especially
the more general terms, will fully appear in most documents if the similarity mea-
sure is not restrictive. An alternative and more refined approach could be to use a
weighted document frequency where documents are not counted fully if the term is
only present due to the expansion of a related term. We propose that the weight of ti
in the document frequency, n′i, could, for instance, be measured as the similarity of
the most similar term, tk, in the document, dj , to term ti:

n′i =
N∑

j=1

max
tk∈dj

(sim(tk, ti)) (7.7)
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With N being the the size of document collection. The generalized term frequency
inverse document frequency, tfidf ′, is thus:

tfidf ′i,j =
f ′i,j

maxl(fl,j)
· log

(
N

n′i

)
(7.8)

An example

In order to illustrate the generalized term frequency, f ′, consider table 7.1, which lists
the frequency, fi,j , of the different terms in the document collection d1, d2, d3, and
the ontology excerpt from WordNet in figure 7.2.

f

Document d1 d2 d3

Term
vehicle 0 0 11
motor vehicle 0 1 1
automotive vehicle 0 0 0
truck 0 4 16
car 6 19 0
auto 0 3 0
automobile 3 11 0
offroader 0 0 0
jeep 1 0 0
coupe 8 4 0

Table 7.1: A table of the frequencies, fi,j , in the document collection of the terms in the
ontology excerpt in figure 7.2.

vehicle, motor vehicle, automotive vehicle

truck car, auto, automobile

offroader, jeep coupe

Figure 7.2: An ontology excerpt from WordNet.

Further, to keep things uncomplicated, we use the following simple similarity
measure. The measure assigns a similarity of 1.0 to all synonyms, a similarity of 0.5
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to immediate specializations, and a similarity of 0.0 to all other terms. For instance
is sim(vehicle, car) = 0.5 and sim(car, auto) = 1 since car and auto are in the
same synset. Table 7.2 lists the generalized frequencies, f ′i,j , based on the expansion
by means of the ontology and by means of this similarity measure.

f f ′

Document d1 d2 d3 d1 d2 d3

Term
vehicle 0 0 11 4.5 19.5 22.5
motor vehicle 0 1 1 4.5 19.5 22.5
automotive vehicle 0 0 0 4.5 19.5 22.5
truck 0 4 16 0 4 16
car 6 19 0 13.5 35 0
auto 0 3 0 13.5 35 0
automobile 3 11 0 13.5 35 0
offroader 0 0 0 1 0 0
jeep 1 0 0 1 0 1
coupe 8 4 0 8 4 0

Table 7.2: A table of the frequencies fi,j and f ′i,j of the terms in the document collection.

For instance, the frequency of coupe, car, and vehicle in document d2 by means of
this similarity measure is given by:

f ′coupe,d2
= 1.0× fcoupe,d2

= 1.0× 4
= 4

f ′car,d2
= 1.0× fcar,d2 + 1.0× fauto,d2 + 1.0× fautomomobile vehicle,d2 +

0.5× foffroader,d2 + 0.5× fjeep,d2 +
0.5× fcoupe,d2

= 1.0× 19 + 1.0× 3 + 1.0× 11 +
0.5× 0 + 0.5× 0 +
0.5× 4

= 35
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f ′vehicle,d2
= 1.0× fvehicle,d2 + 1.0× fmotor vehicle,d2 + 1.0× fautomotive vehicle,d2 +

0.5× ftruck,d2 +
0.5× fcar,d2 + 0.5× fauto,d2 + 0.5× fautomobile,d2

= 1.0× 0 + 1.0× 1 + 1.0× 0 +
0.5× 4 +
0.5× 19 + 0.5× 3 + 0.5× 11 +

= 19.5

Using equation 7.8 the tfidf ′ of coupe, car, and vehicle in document d2 can be
calculated as:

tfidf ′coupe,d2
=

4
35

log
(

3
2

)

= 0.07

tfidf ′car,d2
=

35
35

log
(

3
2

)

= 0.58

tfidf ′vehicle,d2
=

19.5
35

log
(

3
2.5

)

= 0.15

The standard tfidf weights would in contrast be:

tfidfcoupe,d2 =
4
19

log
(

3
2

)

= 0.12

tfidfcar,d2 =
19
19

log
(

3
2

)

= 0.58

tfidfvehicle,d2 =
0
19

log
(

3
1

)

= 0.00

The example containing coupe, car, and vehicle illustrates some important as-
pects of the proposed approach.

First, it shows how conceptually related terms are added to the index. Vehicle
does not appear as a term in either document 2 or 3, but is added to the index because
of the expansion of the synonym automotive vehicle and the specializations car, auto,
and automotive. Naturally, the exact choice of similarity measure is of great impor-
tance, since it determines the weight of the terms that are the result of an expansion.
If one compares the tfidf and tfidf ′ of coupe and car, it also becomes clear that the
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weight of car relative to the weight of coupe increases. This is due to the fact that
document d2 simply contains more on cars if one takes related terms into account.

Second, it is clear, all things being equal, that the resolving power of many terms
will be smaller simply because they appear in more documents due to the expansion.
The resolving power of vehicle is thus reduced because it appears in all three docu-
ments after the index expansion if the more naive approach of measuring document
frequency is used. The addition of related terms has thus come at the cost of reduc-
ing the resolving power of these related terms. However, this challenge is met by
introducing a more refined weighted inverse document frequency.

Third, unless a special similarity measure is devised, synonyms are given the
same weight. All the ontology-based similarity measures presented in chapter 6
treated terms denoting the same concepts as identical. From a general information
retrieval perspective, the description of the documents would have a higher fidelity if
the terms actually appearing in the documents where emphasized in some manner -
even though, from a more strict ontological perspective, it is irrelevant which terms
actually denote the concepts. In the following, we thus refine the approach in order
to make it possible to emphasize lexical matching. By emphasizing lexical matching,
the problem of having to devise special similarity measures to tackle the synonyms
issue can be avoided, and emphasizing lexical matching is also one method for con-
trolling the influence of the expansion on the term weights.

7.2.2 Emphasizing lexical match

In order to make it possible to emphasize lexical matching, we initially describe
the documents using two vectors. The first vector is the standard unexpanded term
vector, d, where term weights are the standard tfidf . The second vector, d′, contains
the expansion of the terms in d, where the tfidf is based on a modification of the
term frequency, f ′i,j :

f ′i,j =
m∑

k=1,k 6=i

sim(ti, tk)× fk,j (7.9)

The only difference between equation 7.5 and equation 7.9 is that the frequency of the
term is not part of the sum, k 6= i. Since the frequency of the term is not part of the
sum, the weighting of terms in d′ is only based on the frequencies of related terms.
Using the simple similarity measure described above, the frequencies of related terms
are shown in table 7.3.

In order to emphasize lexical or conceptual matching, documents and queries can
now be represented as the sum, d′′, of the two vectors, d and d′:

d′′j = dj + λd′j , λ ∈ [0; 1] (7.10)

λ adjusts the weight of the term and the related terms in the matching. Thus λ adjusts
the weight of the ontological contribution to the match. In the case of λ = 1, related
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Document 1 2 3
Term
vehicle 4.5 19.5 11.5
motor vehicle 4.5 18.5 21.5
automotive vehicle 4.5 19.5 22.5
truck 0 4 16
car 7.5 14 5.5
auto 13.5 32 5.5
automobile 10.5 24 5.5
offroader 1 0 0
jeep 0 0 1
coupe 8 4 0

Table 7.3: A table of the frequencies, f ′i,j , of related terms based on equation 7.9.

terms and the terms themselves are considered to be of equal importance. In all other
cases where λ < 1, lexical matching is emphasized.

7.3 Related work

Some of the more well-known work in this area includes that of Voorhees (1994,
1999) on query extension using WordNet. Voorhees uses a tfidf weighted vector to
represent documents but an extension of the vector space model to represent queries.
A query is composed of up to 11 subvectors of the same size as the document vectors,
where these subvectors are a representation of the original stems of the query, the
expansion through synsets and the expansion through each one of the different kinds
of relations in WordNet. Similarity is the sum of the similarity between the composed
query vector and the document vector. The studies showed that semantic expansion
can degrade performance and that inadequate word sense disambiguation plays a vital
role in this respect. All the later work cited here supports these findings.

Gonzalo et al. (1998) index in the vector space model using WordNet synsets
rather than terms, but they do not expand the index with related synsets. The exact
weighting of the synsets is unaccounted for. The experiments show a remarkable im-
provement of 29% in precision, but this might be due to a very special test collection
where the queries were summaries of SEMCOR documents. Precision is measured
as the system’s ability to return the document belonging to a summary as the most
relevant given the summary as the query.

Mihalcea & Moldovan (2000) combine lexical and semantic indexing in the Boolean
model. The index is based on the stem of the word, its part of speech and the ID of
the synset to which the word belongs. The results are encouraging, especially con-
cerning automatic word sense disambiguation, where the work shows that word sense
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disambiguation has achieved an acceptable level for doing ontology-based informa-
tion retrieval. The issue of word sense disambiguation is somewhat orthogonal to the
question of semantic expansion, and there is little doubt that irrespective of what spe-
cific expansion scheme is used, word sense disambiguation is a fundamental building
block of information retrieval systems incorporating semantic expansion.

The work of Hotho et al. (2003) is the most similar to the model presented in this
chapter, although their focus is on clustering instead of information retrieval. Hotho
et al. represent documents as vectors in a vector space but with the difference that the
space of terms is extended or concatenated with a conceptual space. With respect to
indexing, they test three different strategies:

1. The term vector, t, is extended with a concept vector, c, based on synsets.

2. All terms appearing in c are removed from t, leaving the rest of the terms.

3. The documents are only represented by the extension of the term vector, c.

A concept weighting is also presented based on the sum of the raw concept frequency
and the summed frequency of all subsumed concepts up to a given level measured by
the shortest path. The results of the experiments show that the addition of conceptual
indexing with some expansion of generalized concepts improves clustering. Unfor-
tunately, the results of the replacement strategy (2) are unaccounted for.

One of the differences between the model presented in this chapter and the related
work described here is in the integration of the term space and the concept space. In
contrast to Hotho et al. (2003), who introduce a conceptual subspace concatenated
with the term space, the model presented in this chapter integrates the two levels of
description in one space. This space, however, can possibly be extended with con-
cepts having no lexical forms in the corpus. Why Hotho et al. chose this concatenated
space is not explained further, but having a separate concept space and lexical space
is naturally more flexible than treating them as one space. One drawback, however, is
that the cardinality of the vector space increases, thereby increasing the complexity
of measuring similarity.

Another difference is the expansion of the concepts and the concept weighting.
The extension of the query done by Voorhees (1994) has the possibility of empha-
sizing certain relations by weighting each of the subvectors, which is also tested.
The weighting of the terms is simply tfidf , and in the subvectors the concepts are
weighted based on their raw occurrence in the document excluding any expansion.
Hotho et al. (2003) use the upwards expansion of a concept and include this expan-
sion in the calculation of concept frequency. Our model differs in this respect in that
it is entirely flexible as to what kind of concept expansion is preferred. Moreover, the
addition of a measure of the specificity of the expansion , the idf measure, is a great
improvement of the weighting scheme. For instance, an expansion strategy of up-
wards expansion will not result in all documents being similar due to shared concepts
at a high conceptual level. The global weighting thus ensure that concepts with a low
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resolving power will not adversely effect the precision of the retrieved results. A final
difference is the smoother scaling of the term-based index versus the concept-based
index as introduced by lambda in equation 7.10.

The introduction of term weighting is the main difference between the approach
presented here and he fuzzy information retrieval using a fuzzy thesaurus presented
in 2. However, the idea of weighting the ontology-based expansion presented here
could also have been framed within the model for fuzzy information retrieval using a
fuzzy thesaurus. It is thus not the model that is essential here but the term weighting.

In the presentation of the ontology-based vector space model it has been pre-
sumed that the similarity measure was based on the ontology. This was done in-
tentionally since the purpose has been to design flexible methods for combining
keyword-based and ontology-based information retrieval. However, there is noth-
ing inherent in the model model that requires the similarity measure to be ontology-
based. Chapter 6 presents distributional similarity measures based on the co-occurrence
of words or concepts in a document collection with no knowledge of their ontological
relatedness. For instance, oil and OPEC often co-occur but are situated far apart, at
least along the hypernymy/hyponymy relations. Statistical knowledge in the form of
co-occurrence patterns could thus also be used in the expansion.

The generalized tfidf weighting and the flexibility provided by representing each
document and query as d′′ in our ontology-based modification of the vector space
model mean we have succeeded in providing a mean for integrating keyword-based
and ontology-based information retrieval.

7.4 Discussion and Summary

Ontology-based information retrieval offers a semantic matching not possible with
information retrieval relying solely on the lexical level for the representation of mean-
ing. This is the motivation for the approach to ontology-based index expansion in the
vector space model introduced in this chapter. The approach consists of a general-
ized term frequency inverse document frequency which makes it possible to expand
the index by using any kind of similarity measure. The approach presented also con-
sists of a flexible weighting scheme which allows an emphasis on either conceptual
or lexical matching. Besides the model, the chapter presented the automatic query
expansion framed in fuzzy logic.

Besides the flexible weighting scheme noted above the model introduced here has
two advantages. First, from a system architectural viewpoint it can be adopted with
relative ease into existing information retrieval systems. Only the term weighting part
of the indexing component needs modification, and the rest of the system can be used
unchanged. Given the popularity of the vector space model Meadow et al. (2007),
Baeza-Yates & Ribeiro-Neto (1999) it is important for the advance of ontology-based
information retrieval that the models can be easily integrated in the existing systems.
A second advantage of the model presented in this chapter is the expansion of the
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index rather than the query. This is the most important feature because it enables
the expansion to take into account the resolving power of the expansion. Continuing
on the example from the beginning of the chapter with {I, made, her, duck}. It will
adversely effect the precision of the results if duck has a high resolving power and
drake has a very low resolving power. Thus taking into account the resolving power
of the expansion is highly important, and this can not be archived through regular
query expansion; we need to expand the index.

One of the limitations of the model introduced is its limited ability to deal with
the relations. Different kinds of relations can be used differentiated in the indexing
by means of the similarity measure but then the information about the nature of the
relations is discarded. As a result, if a document contains the two compound concepts
car[CHR : blue] and television[LOC : kitchen], it would not be possible to infer from
the index vector whether big or kitchen refers to car or television. The model is
consequently unable to utilize fully the noun phrase analysis presented in chapter 4.

A final interesting perspective in using the vector space model is that most ma-
chine learning algorithms for, e.g. text classification, presume a fixed length feature
space. The model presented here also makes it possible to easily integrate ontologies
in machine learning disciplines like text classification or clustering.
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Chapter 8

Conceptual Summaries

In information retrieval systems, a common method for visualizing the search result
is a ranked list of references to documents that match the query. Most modern search
engines also supply the references with small text snippets with excerpts from the
documents. By examining this list, the user can try to identify which documents
are relevant, and by browsing through the listed documents, get an idea of what the
document collection in general contains about the topic(s) specified in the query.
For instance, a query for “USA” might reveal that a particular document collection
contains, for the most part, documents on geographical rather than political aspects
of the country.

This chapter presents an alternative method for browsing the content of a set of
documents called “conceptual summaries” in order to provide an option for navigat-
ing the conceptual content of a set of documents by means of a higher level con-
ceptual summary of the content. The main concern is approaches for summarization
given a set of concepts already extracted from a set of documents through some form
of ontological indexing. In this case, summarization can be viewed as a process of
transforming sets of similar low level objects into more abstract conceptual represen-
tations. More specifically, a summary for a set of concepts is an easy to grasp short
description in the form of a smaller set of concepts. The characteristics of summaries
are not looked at in more detail here, but Yager & Petry (2006) offer further consid-
erations on this issue. We loosely assume, however, that if the set of concepts covers
several distinct aspects, a summarizing description should include them. Thus, in-
tuitively, if there are two distinct aspects, as in {convertible, van, cottage, estate},
the summary should probably have two concepts, {car, house}. With one single
aspect, as in {poodle, Alsatian, golden retriever, bulldog}, the summary should
have only a single summarizer {dog}. In principle, summaries are intended to de-
scribe any collection of texts, including a single document, a set of documents, a
query result or an entire text base.

Two different approaches to conceptual summaries are presented in this chapter.
For both approaches, an ontology plays a key role as a reference for the conceptual-
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ization. The general idea is to form a so-called “instantiated ontology” to be used as a
basis for summarization. An instantiated ontology is an excerpt of a world knowledge
ontology restricted to a set of concepts that, for example, appear in a result set.

After having presented the instantiated ontology, we look at a strictly ontology-
based approach where summaries are derived solely from the connectivity in the in-
stantiated ontology. The presentation is, for the most part, a rendering of what has
previously been presented in Andreasen et al. (2008). Second, we consider the con-
ceptual clustering of the instantiated concepts based on their division into groups or
clusters based on a semantic similarity measure, and, for each a cluster, derive a rep-
resentative concept. The representative concept can be the least upper bounds or what
we will refer to as the “supported least upper bounds” and “fuzzy least upper bounds”
of the clusters. The majority of this is a restatement of research presented in Bulskov
et al. (2007). It is important to notice that the work presented here is not concerned
with ontology-based clustering of documents. Much work on this has been done be-
fore especially by Hotho & Stumme Hotho (2005), Hotho et al. (2002, 2003), Hotho
& Stumme (2002) and more recently by e.g. Zhang et al. (2008), Recupero (2007),
Jing et al. (2006). Neither is it concerned with selecting natural language excerpt
from documents using ontology-based analysis of the documents in order to select
representative natural language sentences that can be given as a summary. Work on
this has also been done before by e.g. Wu & Liu (2003), Lee et al. (2005). The work
here is based on the novel idea that a set of concepts from the ontology is presented
as a summary for a given collection of documents. Besides providing a general al-
ternative to browsing and providing an overview of a result set, the application of
such conceptual summaries are situations where an alternative to natural language
summary is desired. This could for instance be in research where a summary of a
collection of papers is required, e.g. what are the main topics being treated and how
are they related. It could also be in a company setting where news surveillance is
being performed on a daily basis, e.g. which products are mentioned in the news in
connection with what.

8.1 Instantiated Ontologies

In this section, we present the notion of instantiated ontologies as described in An-
dreasen et al. (2005b). In general, the set of well-formed terms, L, in ONTOLOG is
(Andreasen & Bulskov 2007a):

L = {C} ∪ {a[r1 : b1, . . . , rn : bn]|a ∈ C, ri ∈ R, bi ∈ L} (8.1)
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For instance, with R= {WRT, CHR, CBY, TMP, LOC, . . .} 1 and C={entity, physical entity,
abstract entity, location, town, cathedral, old}, we get:

L = {entity, physical entity, abstract entity,

location, town, cathedral, old,

. . . , cathedral[LOC : town, CHR : old], . . .
cathedral[LOC : town[CHR : old]], . . .}

Given the world knowledge ontology, O, and a set of concepts, C, the instantiated
ontology OC = 〈LC ,≤C , R〉 is a restriction of O to cover only the concepts in C
and corresponds to “upper expansion” LC of C in O:

LC = C ∪ {x|y ∈ C, y ≤ x}
”≤C” = ”≤” ∩ (LC × LC) = {<x, y> |x, y ∈ LC , x ≤ y}

Figure 8.1 shows an example of an instantiated ontology. The general ontology
is based on (and includes) WordNet and the ontology shown is “instantiated” with
respect to the following set of concepts:

C = {ruin, church, fortress[CHR : big], stockade,

fortification[CHR : large, CHR : old]}

An instantiated ontology like this forms the basic structure in both of the clus-
tering approaches. A presentation of the connectivity clustering is given first. Apart
from the inclusion relation, “≤”, the relation “<” is used in the following. The latter
refers to the strict variant of the former.

8.2 Connectivity Clustering

Connectivity clustering is clustering based solely on connectivity in the ontology,
OC . Specifically, the idea is to cluster a given set of concepts based on their con-
nections to common ancestors, for instance, grouping two siblings according to their
common parent, and also replacing the group with the common ancestor. Thus, con-
nectivity clustering is about moving towards a smaller number of more general con-
cepts, rather than moving towards a smaller number of larger clusters as typically is
the case in bottom-up hierarchical clustering.

For a set of concepts, C = {c1, . . . , cn}, we can consider as a generalizing de-
scription, a new set of concepts, δ(C) = {ĉ1, . . . , ĉk}, where ĉi is either a concept
generalizing concepts in C or an element from C. Each generalizer in δ(C) is a least

1With respect to (wrt), characterized by (chr), caused by (cby), temporal (tmp), location (loc).
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entity

physical_entity abstract_entity

artifact

structure

building defensive_structure

churchruin fortificationfortress

stockade fortification[chr: large] fortification[chr: old]

attribute

property

size age

largeness

big large

fortress[chr: big]

old

fortification[chr: large, chr: old]

Figure 8.1: An instantiated ontology based on the WordNet ontol-
ogy and the set of instantiated concepts {ruin,church,fortress[CHR : big],
stockade,fortification[CHR : large, CHR : old]}.

upper bound of a subset of C, ĉi = lub(Ci), where {C1, . . . , Ck} is a division (clus-
tering) of C. Note that the least upper bound of a singleton set is the single element
in this.

Summarization is here an iterative process where at each step the summary in
the form of a set of descriptors are reduced to the most most specific generalizing
description. We define the most specific generalizing description, δ(C), for a given
C = {c1, . . . , cn} as a description restricted by the following properties :
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(a) ∀ĉ ∈ δ(C) : ĉ ∈ C ∨ ∃c′, c′′ ∈ C ∧ c′ 6= c′′ ∧ c′ <C ĉ ∧ c′′ <C ĉ

(b) ∀ĉ′, ĉ′′ ∈ δ(C), ĉ′ 6= ĉ′′ : ĉ′ ≮C ĉ′′

(c) ∀c′, c′′ ∈ C, c′ 6= c′′, ĉ′ ∈ δ(C),¬∃x ∈ LC :
c′ ≤C x ∧ c′′ ≤C x ∧ x ≤C ĉ′

(d) ∀c ∈ C,∃ĉ ∈ δ(C) : c ≤ ĉ

Thus, (a) restricts δ(C) to elements that either originate from C or generalize two
or more concepts from C. Second, (b) restricts δ(C) so that it is without redundancy
(no element of δ(C) may be subsumed by another element). Third, (c) reduces δ(C)
to the most specific concept in the sense that no subsumer for two elements of C may
be subsumed by an element of δ(C). Finally, (d) ensures δ(C) covers all the elements
in C.

Note that δ(C) has the same form as C as a subset of LC , and that we can thus
refer to an m’th order summarizer, δm(C). Obviously, to obtain an appropriate de-
scription of C, we will in most cases need to consider higher orders of δ. At some
point, m, in most cases, δm(C) = Top, where Top is the top element in the ontol-
ogy. Exceptions are when a more specific single summarizer is found or when Top
has only one successor. In the latter case, we only reach the single topmost concepts
with more than one successor.

The most specific generalizing description, δ(C), for a given C is obviously not
unique and there are several different sequences of most specific generalizing de-
scriptions of C from C towards Top. For instance in the instantiated ontology in
figure 8.1 could ruin and church, stockade and fortification[CHR : large, CHR : old],
or both be summarized in the first step. A possible approach is to take the largest
possible steps as is done in algorithm 8.1.

Input: Set of concepts C = {c1, . . . , cn}
Output: Generalizing description δ(C) for C.

1. Let the instantiated ontology for C be OC = 〈LC ,≤C , R〉,
2. Let U = {u|u ∈ LC ∧ ∃ci, cj ∈ C : ci <C u ∧ cj <C u},
3. U ′ = U − {u|u ∈ U ∧ ∃v ∈ U : v <C u}, and
4. L = ∪u∈U ′{c|c ∈ C ∧ c <C u}
5. Set δ(C) = C ∪ U ′ − L

Algorithm 8.1: Connectivity clustering

C is presumed to be without redundancy, i.e. there are no concepts in C that subsume
other concepts. If the instantiated ontology is looked at as a graph, this corresponds to
having only concepts represented by leaf nodes in C. In step 2) in the algorithm, all
concepts, U , that generalize two or more concepts are derived. U thus contains all the
elements that satisfies property (a) in that they originate from C or generalize two or
more concepts. 3) reduces U to the most specific generalizers, U ′. The elements in U ′

thus satisfies both property (a), (b), and (c) in that we from U remove all elements that
subsume other elements. In order to find the most specific generalizing description

109



of C, that covers C and thus satisfies property (d), we need a union of C and U ′

without all the concepts from C subsumed by elements in U ′. Thus 4) defines the set
of concepts, L, that specializes the generalizers in U ′. Finally 5) derives δ(C) from C
by adding the most specific generalizers and subtracting concepts specializing these.
The result is a summary δ(C) which satisfies all the four properties.

With reference to the instantiated ontology presented in figure 8.1, we have, for
instance:

C = {ruin, church, fortress[CHR : big], stockade,

fortification[CHR : large, CHR : old]}
U = {building, fortification, structure, defensive structure,

artifact, physical entity, entity}
U ′ = {building, fortification}
L = {ruin, church, stockade, fortification[CHR : large, CHR : old]}

δ(C) = {building, fortification, fortress[CHR : big]}
. . .

δ2(C) = {building, defensive structure}
δ3(C) = {structure}

This approach can be viewed as a greedy approach where every concept that can be
grouped will be grouped. Thus, in the first step, both ruin and church are summarized
to building, while stockade and fortress[CHR : big] is summarized to fortification. As
noted, this approach is, of course, not the only one possible, and priority could be
given to summarize specific clusters. Deepness and support are examples of impor-
tant properties that might contribute to priority.

8.2.1 Prioritized connectivity clustering

The deepest concepts, the ones positioned at the greatest depth in the ontology, are
structurally and, thereby often, also conceptually the most specific ones. Thus, col-
lecting these first would probably lead to a better balance with regard to how specific
the participating concepts are in candidate summaries. Alternatively, support for can-
didate summarizers could be considered. One option is simply to measure support
in terms of the number of subsumed concepts in the input set while more refine-
ment could be obtained by also taking the frequencies of concepts as well as their
distribution in documents in the original text into consideration.2 Support indicates
how much a concept covers in the input and can thus be considered as an impor-
tance weight for the concept as a summarizer for the input. High importance should
probably infer more reluctance with regard to further generalization.

2Corresponding to term and document frequencies in information retrieval.
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Let f(x) be a function which assigns a priority to the most specific generalizers
based on the principle of assigning the highest priority to the generalizers that gen-
eralize the least. This can, for instance, happen by letting, f(x), be the depth in the
ontology measured as the path link to the top concept:

f(x) = depth(x) (8.2)

or as the inverse support of a concept f(x) with respect to a given set of concepts, C,
by:

f(x) = support(x,C) =
( |{y|y ∈ C, y ≤ x}|

|C|
)−1

(8.3)

A prioritized connectivity algorithm can then be expressed in the following manner:

Input: Set of concepts C = {c1, . . . , cn}
Output: Generalizing description δ(C) for C.

1. Let the instantiated ontology for C be OC = 〈LC ,≤C , R)〉
2. Let U = {u|u ∈ LC ∧ ∃ci, cj ∈ C : ci <C u ∧ cj <C u},
3. U ′ = {u|u ∈ U ∧ ∃v ∈ U : v <C u},
4. U ′′ = U ′ − {u|u ∈ U ′ ∧ ∃v ∈ U : f(v) < f(u)}, and
5. L = ∪u∈U ′′{c|c ∈ C ∧ c <C u}
6. set δ(C) = C ∪ U ′′ − L

Algorithm 8.2: Prioritized connectivity clustering

In 2) all concepts, U , that generalize two or more concepts are derived. Note
that these may include concepts from C when C contains concepts subsuming other
concepts. 3) reduces U to the most specific generalizers, U ′. 4) removes the concepts
from U ′ with the lowest support or that are deepest in the ontology. 5) defines the
set of concepts, L, that specialize the generalizers in U ′′. 6) derives δ(C) from C
by adding the most specific generalizers in U ′′ and subtracting concepts specializing
these.

The suggested functions are naturally only examples of how to express the prop-
erties deepness and support, and other functions expressing other properties are straight-
forwardly included in prioritized connectivity clustering. Another property could
thus be coherence, which for a given generalizer, g, expresses to what extent the sup-
port of g is due to concepts being structurally close to or further away from g. This
can, for instance, be measured as the average semantic similarity to g of the concepts
generalized by g.

8.2.2 Connectivity clustering versus similarity clustering

Prioritized connectivity clustering opens up for a more fine grained approach to clus-
tering than the greedy steps taken by the first connectivity clustering presented. How-
ever, connectivity clustering as such is strictly based on the hierarchy. As a result, the
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size of the summary can never be reduced by generalizing non-leaf concepts in the
instantiated ontology. For instance, in figure 8.2, vehicle and trailer are summarized
by transport but not before car and truck are summarized by vehicle.

transport

vehicle trailer

truck car

lorry van tractor convertible coupe

Figure 8.2: An instantiated ontology that can be used to illustrate the difference between con-
nectivity clustering and similarity clustering. Shaded lines indicate longer paths and shaded
concepts indicate concepts in C.

This is due to the definition of connectivity clustering, which in b) on page 108
restricts δ(C) from having redundancy (no element of δ(C) may be subsumed by
another element). Thus, truck and car can never appear in the summary with vehicle
or transport. In the case of the instantiated ontology depicted in figure 8.2, it might
nevertheless be reasonable to replace vehicle and trailer with transport but keep truck
and car in the summary, i.e. create a summary with the three clusters δm(C) =
{truck, car, transport}, which indicates that C covers transport in general but, to a
large extent, covers the more specific concepts trucks and cars.

Similarity clustering can be seen as an alternative in that it offers a clustering of
concepts based on a semantic similarity measure. If the similarity measure is derived
at least partly from the ontology, a clustering based on this similarity measure will
naturally reflect the relational knowledge of concepts embedded in the ontology.

8.3 A Hierarchical Similarity-Based Approach

Various approaches have been proposed to derive similarity or distance from the on-
tology. We will assume an ontology-based similarity measure, sim, below but make
no further assumptions about the type and characteristics of this measure; see chapter
6. With a given similarity measure derived from the ontology, a least upper bound
centered, agglomerative, hierarchical clustering can be performed as described in the
following.
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Initially, each cluster corresponds to a single element of the set to be summarized.
At each particular stage the two clusters that are most similar are joined together.
This is the principle of conventional hierarchical clustering. However, rather than
replacing the two joined clusters with their union as in the conventional approach,
they are replaced by their least upper bound. Thus, given a set of concepts, C =
{c1, . . . , cn}, summarizers can be derived as described in algorithm 8.3.

Input: Set of concepts C = {c1, . . . , cn}
Output: Generalizing description δ(C) for C.

1. Let the instantiated ontology for C be OC = 〈LC ,≤C ,R)〉
2. Let T = {〈x, y〉|sim(x, y) = maxz,w∈C(sim(z, w))},
3. Let U = {u|u ∈ LC ∧ ∃〈x, y〉 ∈ T : x <C u ∧ y <C u},
4. U ′ = U − {u|u ∈ U ∧ ∃v ∈ U : v <C u}, and
5. L = {x|〈x, y〉 ∈ T ∨ 〈y, x〉 ∈ T}
6. Set δ(C) = C ∪ U ′ − L

Algorithm 8.3: Hierarchical clustering summary

In 2), all the concept pairs T with the highest similarity is found. 3) derives all
concepts, U , that generalize a concept pair from T . 4) reduces U to the most specific
generalizers, U ′. 5) defines the set of concepts, L, that specializes the generalizers
in U ′. In other words L are all the concepts forming the pairs in T since U ′ are the
most specific generalizers of the concepts in T . 6) derives δ(C) from C by adding the
most specific generalizers in U ′ and subtracting concepts specializing these. As also
was the case with connectivity clustering, δ might have to be applied several times to
obtain an appropriate description of C. At some point, m, we have δm(C) = Top.

8.3.1 A supported least upper bound approach

One straightforward similarity-based approach is simply to apply a crisp clustering to
the set of concepts, C = {c1, . . . , cn}, leading to {C1, . . . , Ck} and then provide the
set of least upper bounds, {ĉ1, . . . , ĉk} = {lub(C1), . . . , lub(Ck)}, for the division
of C as a summary.3 However, to also take into account the importance of clusters in
terms of their sizes, the summary can be modified by the support of the generalizing
concepts, with support as defined in equation 8.2. This leads to a fuzzy summary
based on the division (crisp clustering) of C into {C1, . . . , Ck}:

Σisupport(lub(Ci), C)/lub(Ci) (8.4)

Note that if C had been defined as a multi-set, this definition of support would be
identical to the probability estimates Resnik (1999) used in his similarity measure.

To illustrate the supported least upper bounds-based approach, consider the set of
clusters and their least upper bounds in table 8.1, which shows the clusters resulting

3Note that we do not put any restrictions on the clustering, but of course the general idea is that
the clustering applies a similarity measure that is ontology-based and that the ontology reflected is the
instantiated ontology over the set of concepts, C.

113



Cluster lub

size magnitudenumber
government

organizationstate
committee
defender

personman
servant
woman
cost

costbribe
price
fee
fortress

defensive structurefortification
stockade

Table 8.1: A set of crisp clusters and their least upper bounds from WordNet.

from applying δ11(C) on an instantiated ontology from WordNet, with C naturally
being all the concepts in the clusters. From these clusters, the fuzzyfied summary
{0.13/magnitude + 0.19/organization + 0.25/person + 0.250/cost + 0.19/defensive
structure} can be generated.

This approach to summarization is not very tolerant with regard to noise in the
clusters given. Consider the following example where bribe is replaced by politics
and stockade by radiator. With the shortest path as the similarity measure, δ11(C)
will still result in the same clusters being formed. However, the least upper bounds
of the respective clusters become more general, as illustrated in table 8.2

The summary thus becomes {0.13/magnitude+0.19/organization+0.25/ person+0.25/relation+0.19/artifact}.
This summary is clearly more general than the summary for the more homogeneous
clusters. Radiator and politics can therefore, to a certain extent, be regarded as se-
mantic outliers or noisy elements from a summary perspective. To get around this
problem, we introduce a soft definition of least upper bound and then combine this
definition again with crisp clusters to obtain more robust cluster-based summaries.

8.3.2 A fuzzyfied least upper bound approach

A soft definition of least upper bound for a (sub)set of concepts, C, should comprise
“upper boundness” as well as “leastness” (or “least upperness”) expressing, respec-
tively, the portion of concepts in C that are generalized and the degree to which a
concept is least upper with regard to one or more of the concepts in C.

“Upper boundness” can be expressed for a set of concepts, C, by µub(C) simply
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Cluster lub New Cluster New lub

1 size magnitude size magnitudenumber number

2
government

organization
government

organizationstate state
committee committee

3

defender

person

defender

personman man
servant servant
woman woman

4
cost

cost

cost

relationbribe politics
price price
fee fee

5
fortress

defensive structure
fortress

artifactfortification radiator
stockade stockade

Table 8.2: A set of crisp clusters with noise and their least upper bounds from WordNet.

as support with respect to C:

µub(C)(x) = support(x,C) (8.5)

covering all generalizations of one or more concepts in C and including all concepts
that generalize all of C (including the top concept Top) as full members.

“Leastness” can be defined on top of a function that expresses how close a concept
is to a set of concepts, C, such as dist(C, y) = minx∈Cdist(x, y), where dist(x, y)
expresses the shortest path upwards4 from x to y, as follows:

µlu(C,λ)(x) =

{
1 when λ = 0 ∨ x = Top

1− dist(C,x)

dist(C,Top)+ 1
λ
−1

otherwise (8.6)

where 0 ≤ λ ≤ 1 is a “leastness” parameter where λ = 1 corresponding to the most
restrictive version of “leastness” and with the other extreme, λ = 0, corresponding
to no restriction at all (all upper concepts become full members).

A soft least upper bound, flub, can now be defined by combining the two:

µflub(C,λ)(x) = µlu(C,λ)(x) ∗ µub(C)(x) (8.7)

Note that a least upper bound for C is not necessarily the best candidate among
the elements in the flub. Thus, again with the division (crisp clustering) of C into
{C1, . . . , Ck}, the basis for the summary here is the set of fuzzy sets {flub(C1), . . . , f lub(Ck)}.

4Upwards only refers to paths consisting solely of edges in the direction of ≤. It must be strictly
emphasized that the graph in question corresponds to the transitively reduced ontology.
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As in the supported least upper bound approach, the summarizers can be weighted
by support. To bring this support weighting into play, we can begin by invoking the
weighting on the elements of C producing the fuzzy set WC :

WC =
∑

i

∑

x∈Ci

|Ci|
|C| /x (8.8)

And, second, by combining the union of the flub’s flub(Ci) with WC by fuzzy
intersection leading to the flub-based summary:

(⋃

i

flub(Ci)

)⊗
WC (8.9)

where
⊗

is a t-norm, possibly with the product as an appropriate choice.
Given the previous example of noisy crisp clusters, and with λ being 1, the use

of a flub-based summary gives:

{.19/cost + .15/outgo + .15/relation+
.15/person + .13/organization + .13/government+
.11/financialloss + .11/artifact+
.11/defensivestructure + . . .}

where the supported least upper bound-based summary was:

{.13/magnitude + .19/organization+
.25/person + .25/relation + .19/artifact}

In the flub-based summary, cost has a high degree of membership due to the
fact that it is a very good description of three of the four elements in the cluster
{cost, price, fee, politics}. Thus, the introduction of the flub reduces the effect
of noise caused by the noisy element politics. Also, the degree of membership of
artifact is comparable to the degree of membership of defensive structure, which is
the immediate generalization of fortress and stockade. Again, the result of using a
flub-based summary is that the effect of the noisy element radiator in the cluster
{fortress, stockade, radiator} is reduced.

8.4 Summarization Examples with WordNet

Preliminary experiments have been performed on texts from SEMCOR 2.0 (Miller
et al. 1994) on connectivity clustering as well as supported least upper bound hier-
archical clustering. The purpose of this study has been to explore the utility of the
two approaches. Given their preliminary nature, the current results of the findings are
presented in the following using examples rather than descriptive statistics.

SEMCOR is a subset of the documents in the Brown corpus which has the advan-
tage of being semantically tagged with senses from WordNet (Miller 1995). Below,
we show the results of summarizations of the following text.
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case

system

dirt,
stain,
soil

phase
capillary
 action

interfacial
 tension

grease

oil

water

liquid

surface-active
 agent

surface

entity

abstract
 entity

physical
 entity

abstraction

psychological
 feature

group attribute

event

act

group
 action

due
 process

proceeding

objectprocess substancething
causal
 agent

whole

artifact

phenomenon

natural
 phenomenon

physical
 phenomenon

chemical
 phenomenon

surface
 tension

state of
 matter

state

condition

sanitary
 condition

dirtiness

compound

binary
 compound

organic
 compound

fluidunit

molecule

macromolecule

lipid

agent

chemical
 agent

Figure 8.3: An instantiated ontology based on an excerpt from SEMCOR.

Greases, stains, and miscellaneous soils are usually absorbed onto the
soiled surface. In most cases, these soils are taken up as liquids through
capillary action. In an essentially static system, an oil cannot be replaced
by water on a surface unless the interfacial tensions of the water phase
are reduced by a surface-active agent.

The words in italics indicate nouns that are mapped into WordNet. Note that due to
the use of SEMCOR, there is no attribution of concepts (e.g. system[CHR : static]) in
the initial set of concepts.

The 17 nouns appearing in the paragraph are mapped into 12 WordNet synsets
constituting the set of elements C. Based on this mapping, the instantiated ontology
can be created as depicted in figure 8.3, where shaded nodes indicate concepts in C.
The connectivity clustering thus includes these steps:
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C = {case, system, dirt, phase, capillary action, interfacial tension, grease, oil, wa-
ter, liquid, surface-active agent, surface}

δ(C) = {abstraction, phase, surface tension, oil, water, liquid, surface-active agent,

surface}
δ2(C) = {abstraction, natural phenomenon, liquid, compound, surface-active agent,

surface}
δ3(C) = {abstraction, natural phenomenon, substance, surface-active agent, surface}
δ4(C) = {abstraction, physical entity}
δ5(C) = {entity}

This example illustrates well some of the challenges that arise when applying
connectivity clustering. First, the set of concepts are reduced by a larger factor in
the first steps of the clustering process compared to the steps close to the end of the
clustering process. This is due to the greedy nature of connectivity clustering where
as many clusters as possible are merged at each step, and where clusters conceptually
far apart are merged because the resulting cluster is the most specific generalizing
description. The merge of case, system and dirt to the much more general abstraction
illustrates this aspect. Second, small summaries tend, not surprisingly, to be very
general.

Using the shortest path as the similarity measure, the hierarchical clustering in-
troduced above follows these steps:

C = {case, system, dirt, phase, capillary action, interfacial tension, grease, oil, wa-
ter, liquid, surface-active agent, surface}

δ(C) = {case, system, dirt, phase, capillary action, interfacial tension, oil, liquid,

surface-active agent, surface}
δ2(C) = {case, system, dirt, phase, surface tension, oil, liquid, surface-active agent,

surface}
δ3(C) = {case, system, dirt, natural phenomenon, oil, liquid, surface-active agent, sur-

face}
δ4(C) = {case, system, dirt, physical entity, oil, surface-active agent, surface}
δ5(C) = {case, system, dirt, physical entity, oil}
δ6(C) = {case, dirt, entity, oil}
δ7(C) = {case, dirt, entity}
δ8(C) = {case, entity}
δ9(C) = {entity}

Compared to connectivity clustering, a hierarchical clustering based on the short-
est path will preserve concepts deep in the ontology until late in the clustering. How-
ever, this is due to using the shortest path as a similarity measure rather than hierar-
chical clustering. Using shared nodes (Andreasen et al. 2005a), a measure based on
the cardinality of the shared upper bounds, would, e.g. result in dirt and case being
merged at an earlier step.

8.5 Discussion and Summary

The purpose of this chapter, which presented approaches to ontology-based concep-
tual summaries, is to provide a means for browsing the content of a set of documents
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rather than documents directly. Connectivity clustering is clustering based solely on
connectivity in the ontology and one approach to conceptual summaries where two
siblings are iteratively replaced in the summary by their common ancestor. Hierar-
chical similarity clustering is an alternative that distinguishes itself from the former
by relying on a semantic similarity measure in the grouping of concepts instead of
the connectivity of the ontology. The notion of supported least upper bound is in-
troduced as a means of summarizing a group of concepts by their least upper bound
with an indication of how many concepts in the input set are covered by the group.
Also, the notion of fuzzy least upper bounds is introduced as a means of expressing
to what extent the upper bound of a set of concepts is characterized by “leastness” or
“upperness”. The purpose here being that a soft definition of least upper bound can
capture how close to a set of concepts the least upper bound is. Finally, a preliminary
experiment with SEMCOR is presented that illustrates the approaches and some of
their differences.

In the hierarchical similarity-based approach, each step in the clustering process
results in a cluster being replaced by the least upper bound of the participating con-
cepts. The least upper bound is then used for succeeding similarity calculations.
From a summary perspective, this is reasonable because at each application of δ, the
summary should be in the form of a smaller set of concepts, easy to grasp and brief.
However, this is merely a question of presenting the summary to the user. Thus, an-
other option in the clustering process would be to preserve the original concepts in
the clusters, perform similarity calculations based on this set, and then only present
the least upper bound to the user. This opens up for a more versatile approach to
measuring similarity between the elements as is done in a more classical clustering,
for example (Manning et al. 2007):

Single link: The similarity of the closest elements in two clusters
Complete link: The similarity of the most distant elements in two clusters
Average link: The average pairwise similarity of all the concepts in two clusters

The advantage of using a least upper bound approach with respect to complexity
is lost, however, which for large scale clustering can be an important property of the
hierarchical similarity-based clustering.

A compromise between keeping all the elements of clusters throughout the clus-
tering process and replacing them by their least upper bounds could be to base the
similarity calculation on the fuzzy least upper bounds. The problem is, though, that
depending on the actual setting of the thresholds, the fuzzy least upper bounds risk
containing more elements than the original concepts in the clusters. This is clearly
a disadvantage with regard to the complexity of the clustering, but it also makes the
summaries larger than the original set of concepts to be summarized. The solution to
this problem could be to chose a few of the largest fuzzy least upper bounds and use
these elements when measuring similarity and when presenting the summary to the
user.

Finally, there is the question of semantic outliers. In machine learning, noise
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is often regarded as irregular objects that do not fit the general patterns of the rest
of objects, and which are evenly spread thinly across the entire spectrum of input.
Outliers are typically single irregular objects that are situated far apart from the main
groups of data. For both kinds of objects they are characterized by being few in
numbers compared to the general distribution of data.

When creating a conceptual summary our aim is an easy to grasp, short descrip-
tion that also includes the important aspects of the concepts. Naturally irrelevant
aspects like noise and outliers should be excluded first, but the question is what con-
stitutes semantic noise and semantic outliers? At first it might seem obvious to base
the definitions on the frequency of the concepts. If the frequency of a concept in a
document is very low compared to other concepts in the document, it is a matter of
secondary importance and could thus be excluded from the summary. If the concept
is also situated far from the other concepts in the ontology, it could be character-
ized as a semantic outlier. But consider the set of concepts: {cylinder block, cooler,
sprinkler system, carburetor, car}. Based on the above perspective of outliers, car
can be viewed as an outlier in as much as it is situated far apart from the group
of mechanical devices if inclusion only is considered. On the other hand, from an
ontological and a summary perspective all but one concept are mechanical devices
that are part of a car, and the summary could thus be the single compound concept
mechanical devices[POF : car]. This indicates that the semantic outlier, car, by no
means can be defined solely due to its position in the subsumption hierarchy in rela-
tion to the other concepts or simply due to its frequency.

To further underline the challenge of establishing a suitable definition for seman-
tic outliers, consider the supposition that a query poses a special perspective on a
result set. For instance, if we are looking for the causes of diabetes even concepts
peripheral to others are important if they are in causal relation to diabetes or pos-
sibly related illnesses in the documents. One could also argue that a result set by
itself presents a perspective on a document collection. But if documents are the basic
retrieved textual unit, many concepts irrelevant to the query are thus also retrieved,
which in turn can adversely affect the quality of the summary. A semantic outlier
should thus not only be defined with regard to the result set or the outliers position
in the ontology related to other concepts in the result set, but also with regard to
the query. Further work on an appropriate definition of what constitutes a semantic
outlier is clearly needed.
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Chapter 9

Conclusions and Perspectives

This dissertation has sought to explore how statistical analysis of a document col-
lection can be combined with ontological knowledge in information retrieval. The
motivation for pursuing such an endeavor lies in the intriguing possibilities available
for combining the two different frameworks. By using statistical means the specific
document collection at hand can be analyzed and used for matching a user’s informa-
tion need. Ontologies, on the other hand, offer a world-knowledge-based semantic
analysis simply not within the reach of a statistical analysis. This dissertation has
shown a number of different paths that can be taken in pursuing a goal of combin-
ing statistics and ontologies in information retrieval. The first part of the dissertation
described the foundations in the form of information retrieval, ontologies and the
ONTOQUERY project.

Following the strain of content analysis from chapter four, chapter five presented
a preliminary machine learning approach to the semantic analysis of prepositions.
This approach is based on the assumption that in NP-P-NP constructs, there exists an
affinity between the relation denoted by the preposition and the concepts appearing
as heads of the noun phrases. Initially, a Danish corpus was compiled from within the
area of nutrition with an annotation of the concepts denoted by the heads of the noun
phrases and the relation type denoted by the preposition. Based on standard machine
learning, it was shown that there is a clear affinity, and the experiments indicate that
the type of concepts are more important in the determination of the relation than
the lemmatized word form of the head or the preposition itself. An encouraging
fact was that most of the statistical patterns within the corpus could be expressed
with a relatively small set of rules, and thus the approach could, with relative ease,
be applied in content extraction for information retrieval. As a result much more
specific ontological descriptors can be generated in the indexing of both queries and
documents, thus improving ontology-based content analysis.

In chapter six the focus shifted towards semantic and distributional measures of
similarity. The reason for this focus is that though ontologies are important for iden-
tifying relations between concepts, there can be patterns of distributional similarity
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between concepts that are specific to a given document collection and these patterns
are not reasonable to model as relations within the ontology. Thus, two sources of
information exist about the similarity between concepts, and this chapter presents
three different approaches for combining them. The notion of distributional density
is introduced as the distributional similarity of the pairwise combination of all the
concepts situated closely in the ontology to the two concepts. Though distributional
similarity and semantic similarity are recognized as being highly related it is a novel
idea to combine the two measures in one. A single measure is required if both types
of measures are to be used in e.g. fuzzy information retrieval using a thesaurus, as it
was presented in chapter two, or in the model for index expansion in the vector space
model introduced in chapter seven.

Chapter seven presented the approach to ontology-based index expansion in the
vector space model. The fundamental idea of the proposed model is to enable index-
ing and matching to rely both on a lexical and a conceptual analysis of documents
and queries. A generalized term frequency inverse document frequency, tfidf , is
described that is based on term frequency and the frequency of related terms. Given
the different relations between concepts in an ontology, the index of a term can be
expanded to include related terms, for instance, given insulin, the subsumer hormone
could be added to the index. In addition to the generalized tfidf measure, an ap-
proach for a weighted combination of conceptual indexing with lexical indexing is
proposed. Compared to previous research the model it is novel to use a measure of
concept specificity in the expansion; though it is well established within information
retrieval that a measure of specificity is of great importance for retrieval performance.

Finally, chapter eight presented how conceptual summaries through different
kinds of clustering can serve as a mean of summarizing a set of concepts. Given
an instantiated ontology, which is an ontology restricted to the concepts in the up-
ward expansion of the concepts in a given set, connectivity clustering was the first
approach suggested. In connectivity clustering the idea is to cluster a given set of
concepts based on their connections to common ancestors, for instance, by grouping
two siblings based on their common parent, and also by replacing the group with the
common ancestor. In its pure form, connectivity clustering is based solely on the
instantiated ontology but a prioritized connectivity clustering is also suggested that
can refine the clustering process by giving priority to certain concepts, e.g. concepts
with little support. In addition, hierarchical similarity clustering based on an onto-
logical similarity measure was presented. Compared to connectivity clustering, hier-
archical similarity clustering is not bound strictly to the ontological connections but
naturally reflects the ontology due to the semantic similarity measure being applied
in the clustering. In hierarchical similarity clustering, clusters are replaced by their
common parent, i.e. their least upper bound, similar to connectivity clustering. A
fuzzyfied least upper bound is, however, also introduced that results in a more robust
hierarchical similarity clustering. Using an instantiated ontology in itself as summary
is novel idea, and the proposed method will find their application in a situation where
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an alternative to a natural language summary is desired.
In summary, the research presented in chapter five, six, seven and eight of this

dissertation have among other things shown:

1. An approach to improving the specificity of ontology-based descriptors using
machine learning and that only apply general knowledge about the concepts
being analyzed.

2. Three approaches for combining semantic and distributional similarity mea-
sures in order to improve the similarity measures used in expansion.

3. An approach for ontology-based index expansion as an alternative to the term
weighting applied in the Vector Space Model. The approach takes into account
the specificity of the concepts in expansion. The model includes a general-
ized term weight for expanded terms, and a mean for emphasizing lexical or
conceptual match.

4. Two general approaches for generating conceptual summaries based on an on-
tology with the inclusion of corpus statistics.

Thus, the four chapters demonstrates novel approaches to combining corpus statis-
tics with ontologies in content analysis, measures of similarity, indexing and repre-
sentation, and the presentation of a result set.

However, given the broad nature of the proposals, future work is naturally possi-
ble in several areas, some of which have already been presented in previous chapters,
but two issues of a more general concern will be added here.

9.1 Further Work

The first issue to be treated here concerns the need for developing a test bed for
ontology-based information retrieval as a vehicle for future research in the area. The
second issue is concerned with the development of an approach for adjusting the si-
milarity between concepts in the ontology by means of a form of relevance feedback.

9.1.1 A common test bed

A common challenge within the ontology-based information retrieval community is
the establishment of a test bed for the contributions being made within the field.
Given the complexity and scale of the task, it is unlikely that one can be established
by a single research group; the TExt Retrieval Conference is a good example of the
benefits that can be achieved by cooperating in order to establish document collec-
tions, queries, rankings, etc.

A test bed could serve as a vehicle for several interesting research issues, in-
cluding the exploration of what type of queries, documents, and possibly domains
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for which ontology-based information retrieval is a more fertile approach than tradi-
tional keyword-based information retrieval. Obviously, ontology-based information
retrieval has something to offer especially with regard to, e.g. complex queries in-
volving relations between concepts, and short documents with little term variance.
Clearer insight into the general strengths of ontology-based information retrieval,
however, would help direct research efforts within the field. There is also a need for
experiments that do not compare ontology-based information retrieval to keyword-
based retrieval, but that focus on the interaction between the different processes. Is
there, for instance, a difference in the robustness of the different semantic simila-
rity measures towards faulty word sense disambiguation? And, can the extraction
of conceptual content from the text focus only on the concepts and the relations in
the ontology be relied upon for measuring similarities? Answers to these and similar
question would be much easier to give with a common test bed.

One of the challenges in the empirical validation of different contributions within
the field is that a large number of them include highly parameterized models. There
are some fundamental challenges in performing experiments with parameterized mod-
els. First, determining which parts of a model contribute, and to what degree, to the
successful solution to the problem the model is intended to solve can be difficult. Sec-
ond, at least in the natural sciences, the simplest explanation to a problem is usually
preferred because there is the danger of highly parameterized models coincidentally
fitting the data. The axiom behind the preference is sometimes termed Occam’s razor
(Mitchell 1997, Cover & Thomas 1991). Jiang & Conrath’s similarity measure is a
prime example of a highly parameterized model. Their shortest path approach is a
scaling of each edge in the ontology by a parameterized factorization of the density
of the graph (i.e. a modification of Sussna’s (1993) fan-out-factor), relative depth
scaling, the difference in information content of a subsumer and a subsumed, and,
finally, a weighting of the relation type. Though empirically evaluated as one of the
best measures of semantic similarity, the extent to which the various factors con-
tribute to the success is unknown. Evidently, this would also be the case with the
similarity measures proposed in chapter 6.

In general, a common test bed could be just the glue necessary to join together
the most promising components of an ontology-based information retrieval system.

9.1.2 Learning similarities

One main thread in each chapter is semantic similarity measures. In the ontology-
based vector space model, these measures are the basis of the expansion, while in the
semantic analyses of prepositions, they are advanced as a natural improvement to the
learning process, and they are the basis of the similarity measures suggested in chap-
ter 6, and, finally, they are used in hierarchical clustering to determine the closeness
of two clusters. In ontology-based information retrieval, similarity measures are thus
only rivaled in importance by an accurate word sense disambiguation. Word sense
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disambiguation can be studied in its own right independent of other processes and
with clearly stated success criteria, but similarity measures are inherently difficult to
evaluate directly because they are dependent on the human assessment of how sim-
ilar concepts are, e.g. how similar is a pizza to a croissant on a scale from zero to
one? Even when given several other concepts to compare, thereby making the scale
relative, it is inherently difficult for humans to asses these kinds of similarities using
a scale.

At this point, experiments comparing different semantic similarity measures have
been done on very small data sets based on the human assessment of semantic simila-
rity or on areas such as malapropisms (Budanitsky & Hirst 2006). To the best of our
knowledge, no empirical comparisons of the different semantic similarity measures
for document retrieval have been made. From an information retrieval perspective, it
is namely partly irrelevant which measure is the best at measuring concept to concept
similarities. Rather, we are concerned about the measure’s ability to match queries
and documents correctly at the more aggregate level. Naturally, the development of a
test bed for ontology-based information retrieval could facilitate this type of compar-
ison, where comparing each of the proposed similarities would be possible in equal
settings. However, the performance of the different similarity measures may turn out
to be dependent on the concrete ontology, the document collection and the type of
queries.

Thus, the real question is how to design a semantic similarity measure that mea-
sures concept to concept similarity but is evaluated on the aggregate level of infor-
mation retrieval, and possibly an approach that adjusts the measure according to the
evaluation. One possible solution and future work could involve developing a learn-
ing framework where the structure of the ontology and the derived similarity are al-
tered iteratively based on some kind of user feedback, which is, in principle, similar
to backpropagation in neural networks, where an error in the output gets propagated
backwards to the network and the weights on the edges between the nodes are up-
dated. To visualize the idea, imagine the ontology as a mesh that is stretched and con-
tracted locally depending on how similar the concepts in that part of the mesh should
be considered. In especially the late 1980s and until the mid 1990s, there were sev-
eral contributions made on the usage of neural networks in information retrieval (see
e.g. Chen (1995), Wilkinson & Hingston (1991), Belew (1989)), but the focus was
different in the sense that the objective was to learn the relation between query terms
and documents. However, it is not certain that the task of learning semantic simila-
rity should be cast within a connectionist learning framework. Moreover, research on
the topic should certainly draw upon the recent attention from the machine learning
community on learning graphs (see e.g. Frasconi et al. (2008) and the conferences
MLG (2008), TextGraphs (2008), ICML (2008)). The document vector modification
approach initially proposed by Brauen (1971) could also be adopted for the purpose
of adjusting the similarity based on the index expansion model suggested in chapter
4. The approach proposed by Brauen is to adjust the term weights in the relevant
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documents based on the terms appearing in the query, thereby moving relevant doc-
ument vectors closer to the query vector. This altering of the weights could possibly
be propagated further back to the similarity measure, and thus create a framework for
learning “the right” similarity between concepts.
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