
Subcubic Control Flow
Analysis Algorithms

Jan Midtgaard
David Van Horn

MAY 2009 ROSKILDE UNIVERSITY COMPUTER SCIENCE RESEARCH REPORT #125

Copyright c© 2009

Jan Midtgaard and David Van Horn

Computer Science
Roskilde University
P. O. Box 260
DK–4000 Roskilde
Denmark

Telephone: +45 4674 3839
Telefax: +45 4674 3072
Internet: http://www.ruc.dk/dat en/
E-mail: datalogi@ruc.dk

All rights reserved

Permission to copy, print, or redistribute all or part of this work is
granted for educational or research use on condition that this copy-
right notice is included in any copy.

ISSN 0109–9779

Research reports are available electronically from:

http://www.ruc.dk/dat en/research/reports/

Subcubic Control Flow Analysis Algorithms

Jan Midtgaard1 and David Van Horn2

1 Roskilde University
2 Northeastern University

Abstract. We give the first direct subcubic algorithm for performing
control flow analysis of higher-order functional programs. Despite the
long held belief that inclusion-based flow analysis could not surpass the
“cubic bottleneck,” we apply known set compression techniques to obtain
an algorithm that runs in time O(n3/ log n) on a unit cost random-access
memory model machine. Moreover, we refine the initial flow analysis into
two more precise analyses incorporating notions of reachability. We give
subcubic algorithms for these more precise analyses and relate them to
an existing analysis from the literature.

1 History and Motivation

Control flow analysis (CFA) is a fundamental static analysis of higher-order
programming languages and forms the basis of a range of other analyses. It
determines for each call site of a program a set of functions which may be applied
when the program is run. Over a decade ago, Heintze and McAllester [1997b]
proved deciding these problems to be at least as hard as 2NPDA, the class
of problems decided by two-way nondeterministic push-down automata, and
argued this provided evidence the “cubic bottleneck” of flow analysis could not
be overcome. This and several other papers [Neal, 1989, Heintze and McAllester,
1997b,c, Melski and Reps, 2000, McAllester, 2002] state that the cubic algorithm
for 2NPDA has not been improved since its formulation by Aho et al. [1968] —
an oversight in the history of events; Rytter [1985] improved the cubic bound
by a logarithmic factor. Since then, Rytter’s technique has been used in various
contexts: in diameter verification, in boolean matrix multiplication, and for the
all pairs shortest paths problem [Basch et al., 1995, Zwick, 2006, Chan, 2007]
as well as for reachability in recursive state machines [Chaudhuri, 2008], and
for maximum node-weighted k-clique [Vassilevska, 2009] to name but a few.
In particular, Chaudhuri [2008] recently used Rytter’s techniques to formulate
a subcubic algorithm for the related problem of context-free language (CFL)
reachability. Perhaps unbeknownst to most, indirectly this constitutes the first
subcubic CFA algorithm when combined with a reduction due to Melski and
Reps [2000].

In this paper, we recall Rytter’s improvement, investigate the implications,
and formulate a simpler, direct subcubic control flow analysis algorithm. Using
the initial analysis as an offset we formulate two refined, increasingly precise anal-
yses incorporating reachability, both of which are also implementable in subcubic

time. Finally we relate all three analyses and prove the final refinement equiv-
alent to a set-based analysis with reachability due to Heintze and McAllester
[1997a], thereby giving the first subcubic algorithm thereof.

2 Definitions

We recall the definition of 2NPDA, the implementation of fast sets on which we
base our algorithms, and the specification of CFA.

2.1 2NPDA

The class 2NPDA represents the languages recognizable by a two-way non-
deterministic push-down automaton. The familiar deterministic and non-deter-
ministic PDAs found in undergraduate textbooks [Martin, 1997] are one-way:
consuming their input from left-to-right. In contrast, two-way NPDAs accept
their input on a read-only input tape (marked with special begin and end mark-
ers), on which they can move the read-head forwards, backwards, or not at all.

2.2 Fast Sets

Rytter [1985] applies to the recognition of 2NPDA languages a known set com-
pression technique, which we now recall.

Assume we are concerned with operations over a set {0, . . . , n− 1} and that
the RAM model has Θ(log n) word size. A standard representation of a subset
hereof is a characteristic vector or bit vector of length n, with one bit representing
each element. Now break the vector into O(n/ log n) words each of Θ(log n) bits.
Following Chaudhuri [2008], we refer to the resulting structure as a fast set. An
element can be inserted into a word in O(1) time by or ’ing in a 1 at the proper
position. Furthermore, the set-difference of two words can be computed in O(1)
time by and ’ing the first word with the complement of the second.

As a consequence, an element can be inserted into a fast set in O(1) time,
by first determining the relevant word and performing the above, constant-time
word insertion. We can furthermore compute a list representing the set-difference
of two sets in O(n/ log n + v) time (with v being the number of elements in the
result), by computing the set-difference of each pair of words. For each word in
the result, repeatedly locate the most significant bit and turn it off. Suppose we
can locate the most significant bit of a word in constant time, this will take time
proportional to the size of the result. Even if such an operation is not available,
we can pre-compute it and store the result in a table. Table 1 summarizes the
above operations.

Rytter’s subcubic 2NPDA decision procedure works by enumerating the ma-
chine states of the automaton into a set, for which he investigates reachability
between initial and final states. Based on the above operations and by com-
pressing the rows and columns of a standard adjacency matrix representation,
he achieves an O(n3/ logn) algorithm for 2NPDA recognition.

2

operation type time complexity

∈ int × fset → bool O(1)
insert int × fset → unit O(1)

diff fset × fset → int list O(n/ log n + v)

Table 1: Type and worst-case time complexity of fast set operations

input(e)

e → e
(refl)

input(e1 e2) e1 → λx. e

x → e2, e1 e2 → e
(app)

e0 → e1 e1 → e2

e0 → e2

(trans)

Fig. 1: Inference rules for the system ⊢

2.3 Control Flow Analysis and Control-Flow Reachability

We now recall Heintze and McAllester’s analysis formulation and the correspond-
ing decision problem. The input is given as a pure lambda calculus expression.
Expressions are variables, lambda abstractions, and applications.

Expr ∋ e ::= x | λx. e | e e (expressions)

Heintze and McAllester [1997b] formulate CFA as a graph reachability prob-
lem over a set of inference rules. We recall their inference rules in Fig. 1 and write
⊢ to mean provability by the inference system. Intuitively, an edge e → e ′ can be
understood as an inclusion of values, i.e., all values that can result from evaluat-
ing e ′ can also result from evaluating e. The inference rules rely on a predicate
input , which is defined in Fig. 2. The predicate holds of all subexpressions and
bound variables of the input program. The analysis merges all bindings to the
same variable (as out-going edges from the variable node) thereby creating the
effect of a global environment. It furthermore confuses all calling contexts of the
same function (as in-going edges into the node representing the function body).
The common name 0-CFA [Shivers, 1991, Nielson et al., 1999] is by now used
for analyses with these two properties. Rather than implementing instances of
the inference rules as constraints, we will use the inference system as a reference
proof system. The analysis is formulated as a decision problem termed control-
flow reachability, by accepting two additional subexpressions estart and efinish as
input and determining whether the latter is reachable from the former. Heintze
and McAllester [1997b] show how to reduce a control-flow reachability problem
to an equivalent 2NPDA recognition problem.

3

input(ep)

input(e1 e2)

input(e1), input(e2)

input(λx. e)

input(x), input(e)

Fig. 2: Input predicate

3 Indirect Algorithms: Connecting the Dots

We examine two indirect CFA algorithms from the research literature with po-
tential to have subcubic worst-case time complexity. The first algorithm is the
graph-based analysis from Sect. 2.3. The second algorithm is a constraint-based
or set-based analysis, termed ML set constraints by Melski and Reps [2000].

Indirect Control-Flow Reachability (1)

1. reduce control-flow reachability to 2NPDA recognition [Heintze and McAllester,
1997b]

2. apply Rytter’s improved algorithm [Rytter, 1985]

3. map result(s) back to control-flow reachability

In the above, Heintze and McAllester [1997b] encode variables as bit strings. As
a consequence, the encoded lambda-term input incurs a blowup of a logarithmic
factor. Ironically, this logarithmic factor cancels the logarithmic factor gained
by Rytter [1985], resulting in a cubic-time algorithm. Hence a logarithmic factor
improvement to 2NPDA recognition is lost in translation, so to speak.

Indirect Control-Flow Reachability (2)

1. reduce ML set constraints to CFL-reachability [Melski and Reps, 2000]

2. apply Chaudhuri’s improved CFL-reachability algorithm [Chaudhuri, 2008]

3. map result(s) back to control-flow reachability

The direct reduction by Melski and Reps [2000] into a CFL-reachability prob-
lem requires O(n4) time (in the original input). However, Melski and Reps [2000]
observe a rendundancy in the context-free grammars resulting from their reduc-
tion. They augment their algorithm with a normalization phase that removes the
redunancy and recovers O(n3) worst-case time complexity. Since Chaudhuri’s al-
gorithm is given as an improvement to the CFL-reachability algorithm of Melski
and Reps [2000], we believe the above constitutes the first indirect subcubic flow
analysis algorithm.3

3 This indirect algorithm was kindly pointed out to us by Thomas Reps.

4

Cubic-CFA(e)

1 Q,R ← {e → e | input(e)} � Case refl
2 while Q 6= ∅
3 do (ei → ej)← Delete(Q)
4 for ek → ei ∈ R such that (ek → ej) /∈ R � Case trans 1
5 do Insert(ek → ej ,R)
6 Insert(ek → ej ,Q)
7 for ej → ek ∈ R such that (ei → ek) /∈ R � Case trans 2
8 do Insert(ei → ek,R)
9 Insert(ei → ek,Q)

10 if ej = λx. e and input(ei ew) � Case app
11 then if (x → ew) /∈ R

12 then Insert(x → ew,R)
13 Insert(x → ew,Q)
14 if (ei ew → e) /∈ R

15 then Insert(ei ew → e,R)
16 Insert(ei ew → e,Q)
17 return R

Fig. 3: Cubic algorithm

4 A Direct Algorithm

In Fig. 3 we give an initial direct algorithm implementing the analysis of Heintze
and McAllester. The algorithm is structured as a worklist algorithm. All newly
added edges are also added to the worklist, Q. Intuitively, for each newly added
edge, we investigate all the rules which could potentially apply because of the
new addition. The algorithm represents reachability between two expressions
e and e ′ as membership (e → e ′) ∈ R in an explicit set (or its isomorphic
binary map). By representing R as an adjacency matrix, we obtain a cubic time
algorithm as we shall now see. This upper bound coincides with the best known
bound for control flow analysis in the research literature [Ayers, 1992, Heintze,
1994, Palsberg and Schwartzbach, 1995, Nielson et al., 1999].

4.1 Complexity

Time: The initialization of Q and R can be done as a linear traversal. All edges
inserted in R are inserted in Q simultaneously. Once an edge is in R, it will
never be reinserted in Q. As a consequence, all edges are only inserted in Q
once. Hence the number of iterations of the while-loop is upper-bounded by the
number of edges, i.e, O(n2). The execution time of the body of the while-loop is
dominated by the for-loops. The two for-loops in the body can be implemented
as linear scans of a matrix column and a matrix row, respectively. The for-loop
bodies each require only constant time, hence the algorithm is cubic, O(n3).

Space: The worklist Q requires at most O(n2) space. Implementing the
relation R as an adjacency matrix, we require O(n2) space. The latter can be

5

improved to O(n2/ logn) on a RAM with Θ(log n) word size, by packing bits
into words. However, overall the algorithm still requires O(n2) space.

4.2 Correctness

We now prove that the algorithm implements the inference rules correctly.

Theorem 1. (e0 → e1) ∈ Cubic-CFA(ep) ⇐⇒ ⊢ e0 → e1

Proof. In the left-to-right direction, let ep be given. We prove the statement
(e0 → e1) ∈ R =⇒ ⊢ e0 → e1 from which this direction of the theorem follows
at the exit of the while loop. We use the loop invariant:

(e0 → e1) ∈ R =⇒ ⊢ e0 → e1 ∧ (e0 → e1) ∈ Q =⇒ ⊢ e0 → e1

Before entering the loop, (e0 → e1) ∈ R and (e0 → e1) ∈ Q implies e0 = e1

and input(e0), in which case the refl rule applies. Assume the invariant holds
before an iteration. We argue that it is preserved across a loop iteration, i.e.,
all new edge insertions into R and Q can be proved by the inference rules. At
the first for-loop, it follows from the invariant that ⊢ ei → ej , ek → ei, hence
by trans, ⊢ ek → ej . At the second for-loop, it also follows from the invariant
that ⊢ ej → ek, hence by trans, ⊢ ei → ek. For the last conditional to be true,
⊢ ei → λx. e and input(ei ew) must hold, so by app, ⊢ x → ew, ei ew → e.

In the right-to-left direction, the proof relies on two observations: (1) inser-
tions into R and Q are always simultaneous, and (2) R grows increasingly over
time, since elements are never deleted from it.

The run of the Cubic-CFA algorithm consists of a sequence of assign-
ment pairs. We model the memory modifications to Q and R as a sequence
(Q0,R0) . . . (Qn,Rn), such that (a) two consecutive Q’s differ only by one in-
serted or deleted edge, and (b) two consecutive R’s differ only by an inserted
edge. Since edges are never removed from R, we prove the statement

⊢ e0 → e1 =⇒ exists a least i, such that (e0 → e1) ∈ Ri ∧ (e0 → e1) ∈ Qi

from which the right-to-left direction of the theorem follows. The proof proceeds
by structural induction on the inference tree. For derivation trees of ⊢ e0 → e1

using the refl axiom, we have e0 = e1 and there exists R0 and Q0 such that
(e0 → e1) ∈ R0 and (e0 → e1) ∈ Q0 from the initialization in line 1. Assume
the statement holds for all structurally smaller derivation trees. There are now
two remaining cases. If ⊢ e0 → e1 by the trans rule, there exists a term e,
such that ⊢ e0 → e, e → e1 and hence there exists a least i and j such that
(e0 → e) ∈ Ri ∧ (e0 → e) ∈ Qi and (e → e1) ∈ Rj ∧ (e → e1) ∈ Qj

by the induction hypothesis. If i = j, the same edge is inserted in both R and
Q, and e0 = e = e1. The conclusion therefore coincides with the induction
hypothesis. In case i < j, when (e → e1) is eventually deleted from the queue,
(e0 → e) ∈ R. If (e0 → e1) /∈ R, we insert into both by trans 1, thereby proving
existence. Otherwise, (e0 → e1) ∈ R and there exists (Qk,Rk) at which point it

6

was inserted in both. In case i > j, when (e0 → e) is eventually deleted from the
queue, (e → e1) ∈ R. If (e0 → e1) /∈ R, we insert into both by trans 2 thereby
proving existence. Otherwise (e0 → e1) ∈ R, and there exists (Qk,Rk) at which
point it was inserted in both.

In the app case, we can assume that input(e1 e2) and ⊢ e1 → λx. e. Hence,
there exists a least i such that (e1 → λx. e) ∈ Ri ∧ (e1 → λx. e) ∈ Qi.
We consider one sub-case for each of the two conclusions. In case ⊢ x → e, if
(x → e) /∈ R, we insert the edge into both by app thereby proving existence. If
on the other hand, (x → e) ∈ R, it was inserted at some point (Qk,Rk) into both
thereby proving existence. In case ⊢ e1 e2 → e, if (e1 e2 → e) /∈ R, we insert the
edge into both by app, proving existence. If on the other hand, (e1 e2 → e) ∈ R,
it was inserted at some point (Qk,Rk) into both, thereby proving existence. ⊓⊔

5 A Subcubic Algorithm

We formulate a subcubic algorithm as a refinement of the initial algorithm. The
basic idea is to change the representation of R into a sequence of rows and
columns, each of which is represented as a fast set. First we assume a numbering
of all sub-expressions of the program, similar to the labelling found in text book
presentations of CFA [Nielson et al., 1999]. To simplify the presentation we
will identify a term with its unique label. Assume the labels constitute the set
{0, . . . , n− 1}. We assume the following two operations:

Column(j) = {k | (k → j) ∈ R} where 0 ≤ j ≤ n− 1

Row(j) = {k | (j → k) ∈ R} where 0 ≤ j ≤ n− 1

Row(j) represents the set of nodes reachable from j. Column(j) represents
the set of nodes that can reach j. Each insertion Insert((ei → ej),R) in the orig-
inal algorithm is implemented with two instructions: Insert(i,Column(j)) and
Insert(j,Row(i)). Queries (ei → ej) /∈ R are implemented as: i /∈ Column(j)
and j /∈ Row(i). Finally, we substitute the for-loop condition

4 for (ek → ei) ∈ R such that (ek → ej) /∈ R � Case trans 1

with the equivalent condition: for k ∈ Diff(Column(i),Column(j)) and sim-
ilarly the second for-loop condition is rewritten based on Row. The final al-
gorithm is given in Fig. 4. Insertions into R are marked with an asterisk, but
otherwise the algorithm is kept in its original form.

5.1 Complexity

Time: Pre-computing a table of most-significant bits can be done as a linear
traversal of all possible Θ(log n) length words, hence it can be done in O(2log n) =
O(n) time. Compared to the cubic-time algorithm, we have only changed the for-
loops. We consider the complexity of the loops and their bodies separately. The
Diff operation can be computed in O(n/ log n) time. The insertion into Q, R,

7

Subcubic-CFA(e)

1 Q,R ← {e → e | input(e)} � Case refl
2 while Q 6= ∅
3 do (ei → ej)← Delete(Q)
4 for k ∈ Diff(Column(i),Column(j)) � Case trans 1
5 do Insert*(ek → ej ,R)
6 Insert(ek → ej ,Q)
7 for k ∈ Diff(Row(j),Row(i)) � Case trans 2
8 do Insert*(ei → ek, R)
9 Insert(ei → ek,Q)

10 if ej = λx. e and input(ei ew) � Case app
11 then if (x → ew) /∈ R

12 then Insert*(x → ew ,R)
13 Insert(x → ew,Q)
14 if (ei ew → e) /∈ R

15 then Insert*(ei ew → e,R)
16 Insert(ei ew → e,Q)
17 return R

Fig. 4: Subcubic algorithm

Column, and Row will only be executed once per edge. Hence the total time
complexity is dominated by O(n3/ log n).

Space: Pre-computing the table of most-significant bits requires O(2log n) =
O(n) space. For each term of the source program we require a Column and Row
set. Each such set requires O(n/ log n) space, hence their total space consumption
is O(n2/ logn). The representation and hence the space requirements from Q
remain unchanged hence the overall space complexity is O(n2).

5.2 Conclusion

Since ⊢ estart → efinish holds if and only if (estart → efinish) ∈ Subcubic-CFA(ep)
holds, we thereby reach the first contribution: a significantly simpler proof of a
theorem which should be attributed to Chaudhuri [2008] and Melski and Reps
[2000].

Theorem 2. Control flow analysis of size n and its associated decision problem
can be determined in worst case O(n3/ logn) time on a RAM.

6 A First Analysis with Reachability

We now incorporate reachability into the analysis algorithm. Extending control
flow analysis with reachability, e.g., for dead-code elimination, is a known im-
provement [Ayers, 1993, Palsberg and Schwartzbach, 1995, Biswas, 1997, Heintze
and McAllester, 1997a, Gasser et al., 1997, Midtgaard and Jensen, 2008], which

8

scope(λx. e) ∈ Reach

λx. e → λx. e
(refl-lam)

e1 → λx. e scope(e1 e2) ∈ Reach

scope(e) ∈ Reach, x → e2, e1 e2 → e
(app)

e0 → e1 e1 → e2

e0 → e2

(trans)

Fig. 5: Inference rules with reachability for the system ⊢r

s0

z }| {

(λx. x x
|{z}

s1

) (λy. y y
|{z}

s2

)

scope((λx. x x) (λy. y y))

= scope(λx. x x) = scope(λy. y y) = s0

scope(x x) = scope(x) = s1

scope(y y) = scope(y) = s2

Fig. 6: Distinct lexical scopes and the scope operator on the Ω-combinator

gives rise to a more precise analysis. In addition to detecting dead code, the
extended analysis avoids analysing unreachable code.

We formulate in Fig. 5 an improved analysis as a set of inference rules and
write ⊢r to mean provability in this system. The improved analysis conserva-
tively determines distinct, reachable lexical scopes in the input program. The
inference rules assume the availability of an operation scope(e) returning a
unique representative of an expression e’s lexical scope. Each subexpression
in the input program can only belong to one lexical scope. Two nested lex-
ical scopes are considered to be different. Subexpressions of a nested lexical
scope instead belong to the nested scope. Figure 6 provides an example thereof.
Formulated as an equivalence relation, we have scope(e0 e1) = scope(e0) and
scope(e0 e1) = scope(e1). Distinct lexical scopes can be understood as the
induced partitioning of the set of expressions by this equivalence relation.

Given a program ep we assume the axiom scope(ep) ∈ Reach and repeatedly
apply the inference rules. The corresponding decision problem accepts two addi-
tional subexpressions estart and efinish as input and determines whether the latter
is reachable from the former. The analysis strongly resembles one of Heintze and
McAllester [1997a] which we will recall and formally relate to in Sec. 8.

6.1 A First Algorithm with Reachability

We now turn to formulating the inference system algorithmically. The algorith-
mic formulation naturally falls into two steps: a preprocessing step and a main
step. We describe the latter first.

Main step: We formulate in Fig. 7 a worklist algorithm over edges and
lexical scopes. When deleting an element from the worklist, we perform a case
analysis. The basic idea is (again) to reconsider every rule that can potentially
‘fire’ because of the element addition. Reachable scopes are remembered in the

9

operation type time complexity

scope Expr → Scope O(1)
nodesInScope Scope → Expr list O(1)

∈ Scope × Scopeset → bool O(1)
Insert Scope × Scopeset → unit O(1)

Table 2: Type and worst-case time complexity of scope operations

set Reach . For fast insertion and membership testing, Reach can be represented
as a bit set.

Preprocessing step: For each expression e, add a link to scope(e). This
can be chosen as the outermost expression in a top-down traversal of the input
program. In lambda nodes, where a new scope begins, a new scope is passed
down to its children. At the same time, we add each expression to a linked
list nodesInScope(s) for each scope s. The list represents all expressions of
a specific lexical scope. We summarize the resulting operations in Table 2. We
assume that the scope operations satisfy the following:

∀s, e : e ∈ nodesInScope(s) =⇒ scope(e) = s

∀e : e ∈ nodesInScope(scope(e))

6.2 Complexity

Time: Preprocessing an input term can be done as a linear time traversal, hence
the running time of the algorithm is dominated by the main worklist loop. In the
outer while-loop, every scope and edge is considered only once upon deletion
from Q, of which there are at most O(n) and O(n2), respectively.

For each considered scope, we iterate over its subexpressions, hence each
expression is only investigated once in the iteration over nodesInScope. The
total time complexity spent in the scope case is dominated by the inner for-loop
in app 1. The inner for-loop iterates at most O(n) times, hence the total time
complexity of the scope case is O(n2). The total time spent in the edge case is
dominated by the two consecutive (inner) for-loops, both of which are worst-case
linear. Hence the overall time-complexity is O(n3).

Space: Maintaining scope takes only O(n) since there is one entry for each
subexpression of the source program. Likewise nodesInScope takes only O(n)
space since every subexpression belongs to only one scope. Since both edges and
scopes can belong to the worklist Q, it takes at most O(n2) + O(n) = O(n2)
space. R takes O(n2) space and Reach takes O(n) space. Hence the algorithm
requires O(n2) space.

6.3 Correctness

We prove that the new algorithm implements the refined inference rules correctly.

10

Cubic-Reachability-CFA(e)

1 Q ← {scope(e)}
2 R ← ∅
3 Reach ← {scope(e)}
4 while Q 6= ∅
5 do elem ← Delete(Q)
6 case elem of

7 s : � ***** Scope *****
8 for ei ∈ nodesInScope(s)
9 do if ei = λx. e and (ei → ei) /∈ R � Case refl-lam

10 then Insert(ei → ei,R)
11 Insert(ei → ei,Q)
12 if ei = e1 e2 � Case app 1
13 then for (e1 → λx. e0) ∈ R

14 do if scope(e0) /∈ Reach

15 then Insert(scope(e0),Reach)
16 Insert(scope(e0),Q)
17 if (x → e2) /∈ R

18 then Insert(x → e2,R)
19 Insert(x → e2,Q)
20 if (e1 e2 → e0) /∈ R

21 then Insert(e1 e2 → e0,R)
22 Insert(e1 e2 → e0,Q)
23 (ei → ej): � ***** Edge *****
24 for (ek → ei) ∈ R such that (ek → ej) /∈ R � Case trans 1
25 do Insert(ek → ej ,R)
26 Insert(ek → ej ,Q)
27 for (ej → ek) ∈ R such that (ei → ek) /∈ R � Case trans 2
28 do Insert(ei → ek,R)
29 Insert(ei → ek,Q)
30 if ej = λx. e and scope(ei ew) ∈ Reach � Case app 2
31 then if scope(e) /∈ Reach

32 then Insert(scope(e),Reach)
33 Insert(scope(e),Q)
34 if (x → ew) /∈ R

35 then Insert(x → ew ,R)
36 Insert(x → ew ,Q)
37 if (ei ew → e) /∈ R

38 then Insert(ei ew → e,R)
39 Insert(ei ew → e,Q)
40 return R,Reach

Fig. 7: Cubic reachability algorithm

11

Theorem 3. Let R,Reach = Cubic-Reachability-CFA(ep).

(e0 → e1) ∈ R ⇐⇒ ⊢r e0 → e1

The proof proceeds similarly to that of Theorem 1. Details are available in
Appendix A.

6.4 A First, Subcubic Algorithm with Reachability

We obtain Subcubic-Reachability-CFA, a subcubic algorithm for CFA with
reachability, again by changing the representation of R, and its associated oper-
ations into a column-row representation implemented with fast sets. We rewrite
the for-loop conditions with Diff and change all insertions into R into column-
row insertions using Insert* instead, substituting lines 24–29 in Fig. 7 with the
following lines:

24 for k ∈ Diff(Column(i),Column(j)) � Case trans 1
25 do Insert*((ek → ej),R)
26 Insert((ek → ej),Q)
27 for k ∈ Diff(Row(j),Row(i)) � Case trans 2
28 do Insert*((ei → ek),R)
29 Insert((ei → ek),Q)

6.5 Complexity

Time: The time complexity analysis proceeds as the previous. Again we have
only changed the representation of R and the for-loops conditions, hence, as for
the first algorithm, the total time complexity is dominated by O(n3/ logn).

Space: Pre-processing for the scope operations takes O(n) space as does
Reach . Again, the new representation of R takes O(n2/ log n) space, hence the
overall space complexity is still dominated by Q. A straightforward representa-
tion hereof requires O(n2) space.

6.6 Conclusion

Let R,Reach = Subcubic-Reachability-CFA(ep). Since ⊢r estart → efinish

holds if and only if (estart → efinish) ∈ R holds, we thereby reach the second
contribution.

Theorem 4. Control flow analysis with reachability of size n and its associated
decision problem can be determined in worst case O(n3/ logn) time on a RAM.

12

scope(λx. e) ∈ Reach

λx. e → λx. e, λx. e ∈ HasVals
(refl-lam)

e1 → λx. e scope(e1 e2) ∈ Reach e2 ∈ HasVals

scope(e) ∈ Reach, x → e2, e1 e2 → e
(app)

e0 → e1 e1 → e2

e0 → e2

(trans)
e0 → e1 e1 ∈ HasVals

e0 ∈ HasVals
(has-val)

Fig. 8: Refined inference rules with reachability for the system ⊢r′

7 A More Precise Analysis with Reachability

The analysis in Fig. 5 will not analyse the body of a function if it is never called.
However, the analysis will mark the body of a lambda as reachable, even if, e.g.,
the operands at all its call sites diverge. By augmenting the analysis further such
a property can be obtained. Such an augmentation is the topic of this section.

In order to analyse function bodies only when values can flow to the operands
at its call sites, we track expressions that can have a value flow to them, or ex-
pressed in graph-based terminology: expressions that can reach a value. As “can
reach a value” is not a static property, we will compute it dynamically by aug-
menting the analysis with a set of expressions ‘HasVals’. In the resulting analysis
in Fig. 8, we have added the condition e2 ∈ HasVals to the app rule and added
the conclusion λx. e ∈ HasVals to the refl-lam rule. We have furthermore
added a rule has-val to propagate the property between expressions. Given a
program ep we again assume the axiom scope(ep) ∈ Reach and repeatedly apply
the inference rules. We write ⊢r′ to mean provability in this inference system.
The corresponding decision problem again accepts two additional subexpressions
estart and efinish as input and determines whether the latter is reachable from
the former.

7.1 A More Precise Algorithm with Reachability

Since we added a new (dynamic) condition, we extend the corresponding worklist
algorithm in Fig. 9 to work over edges, scopes, and “expressions with values”.
When deleting an element from worklist Q, we perform a case analysis over
the three. The algorithm furthermore computes a set of expressions HasVals
modelling HasVals from the inference rules. We assume this set is represented,
e.g., as a bit set, with constant time insertion and membership testing. Again
the idea underlying the algorithm is to test all rules that can potentially apply
because of a new addition.

In order to retain a reasonable size of the resulting algorithm we have fac-
tored tests and insertions into three helper procedures Checked-Insert-Edge,
Checked-Insert-Scope, and Checked-Insert-Expr given in Fig. 10.

13

Refined-Cubic-Reachability-CFA(e)

1 Q ← {scope(e)}
2 R ← ∅
3 Reach ← {scope(e)}
4 HasVals ← ∅
5 while Q 6= ∅
6 do elem ← Delete(Q)
7 case elem of

8 ej : � ***** Expression *****
9 for (ei → ej) ∈ R � Case has-val 1

10 do Checked-Insert-Expr(ei)
11 if scope(ei ej) ∈ Reach � Case app 1
12 then for (ei → λx. e0) ∈ R

13 do Checked-Insert-Scope(scope(e0))
14 Checked-Insert-Edge(x → ej)
15 Checked-Insert-Edge(ei ej → e0)
16 s : � ***** Scope *****
17 for ei ∈ nodesInScope(s)
18 do if ei = λx. e � Case refl-lam
19 then Checked-Insert-Edge(ei → ei)
20 Checked-Insert-Expr(ei)
21 if ei = e1 e2 and e2 ∈ HasVals � Case app 2
22 then for (e1 → λx. e0) ∈ R

23 do Checked-Insert-Scope(scope(e0))
24 Checked-Insert-Edge(x → e2)
25 Checked-Insert-Edge(e1 e2 → e0)
26 (ei → ej): � ***** Edge *****
27 if ej ∈ HasVals � Case has-val 2
28 then Checked-Insert-Expr(ei)
29 for (ek → ei) ∈ R such that (ek → ej) /∈ R � Case trans 1
30 do Insert(ek → ej ,R)
31 Insert(ek → ej ,Q)
32 for (ej → ek) ∈ R such that (ei → ek) /∈ R � Case trans 2
33 do Insert(ei → ek,R)
34 Insert(ei → ek,Q)
35 if ej = λx. e and scope(ei ew) ∈ Reach and ew ∈ HasVals

36 then Checked-Insert-Scope(scope(e)) � Case app 3
37 Checked-Insert-Edge(x → ew)
38 Checked-Insert-Edge(ei ew → e)
39 return R,Reach

Fig. 9: More precise, cubic time reachability algorithm

14

Checked-Insert-Edge(ei → ej)

1 if (ei → ej) /∈ R

2 then Insert(ei → ej ,R)
3 Insert(ei → ej ,Q)

Checked-Insert-Scope(s)

1 if s /∈ Reach

2 then Insert(s,Reach)
3 Insert(s,Q)

Checked-Insert-Expr(e)

1 if e /∈ HasVals

2 then Insert(e,HasVals)
3 Insert(e,Q)

Fig. 10: Factored helper procedures

7.2 Complexity

Time: Each of the three procedures in Fig. 10 are constant time as they do a
constant time test and two constant time insertions. We now analyse each of the
three cases separately.

Expression case: all expressions are considered only once. The two inner loops
are both linear, hence the total time spent in the expression case take O(n2)
time. Scope case: the first for-loop will iterate in total at most n times since
each expression will only belong to one scope. Each such iteration uses O(n)
time, hence the total time spent is O(n2). Edge case: There are O(n2) possible
edges, for which we may run two linear for-loops, hence the total time spent is
O(n3).

Space: The space complexity of HasVals is O(n). The space requirements
of the remaining algorithm remains the same, hence the total space complexity
is still O(n2).

7.3 Correctness

Theorem 5. Let R,Reach = Refined-Cubic-Reachability-CFA(ep).

(e0 → e1) ∈ R ⇐⇒ ⊢r′ e0 → e1

The proof proceeds similarly to that of Theorems 1 and 3. Details are avail-
able in Appendix B.

7.4 A More Precise, Subcubic Algorithm with Reachability

A subcubic algorithm, Refined-Subcubic-Reachability-CFA, for the refined
analysis is obtained by again changing the representation of R and its associated
operations into a column-row representation implemented with fast sets. Again
we rewrite the for-loop conditions with Diff and change all insertions into R
into column-row insertions, substituting lines 29–34 in Fig. 9 with the following
lines:

15

29 for k ∈ Diff(Column(i),Column(j)) � Case trans 1
30 do Insert*((ek → ej),R)
31 Insert((ek → ej),Q)
32 for k ∈ Diff(Row(j),Row(i)) � Case trans 2
33 do Insert*((ei → ek),R)
34 Insert((ei → ek),Q)

7.5 Complexity

Time: The time complexity of the operations on R and hence the majority of
the refined algorithm remain unaffected by the change. As before the algorithm
therefore has O(n3/ logn) time complexity.

Space: Compared to the previous subcubic reachability algorithm we have
only added HasVals taking at most O(n) space. The addition therefore does not
affect the overall O(n2) space complexity.

7.6 Conclusion

Let R,Reach = Refined-Subcubic-Reachability-CFA(ep). Since the reach-
ability ⊢r′ estart → efinish holds if and only if (estart → efinish) ∈ R holds, we
thereby reach the third contribution.

Theorem 6. Control flow analysis with refined reachability of size n and its
associated decision problem can be determined in worst case O(n3/ logn) time
on a RAM.

8 Equivalence

In this section, we relate the three analyses presented thus far and prove each
successive analysis is a refinement of its predecessors. We then relate the re-
fined reachability analysis of Fig. 8 to a known flow analysis from the litera-
ture, namely the set-based abstraction (SBA) analysis of Heintze and McAllester
[1997a]. By doing so, we are able to appeal to the soundness result of set-based
analysis to prove soundness for the analyses presented here. Moreover, we show
decision problems for set-based analysis can be decided in subcubic time.

Theorem 7. ⊢r e → e ′ =⇒ ⊢ e → e ′

Proof. We prove the statement,

⊢r e → e ′ =⇒ ⊢ e → e ′ ∧ ⊢r scope(e) ∈ Reach =⇒ input(e),

by mutual induction on the derivation of ⊢r e → e ′ and ⊢r scope(e) ∈ Reach.
In the base case, ⊢r scope(ep) ∈ Reach implies input(ep) by the definition

of input . Each inductive case holds by appealing to the induction hypothesis,
the definition of input , and applying the corresponding ⊢ rule. ⊓⊔

16

eval(e1 e2)

eval(e1), eval(e2)
(beta’)

eval(e1 e2) e1 → λx. e e2 → v

x → v, e1 e2 → e
(beta)

eval(λx. e)

λx. e → λx. e
(ident)

e1 → e2

eval(e2)
(call)

e1 → e2 e2 → v

e1 → v
(return)

Fig. 11: Heintze and McAllester [1997a] SBA inference rules with reachability

Theorem 8. ⊢r′ e → e ′ =⇒ ⊢r e → e ′

Proof. We prove the statement,

⊢r′ e → e ′ =⇒ ⊢r e → e ′ ∧ ⊢r′ scope(e) ∈ Reach =⇒ ⊢r scope(e) ∈ Reach,

by mutual induction on the derivation of ⊢r′ e → e ′ and ⊢r′ scope(e) ∈ Reach.
The base case holds trivially. Each inductive case holds by appealing to the
induction hypothesis and applying the corresponding ⊢r rule. ⊓⊔

We now turn to the SBA analysis of Heintze and McAllester [1997a]. In
Fig. 11 we recall the SBA inference system. Given a program ep we assume the
axiom eval(ep) and repeatedly apply the inference rules. We write ⊢sba to mean
provability in this system. First, we prove that if one expression reaches another
under SBA, it does so under our refined reachability analysis, and therefore
under all of the analyses considered. This is sufficient to establish the soundness
of all the analyses presented here since SBA is sound.

We first prove a needed lemma showing that if an expression reaches a value,
it is in HasVals.

Lemma 1. ⊢r′ e → v =⇒ ⊢r′ e ∈ HasVals

Proof. By induction on the derivation of ⊢r′ e → v. The refl-lam case is trivial.
The trans case follows by the induction hypothesis and has-val. In the app
case, we have ⊢r′ x ∈ HasVals by has-val. If ⊢r′ e1 e2 → e where e is a value,
then refl-lam applies and ⊢r′ e1 e2 ∈ HasVals follows by has-val. ⊓⊔

Theorem 9. ⊢sba e → e ′ =⇒ ⊢r′ e → e ′

Proof. We prove the statement,

⊢sba e → e ′ =⇒ ⊢r′ e → e ′ ∧ ⊢sba eval(e) =⇒ ⊢r′ scope(e) ∈ Reach,

by mutual induction on the derivation of ⊢sba e → e ′ and ⊢sba eval(e).
In the base case, eval(ep) implies ⊢r′ scope(ep) ∈ Reach by definition. Case

beta’: by the induction hypothesis, ⊢r′ scope(e1 e2) ∈ Reach, and the case
holds by the definition of scope. Case ident: by the induction hypothesis,
⊢r′ scope(λx. e) ∈ Reach, so the case holds by refl-lam. Case beta: by the in-
duction hypothesis, ⊢r′ scope(e1 e2) ∈ Reach, e1 → λx. e, e2 → v. By Lemma 1,

17

⊢r′ e2 ∈ HasVals, so ⊢r′ x → e2, e1 e2 → e follows by app. Finally, ⊢r′ x → v fol-
lows by trans, and the case holds. Case call: by the induction hypothesis,
⊢r′ e1 → e2. Since ⊢r′ e → e ′ implies ⊢r′ scope(e ′) ∈ Reach, which is proved by
induction on the derivation of ⊢r′ e → e ′, the case holds. Case return: by the
induction hypothesis, ⊢r′ e1 → e2, e2 → v, so the case holds by trans. ⊓⊔

The alert reader may have noticed that the conclusion x → v in the beta rule
in Fig. 11 differs slightly from the corresponding conclusion x → e2 in the app
rule of Fig. 8. As a consequence all inclusions (reachability arrows) of the refined
algorithm cannot be proved by Heintze and McAllester’s analysis. We instead
prove the following, weaker theorem, relating inclusions between expressions and
syntactic values. The proof is available in Appendix C.

Theorem 10. ⊢r′ e → v =⇒ ⊢sba e → v

Putting the above minor difference aside, the final refined analysis ⊢r′ can
be understood as a two-step version of Heintze and McAllester’s analysis in
which transitive implications of Beta’ are pre-computed exhaustively, thereby
enabling the marking of all subexpressions in a lexical scope as reachable as soon
as the outermost expression of the same scope becomes reachable.

Heintze and McAllester’s analysis may be formulated as a decision problem
termed set-based reachability, by accepting two additional subexpressions estart

and vfinish and determining whether the latter syntactic value is reachable from
the former expression.

Theorem 11. Set-based abstraction analysis with refined reachability of size n
and its associated decision problem can be determined in worst case O(n3/ log n)
time on a RAM.

9 Conclusion and Perspectives

Fast sets require an architecture with constant-time bit operations on Θ(log n)
size words. Compared to the textbook RAM model, this may seem a substantial
requirement. Consider the undergraduate binary search algorithm in a sorted
array of size n. This requires computing the average of two numbers in the range
[0 . . . n−1]. Such numbers require O(log n) bits, hence we are relying on constant
time addition of O(log n) bit numbers. In this light, requiring constant time for
similar operations such as complement or bitwise and, seems less demanding.

Heintze and McAllester [1997b] define a subcubic algorithm as a RAM al-
gorithm that operates in time O(nk) with k < 3. By this definition, neither
the Rytter [1985] algorithm, nor those presented here would be considered sub-
cubic. However, by examining the limit of n3/(n3/ logn) = log n it is clear
that n3/ logn = o(n3). Hence we use subcubic time to mean less than cubic
time, as does Chaudhuri [2008], and other researchers in the algorithms research
literature [Zwick, 2006, Chan, 2007, Han, 2008]. Instead the term truly sub-
cubic is sometimes used to refer to algorithms of time complexity O(nk) with
k < 3 [Zwick, 2006, Chan, 2007].

18

CFA is complete for both 2NPDA [Heintze and McAllester, 1997b] and
PTIME [Melski and Reps, 2000, Van Horn and Mairson, 2007], yet it is not clear
what the relationship is between these classes. In part, this is because the 2NPDA
inclusion proof is sensitive to representation choices and problem formulations.
Heintze and McAllester [1997b] use an encoding of lambda-terms that requires
a non-standard bit string labelling scheme in which identical subterms have the
same labels. They remark that without this labelling scheme, the problem “ap-
pears not to be in 2NPDA.” Moreover, the notions of reduction for 2NPDA-hard
and PTIME-hard relies on different computational models. For a problem to be
2NPDA-hard, all problems in the class must be reducible in O(nR(log n)) time
on a RAM, where R is a polynomial [Heintze and McAllester, 1997b], whereas
to be PTIME-hard, all problems in the class must be reducible using a O(log n)
space work-tape on a TM.

Historically, researchers have approached the cubic bottleneck from different
angles. One such approach is to add input assumptions, e.g., accepting bounded-
type programs [Heintze and McAllester, 1997c]. Another approach has been to
explore faster but less precise analyses, e.g., almost linear time simple closure
analysis based on equalities rather than inclusions [Henglein, 1992, Bondorf and
Jørgensen, 1993].

We have given the first direct subcubic algorithms for performing both the
standard notion of flow analysis and two more precise variants incorporating
reachability. In retrospect, the present results were achievable a decade ago.
Rather than using 2NPDA-completeness as an argument for dismissing further
investigation of algorithmic improvements, we view the above results as an in-
vitation to re-investigate them.

Acknowledgements The authors wish to thank Kristoffer Arnsfelt Hansen for
comments. The first author is supported by the Carlsberg Foundation.

19

Bibliography

A. V. Aho, J. E. Hopcroft, and J. D. Ullman. Time and tape complexity of
pushdown automaton languages. Information and Control, 13(3):186–206,
1968.

A. E. Ayers. Abstract Analysis and Optimization of Scheme. PhD thesis, Mas-
sachusetts Institute of Technology, Cambridge, Massachusetts, Sept. 1993.

A. E. Ayers. Efficient closure analysis with reachability. In M. Billaud,
P. Castéran, M.-M. Corsini, K. Musumbu, and A. Rauzy, editors, Actes
WSA’92 Workshop on Static Analysis, Bigre, pages 126–134, Bordeaux,
France, Sept. 1992. Atelier Irisa, IRISA, Campus de Beaulieu.

J. Basch, S. Khanna, and R. Motwani. On diameter verification and boolean
matrix multiplication. Technical report, Stanford University, Stanford, CA,
USA, 1995.

S. K. Biswas. A demand-driven set-based analysis. In N. D. Jones, editor, Pro-
ceedings of the 24th Annual ACM Symposium on Principles of Programming
Languages, pages 372–385, Paris, France, Jan. 1997.

A. Bondorf and J. Jørgensen. Efficient analyses for realistic off-line partial eval-
uation. Journal of Functional Programming, 3(3):315–346, July 1993.

T. M. Chan. More algorithms for all-pairs shortest paths in weighted graphs. In
STOC ’07: Proceedings of the thirty-ninth annual ACM symposium on Theory
of computing, pages 590–598, San Diego, California, 2007.

S. Chaudhuri. Subcubic algorithms for recursive state machines. In G. C. Necula
and P. Wadler, editors, Proceedings of the 35th Annual ACM Symposium on
Principles of Programming Languages, pages 159–169, San Francisco, Califor-
nia, Jan. 2008.

K. L. S. Gasser, F. Nielson, and H. R. Nielson. Systematic realisation of control
flow analyses for CML. In Tofte, pages 38–51.

Y. Han. A note of an O(n3/log n) time algorithm for all pairs shortest paths.
Information Processing Letters, 105(3):114–116, 2008.

N. Heintze. Set-based program analysis of ML programs. In C. L. Talcott, editor,
Proceedings of the 1994 ACM Conference on Lisp and Functional Program-
ming, LISP Pointers, Vol. VII, No. 3, pages 306–317, Orlando, Florida, June
1994.

N. Heintze and D. McAllester. On the complexity of set-based analysis. In Tofte,
pages 150–163.

N. Heintze and D. McAllester. On the cubic bottleneck in subtyping and flow
analysis. In G. Winskel, editor, Proceedings of the 12th Annual IEEE Sym-
posium on Logic in Computer Science (LICS ’97), pages 342–351, Warsaw,
Poland, June 1997b.

N. Heintze and D. McAllester. Linear-time subtransitive control flow analysis.
In R. K. Cytron, editor, Proceedings of the ACM SIGPLAN 1997 Conference
on Programming Languages Design and Implementation, pages 261–272, Las
Vegas, Nevada, June 1997c.

F. Henglein. Simple closure analysis. Technical Report Semantics Report D-193,
DIKU, Computer Science Department, University of Copenhagen, 1992.

J. C. Martin. Introduction to Languages and the Theory of Computation.
McGraw-Hill Higher Education, 1997.

D. A. McAllester. On the complexity analysis of static analyses. J. ACM, 49
(4):512–537, 2002.

D. Melski and T. Reps. Interconvertibility of a class of set constraints and
context-free-language reachability. Theoretical Computer Science, 248(1-2):
29–98, 2000.

J. Midtgaard and T. Jensen. A calculational approach to control-flow analysis by
abstract interpretation. In M. Alpuente and G. Vidal, editors, Static Analysis,
15th International Symposium, SAS 2008, volume 5079 of Lecture Notes in
Computer Science, pages 347–362, Valencia, Spain, July 2008. Springer-Verlag.

R. Neal. The computational complexity of taxonomic inference. Available at
ftp://ftp.cs.utoronto.ca/pub/radford/taxc.ps, Dec. 1989.

F. Nielson, H. R. Nielson, and C. Hankin. Principles of Program Analysis.
Springer-Verlag, 1999.

J. Palsberg and M. I. Schwartzbach. Safety analysis versus type inference. In-
formation and Computation, 118(1):128–141, 1995.

W. Rytter. Fast recognition of pushdown automaton and context-free languages.
Information and Control, 67(1-3):12–22, 1985.

O. Shivers. Control-Flow Analysis of Higher-Order Languages or Taming
Lambda. PhD thesis, School of Computer Science, Carnegie Mellon University,
Pittsburgh, Pennsylvania, May 1991. Technical Report CMU-CS-91-145.

M. Tofte, editor. Proceedings of the Second ACM SIGPLAN International Con-
ference on Functional Programming, Amsterdam, The Netherlands, June 1997.

D. Van Horn and H. G. Mairson. Relating complexity and precision in control
flow analysis. In N. Ramsey, editor, Proceedings of the 12th ACM SIGPLAN
International Conference on Functional Programming (ICFP’07), pages 85–
96, Freiburg, Germany, Oct. 2007.

V. Vassilevska. Efficient algorithms for clique problems. Information Processing
Letters, 109(4):254–257, 2009.

U. Zwick. A slightly improved sub-cubic algorithm for the all pairs shortest
paths problem with real edge lengths. Algorithmica, 46(2):181–192, 2006.

21

A Proof of Theorem 3

Proof. Let ep be given.

1. We prove the statement

((e0 → e1) ∈ R =⇒ ⊢r e0 → e1) ∧ (s ∈ Reach =⇒ ⊢r s ∈ Reach),

from which the left-to-right direction of Theorem 3 follows. We reason about
the algorithm using the following loop invariant:

(e0 → e1) ∈ R =⇒ ⊢r e0 → e1 ∧ (a)

(e0 → e1) ∈ Q =⇒ (e0 → e1) ∈ R ∧ (b)

s ∈ Reach =⇒ ⊢r s ∈ Reach ∧ (c)

s ∈ Q =⇒ ⊢r s ∈ Reach (d)

Invariant holds at while-loop entry: Since R is empty and Q contains no
edges, only scopes, (a) and (b) trivially hold. Since we assume the axiom
⊢r scope(ep) ∈ Reach and that all sub-expressions of ep are part of the
input program, (c) and (d) hold as well.

Invariant is preserved by while-loop iteration: Assume the invariant holds;
we prove it holds after each of the two cases.
Case s: From our scope operation assumptions, we have scope(ei) = s. From
(d), it follows that ⊢r s ∈ Reach. There are now two possibilities:
(1) ei = λx. e: Parts (c) and (d) remain true as their conditions are un-
touched. We argue the invariant is preserved for the potential new edge
additions to R and Q. By refl-lam, ⊢r ei → ei and hence (a) holds. The
edge (ei → ei) belongs to both R and Q after the insertion, so (b) holds.
(2) ei = e1 e2: If (e1 → λx. e0) ∈ R, it follows from (a) that ⊢r e1 → λx. e0.
For each of the three conditionals, we argue the invariant still holds for the
potential new additions to R and Q.
(3a) Parts (a) and (b) remain true as their conditions are untouched. Now
⊢r scope(e1 e2) ∈ Reach follows from the above, so by app, (c) and (d) hold.
(3b) Parts (c) and (d) remain true as their conditions are untouched. Now
⊢r x → e2 follows by app, so (a) holds. The edge (x → e2) belongs to both
R and Q after the insertion, so (b) holds.
(3c) Parts (c) and (d) remain true as their conditions are untouched. Now
⊢r e1 e2 → e0 again follows by app, so (a) holds. The edge (e1 e2 → e0)
belongs to both R and Q after the insertion, so (b) holds.

Case (ei → ej): From (b), we have ⊢r ei → ej . For each new addition, we
again argue the invariant is preserved.
Case trans 1 : Parts (c) and (d) remain true as their conditions are untouched.
If (ek → ei) ∈ R, from (a) we have ⊢r ek → ei. Hence, ⊢r ek → ej by trans,

22

so (a) holds. The edge (ek → ej) belongs to both R and Q after the insertion,
so (b) holds.
Case trans 2 : Parts (c) and (d) remain true as their conditions are untouched.
If (ej → ek) ∈ R, from (a) we have ⊢r ej → ek. Hence, ⊢r ei → ek by trans,
so (a) holds. The edge (ei → ek) belongs to both R and Q after the insertion,
so (b) holds.
Case app 2 : If ej = λx. e and scope(ei ew) ∈ Reach , it follows from (c) that
⊢r scope(ei ew) ∈ Reach.
Case (app-2-a): Parts (a) and (b) remain true as their conditions are un-
touched. Parts (c) and (d) follow immediately from the above by app.
Case (app-2-b): Parts (c) and (d) remain true as their conditions are un-
touched. Part (a) follows immediately from the above by app. The edge
(x → ew) belongs to both R and Q after the insertion, so (b) holds.
Case (app-2-c): Parts (c) and (d) remain true as their conditions are un-
touched. Part (a) follows immediately from the above by app. The edge
(ei ew → e) belongs to both R and Q after the insertion, so (b) holds.

2. The right-to-left direction of the proof relies on three observations: (1) inser-
tions into R and Q are always simultaneous. (2) insertions into Reach and
Q are always simultaneous. (3) R and Reach grow increasingly over time,
since edges and scopes are never deleted from them.
The run of Cubic-Reachability-CFA consists of a sequence of modifica-
tions to Q, R, and Reach , which we model as a sequence of triples

(Q0,R0,Reach0) . . . (Qn,Rn,Reachn),

such that (a) two consecutive Q’s differ only by one inserted or deleted edge
or scope node, (b) two consecutive R’s may differ only by an inserted edge,
and (c) two consecutive Reach ’s may differ only by an inserted scope node.
Since edges are never deleted from R and scope nodes are never deleted from
Reach , we prove the statement

⊢r e0 → e1 =⇒ exists a least i, s.t. (e0 → e1) ∈ Ri ∧ (e0 → e1) ∈ Qi

⊢r s ∈ Reach =⇒ exists a least i, s.t. s ∈ Reachi ∧ s ∈ Qi,

from which the right-to-left direction of Theorem 3 follows. The proof pro-
ceeds by mutual structural induction on the inference trees for ⊢r e0 → e1

and ⊢r s ∈ Reach.
For derivations using the axiom ⊢r scope(ep) ∈ Reach, clearly there exists
Reach0 and Q0 such that the above holds from the initialization in lines 1
and 3. Now assume the statement holds for all structurally smaller derivation
trees. There are three remaining cases.
Case refl-lam: If ⊢r e0 → e1 uses the refl-lam rule, we have e0 = e1 =
λx. e, and by the induction hypothesis, there exists a scope(λx. e) ∈ Reachi

and scope(λx. e) ∈ Qi. Hence when scope(λx. e) is later deleted from Q,
λx. e ∈ nodesInScope(scope(λx. e)) holds by the scope operation assump-
tions. If (λx. e → λx. e) ∈ R, it was inserted simultaneously in Q thereby
proving existence. Otherwise, we add it to both thereby proving existence.

23

Case app: If ⊢r s ∈ Reach uses the app rule, we have that s = scope(e)
and there exists e1 e2 such that ⊢r e1 → λx. e and ⊢r scope(e1 e2) ∈ Reach.
Hence by the induction hypothesis, there exists a least i such that (e1 →
λx. e) ∈ Ri and (e1 → λx. e) ∈ Qi, and there exists a least j such that
scope(e1 e2) ∈ Reachj and scope(e1 e2) ∈ Qj . The situation i = j is impos-
sible as insertions always happen pairwise: two scope insertions or two edge
insertions. If i < j when scope(e1 e2) is deleted from Q, we have e1 e2 ∈
nodesInScope(scope(e1 e2)) by the scope operation assumptions. At this
point in time, (e1 → λx. e) ∈ R. Hence if scope(e) /∈ Reach , we add it to
both Reach and Q thereby proving existence. If already scope(e) ∈ Reach , it
was earlier inserted simultaneously into Q as well, thereby proving existence.
If i > j when (e1 → λx. e) is deleted from Q, we have scope(e1 e2) ∈ Reach .
Hence if scope(e) /∈ Reach , we add it to both Reach and Q thereby proving
existence. If already scope(e) ∈ Reach , it was earlier inserted simultane-
ously into Q as well, thereby proving existence.
If ⊢r e0 → e1 uses the app rule, there are two cases to consider: one for
each of the remaining conclusions. If e0 → e1 = x → e ′

2, there exists e ′

1 e ′

2

such that e0 = x, e1 = e ′

2, and by the induction hypothesis there exists
a least i such that (e ′

1 → λx. e) belongs to both Ri and Qi. Also by the
induction hypothesis, there exists a least j such that scope(e ′

1 e ′

2) belongs
to both Reachj and Qj. Again the situation i = j is impossible. If i < j
when scope(e ′

1 e ′

2) is deleted from Q, e ′

1 e ′

2 ∈ nodesInScope(scope(e ′

1 e ′

2))
by the scope operation assumptions. At this point in time, (e ′

1 → λx. e) ∈ R.
Hence if (x → e ′

2) /∈ R, we add it to both R and Q thereby proving existence.
If already (x → e ′

2) ∈ R, it was earlier inserted simultaneously into Q as well,
thereby proving existence. If i > j when (e ′

1 → λx. e) is deleted from Q, we
have scope(e ′

1 e ′

2) ∈ Reach . Hence if (x → e ′

2) /∈ R, we add it to both R and
Q thereby proving existence. If already (x → e ′

2) ∈ R, it was earlier inserted
simultaneously into Q as well, thereby proving existence.
If e0 → e1 = e ′

1 e ′

2 → e, we have e0 = e ′

1 e ′

2 and e1 = e, and by the
induction hypothesis there exists a least i such that (e ′

1 → λx. e) belongs
to both Ri and Qi. Also by the induction hypothesis, there exists a least j
such that scope(e ′

1 e ′

2) belongs to both Reachj and Qj . Again the situation
i = j is impossible. If i < j when scope(e ′

1 e ′

2) is deleted from Q, we have
e ′

1 e ′

2 ∈ nodesInScope(scope(e ′

1 e ′

2)) by the scope operation assumptions.
At this point in time, (e ′

1 → λx. e) ∈ R. Hence if (e ′

1 e ′

2 → e) /∈ R, we add
it to both R and Q thereby proving existence. If already (e ′

1 e ′

2 → e) ∈ R, it
was earlier inserted simultaneously into Q as well, thereby proving existence.
If i > j when (e ′

1 → λx. e) is deleted from Q, we have scope(e ′

1 e ′

2) ∈ Reach .
Hence if (e ′

1 e ′

2 → e) /∈ R, we add it to both R and Q thereby proving
existence. If already (e ′

1 e ′

2 → e) ∈ R, it was earlier inserted simultaneously
into Q as well, thereby proving existence.
Case trans: If ⊢r e0 → e1 uses the trans rule, there exists e such that
⊢r e0 → e, e → e1. By the induction hypothesis, there exists a least i such
that (e0 → e) belongs to both Ri and Qi, and there exists a least j such that
(e → e1) belongs to both Rj and Qj. If i = j, we have e0 = e1 = e hence

24

existence follows from the induction hypothesis. If i < j when (e → e1) is
deleted from Q, we have (e0 → e) ∈ R. If (e0 → e1) /∈ R, we insert it in both
R and Q in trans 1, thereby proving existence. If already (e0 → e1) ∈ R,
it was earlier inserted simultaneously into both R and Q thereby proving
existence. If i > j when (e0 → e) is deleted from Q, we have (e → e1) ∈ R.
If (e0 → e1) /∈ R, we insert it in both R and Q in trans 2, thereby proving
existence. If already (e0 → e1) ∈ R, it was earlier inserted simultaneously
into both R and Q thereby proving existence. ⊓⊔

B Proof of Theorem 5

Proof. Let ep be given.

1. We prove the statement

(e0 → e1) ∈ R =⇒ ⊢r′ e0 → e1 ∧

s ∈ Reach =⇒ ⊢r′ s ∈ Reach ∧

e0 ∈ HasVals =⇒ ⊢r′ scope(e0) ∈ Reach,

from which the left-to-right direction of Theorem 5 follows. We reason about
the algorithm using the following loop invariant:

(e0 → e1) ∈ R =⇒ ⊢r′ e0 → e1 ∧ (a)

(e0 → e1) ∈ Q =⇒ (e0 → e1) ∈ R ∧ (b)

s ∈ Reach =⇒ ⊢r′ s ∈ Reach ∧ (c)

s ∈ Q =⇒ ⊢r′ s ∈ Reach ∧ (d)

e0 ∈ HasVals =⇒ ⊢r′ e0 ∈ HasVals ∧ (e)

e0 ∈ Q =⇒ ⊢r′ e0 ∈ HasVals (f)

Invariant holds at while-loop entry: Since R is empty and there are no
edges in Q, (a) and (b) are trivially satisfied. Since we assume the axiom
⊢r′ scope(ep) ∈ Reach, and all sub-expressions of ep are part of the input
program, (c) and (d) hold as well. As HasVals is empty, (e) also holds.
Finally, there are no expressions in Q, hence (f) holds.

Invariant is preserved by while-loop iteration: Assume the invariant holds.
We prove it holds after the insertions in each of the three cases.

Case ej : From (f), it follows that ⊢r′ ej ∈ HasVals. For each (ei → ej) ∈ R
in case has-val 1, it follows from (a) that ⊢r′ ei → ej . Hence by has-vals,
we have ⊢r′ ei ∈ HasVals, thereby fulfilling (e) and (f) for each new insertion
into HasVals and Q. The conditions for (a),(b),(c), and (d) are untouched
and hence still hold.
In case app 1, assume that scope(ei ej) ∈ Reach and that (ei → λx. e0) ∈ R.
From (c) and (a), it follows ⊢r′ scope(ei ej) ∈ Reach, ei → λx. e0. By app

25

⊢r′ scope(e0) ∈ Reach, x → ej , ei ej → e0 now follow. After the first inser-
tion, (c) and (d) still hold. As the conditions for (a),(b),(e), and (f) are
untouched, they still hold. After the second insertion (a) and (b) still hold.
As the conditions for (c),(d),(e), and (f) are untouched, they still hold. Fi-
nally, after the third insertion, (a) and (b) still hold. As the conditions for
(c),(d),(e), and (f) are untouched, they also still hold.

Case s: From our scope operation assumptions, we have scope(ei) = s. From
(d), ⊢r′ s ∈ Reach follows. There are now two possibilities:

(1) ei = λx. e: Parts (c) and (d) remain true as their conditions are un-
touched and we argue the invariant is preserved for the potential new edge
and expression additions to R, HasVals , and Q. By refl-lam, ⊢r′ ei → ei

holds and hence (a) follows immediately from the above. The edge (ei → ei)
belongs to both R and Q after the insertion, so (b) holds. Furthermore,
⊢r′ ei ∈ HasVals holds by refl-lam, hence (e) follow immediately from the
above. As ei belongs to both HasVals and Q after the insertion, (f) also
holds.

(2) ei = e1 e2 and e2 ∈ HasVals : If (e1 → λx. e0) ∈ R, it follows from (a)
that ⊢r′ e1 → λx. e0, and from (e) that ⊢r′ e2 ∈ HasVals. For each of the
three conditionals, we argue that the invariant still holds for the potential
new additions to R and Q.

(3a) Parts (a),(b),(e), and (f) remain true as their conditions are untouched.
⊢r′ scope(e1 e2) ∈ Reach follows from the above, hence (c) and (d) hold by
app.

(3b) Parts (c),(d),(e), and (f) remain true as their conditions are untouched.
Now ⊢r′ x → e2 follows from the above by app and hence (a) holds. The
edge (x → e2) belongs to both R and Q after the insertion, so (b) holds.

(3c) Parts (c),(d),(e), and (f) remain true as their conditions are untouched.
Now ⊢r′ e1 e2 → e0 again follows by app, so (a) holds. The edge (e1 e2 → e0)
belongs to both R and Q after the insertion, so (b) holds.

Case (ei → ej): From (b) we have that ⊢r′ ei → ej . For each new addition,
we again argue the invariant is preserved.

Case has-val 1 : If ej ∈ HasVals , from (e) we have ⊢r′ ej ∈ HasVals. By
has-val, ⊢r′ ei ∈ HasVals, so (e) and (f) hold.

Case trans 1 : If (ek → ei) ∈ R, from (a) we have that ⊢r′ ek → ei. By
trans, ⊢r′ ek → ej , so (a) holds. The edge (ek → ej) belongs to both R and
Q after the insertion, so (b) holds. Parts (c),(d),(e), and (f) remain true as
their conditions are untouched.

Case trans 2 : If (ej → ek) ∈ R, from (a) we have that ⊢r′ ej → ek. By
trans, ⊢r′ ei → ek, so (a) holds. The edge (ei → ek) belongs to both R and
Q after the insertion, so (b) holds. Parts (c),(d),(e), and (f) remain true as
their conditions are untouched.

Case app 3 : If ej = λx. e, scope(ei ew) ∈ Reach , and ew ∈ HasVals ,
⊢r′ scope(ei ew) ∈ Reach follows from (c), and ⊢r′ ew ∈ HasVals follows from
(e).

26

Case (app-3-a): Parts (a),(b),(e), and (f) remain true as their conditions are
untouched. Parts (c) and (d) follow from the above by app.
Case (app-3-b): Parts (c),(d),(e), and (f) remain true as their conditions are
untouched. Part (a) follows from the above by app. (x → ew) belongs to
both R and Q after the insertion and hence (b) holds.
Case (app-3-c): Parts (c),(d),(e), and (f) remain true as their conditions are
untouched. Part (a) follows from the above by app. The edge (ei ew → e)
belongs to both R and Q after the insertion, so (b) holds.

2. The right-to-left direction of the proof relies on four observations: (1) inser-
tions into R and Q are always simultaneous. (2) insertions into Reach and
Q are always simultaneous. (3) insertions into HasVals and Q are always
simultaneous. (4) R, Reach , and HasVals grow increasingly over time since
edges, scopes, and expressions are never deleted from them.
The run of Refined-Cubic-Reachability-CFA consists of a sequence of
modifications to Q, R, Reach , and HasVals , which we model as a sequence
of quadruples

(Q0,R0,Reach0,HasVals0) . . . (Qn,Rn,Reachn,HasValsn),

such that (a) two consecutive Q’s differ only by one inserted or deleted edge
or scope node, (b) two consecutive R’s may differ only by an inserted edge,
(c) two consecutive Reach ’s may differ only by an inserted scope node, and
(d) two consecutive HasVals ’s may differ only by an inserted expression.
Since edges are never deleted from R, and scope nodes are never deleted
from Reach , we prove the statement

⊢r′ e0 → e1 =⇒ exists a least i, s.t. (e0 → e1) ∈ Ri ∧ (e0 → e1) ∈ Qi

⊢r′ s ∈ Reach =⇒ exists a least i, s.t. s ∈ Reachi ∧ s ∈ Qi

⊢r′ e ∈ HasVals =⇒ exists a least i, s.t. e ∈ HasVals i ∧ e ∈ Qi,

from which the right-to-left direction of Theorem 5 follows. The proof pro-
ceeds by mutual structural induction on the inference trees for ⊢r′ e0 → e1,
⊢r′ s ∈ Reach, and ⊢r′ e ∈ HasVals .
For derivations using the axiom ⊢r′ scope(ep) ∈ Reach, clearly there exists
Reach0 and Q0 such that the above holds from the initialization in lines 1
and 3. Now assume the statement holds for all structurally smaller derivation
trees. There are four remaining cases.
Case refl-lam: By the induction hypothesis, there exists a least i, such that
scope(λx. e) ∈ Reachi and scope(λx. e) ∈ Qi. Hence when scope(λx. e) is
later deleted from Q, by the scope operation assumptions we have λx. e ∈
nodesInScope(scope(λx. e)). For the conclusion ⊢r′ e0 → e1, if (λx. e →
λx. e) ∈ R, it was inserted simultaneously in Q, thereby proving existence.
Otherwise, we add it to both thereby proving existence. For the conclusion
⊢r′ λx. e ∈ HasVals, if λx. e ∈ HasVals , it was inserted simultaneously in Q,
thereby proving existence. Otherwise, we add it to both, thereby proving
existence.

27

Case app: If ⊢r′ s ∈ Reach uses the app rule, we have that s = scope(e)
and there exists e1 e2 such that ⊢r′ e1 → λx. e, scope(e1 e2) ∈ Reach, and
e2 ∈ HasVals. Hence by the induction hypothesis, there exists a least i
such that (e1 → λx. e) ∈ Ri and (e1 → λx. e) ∈ Qi, and there exists
a least j such that scope(e1 e2) ∈ Reachj and scope(e1 e2) ∈ Qj, and
there exists a least k such that e2 ∈ HasValsk and e2 ∈ Qk. Situations
i = j, i = k, and j = k are impossible as insertions always happen pair-
wise: two scope insertions, two edge insertions, or two expression insertions.
If j is greatest (j > i and j > k) when scope(e1 e2) is deleted from Q,
we have e1 e2 ∈ nodesInScope(scope(e1 e2)) by the scope operation as-
sumptions. At this point, (e1 → λx. e) ∈ R and e2 ∈ HasValsk. Hence if
scope(e) /∈ Reach , we add it to both Reach and Q, thereby proving exis-
tence. If already scope(e) ∈ Reach , it was earlier inserted simultaneously
into Q as well, thereby proving existence. If i is greatest (i > j and i > k)
when (e1 → λx. e) is deleted from Q, we have scope(e1 e2) ∈ Reach and
e2 ∈ HasValsk. Hence if scope(e) /∈ Reach , we add it to both Reach and
Q, thereby proving existence. If already scope(e) ∈ Reach , it was earlier in-
serted simultaneously into Q as well, thereby proving existence. If k is great-
est (k > i and k > j) when e2 is deleted from Q, we have (e1 → λx. e) ∈ R
and scope(e1 e2) ∈ Reach . Hence if scope(e) /∈ Reach , we add it to both
Reach and Q, thereby proving existence. If already scope(e) ∈ Reach , it was
earlier inserted simultaneously into Q as well, thereby proving existence.
If ⊢r′ e0 → e1 uses the app rule, there are two cases to consider: one for each
of the remaining conclusions. If e0 → e1 = x → e ′

2, there exists e ′

1 e ′

2 such
that e0 = x, e1 = e ′

2, and by the induction hypothesis, there exists a least
i such that (e ′

1 → λx. e) belongs to both Ri and Qi. Also by the induction
hypothesis, there exists a least j such that scope(e ′

1 e ′

2) belongs to both
Reachj and Qj . Finally, by the induction hypothesis, there exists a least k
such that e ′

2 belongs to both HasValsk and Qk.
Again situations i = j, i = k, and j = k are impossible. If j is greatest
(j > i and j > k) when scope(e ′

1 e ′

2) is deleted from Q, we have e ′

1 e ′

2 ∈
nodesInScope(scope(e ′

1 e ′

2)) by the scope operation assumptions. At this
point, (e ′

1 → λx. e) ∈ R and e ′

2 ∈ HasVals . Hence if (x → e ′

2) /∈ R, we add it
to both R and Q, thereby proving existence. If already (x → e ′

2) ∈ R, it was
earlier inserted simultaneously into Q as well, thereby proving existence. If
i is greatest (i > j and i > k) when (e ′

1 → λx. e) is deleted from Q, we have
scope(e ′

1 e ′

2) ∈ Reach and e ′

2 ∈ HasVals . Hence if (x → e ′

2) /∈ R, we add it
to both R and Q, thereby proving existence. If already (x → e ′

2) ∈ R, it was
earlier inserted simultaneously into Q as well, thereby proving existence.
If k is greatest (k > i and k > j) when e ′

2 is deleted from Q, we have
(e ′

1 → λx. e) ∈ R and scope(e ′

1 e ′

2) ∈ Reach . Hence if (x → e ′

2) /∈ R, we add
it to both R and Q, thereby proving existence. If already (x → e ′

2) ∈ R, it
was earlier inserted simultaneously into Q as well, thereby proving existence.
If e0 → e1 = e ′

1 e ′

2 → e, we have e0 = e ′

1 e ′

2 and e1 = e, and by the induction
hypothesis, there exists a least i such that (e ′

1 → λx. e) belongs to both
Ri and Qi. Also by the induction hypothesis, there exists a least j such

28

that scope(e ′

1 e ′

2) belongs to both Reachj and Qj . Finally, by the induction
hypothesis, there exists a least k such that e ′

2 belongs to both HasValsk and
Qk.

Again situations i = j, i = k, and j = k are impossible. If j is greatest
(j > i and j > k) when scope(e ′

1 e ′

2) is deleted from Q, we have e ′

1 e ′

2 ∈
nodesInScope(scope(e ′

1 e ′

2)) by the scope operation assumptions. At this
point, (e ′

1 → λx. e) ∈ R and e ′

2 ∈ HasVals . Hence if (e ′

1 e ′

2 → e) /∈ R, we add
it to both R and Q, thereby proving existence. If already (e ′

1 e ′

2 → e) ∈ R, it
was earlier inserted simultaneously into Q as well, thereby proving existence.
If i is greatest (i > j and i > k) when (e ′

1 → λx. e) is deleted from Q, we have
scope(e ′

1 e ′

2) ∈ Reach and e ′

2 ∈ HasVals . Hence if (e ′

1 e ′

2 → e) /∈ R, we add
it to both R and Q thereby proving existence. If already (e ′

1 e ′

2 → e) ∈ R, it
was earlier inserted simultaneously into Q as well, thereby proving existence.
If k is greatest (k > i and k > j) when e ′

2 is deleted from Q, we have (e ′

1 →
λx. e) ∈ R and scope(e ′

1 e ′

2) ∈ Reach . Hence if (e ′

1 e ′

2 → e) /∈ R, we add it to
both R and Q, thereby proving existence. If already (e ′

1 e ′

2 → e) ∈ R, it was
earlier inserted simultaneously into Q as well, thereby proving existence.

Case trans: If ⊢r′ e0 → e1 uses the trans rule, there exists e such that
⊢r′ e0 → e, e → e1. By the induction hypothesis, there exists a least i such
that (e0 → e) belongs to both Ri and Qi, and there exists a least j such that
(e → e1) belongs to both Rj and Qj . If i = j, we have that e0 = e1 = e,
hence existence follows from the induction hypothesis. If i < j when (e → e1)
is deleted from Q, we have that (e0 → e) ∈ R. If (e0 → e1) /∈ R, we
insert it in both R and Q in trans 1, thereby proving existence. If already
(e0 → e1) ∈ R, it was earlier inserted simultaneously into both R and Q,
thereby proving existence. If i > j when (e0 → e) is deleted from Q, we have
that (e → e1) ∈ R. If (e0 → e1) /∈ R, we insert it in both R and Q in trans 2,
thereby proving existence. If already (e0 → e1) ∈ R, it was earlier inserted
simultaneously into both R and Q, thereby proving existence.

Case has-val: If e ∈ HasVals uses rule has-val, there exists e1 such that
⊢r′ e → e1, e1 ∈ HasVals. By the induction hypothesis, there exists a least i
such that (e → e1) belongs to both Ri and Qi, and there exists a least j such
that e1 belongs to both HasValsj and Qj. Again the case i = j is impossible.
If i < j when e1 is deleted from Q, (e → e1) ∈ R. If e /∈ HasVals , we insert
it in both HasVals and Q in has-val 1, thereby proving existence. If already
e ∈ HasVals , it was earlier inserted simultaneously into both HasVals and
Q, thereby proving existence. If i > j when (e → e1) is deleted from Q,
e1 ∈ HasVals . If e /∈ HasVals , we insert it in both HasVals and Q in has-val
2, thereby proving existence. If already e ∈ HasVals , it was earlier inserted
simultaneously into both HasVals and Q, thereby proving existence.

⊓⊔

29

C Proof of Theorem 10

Let ⊢sba′ denote provability in an inference system as given in Fig. 11, but
without call and with the following in place of beta:

eval(e1 e2) e1 → λx. e e2 → v

eval(e), x → v, e1 e2 → e
(beta⋆)

Lemma 2. ⊢sba′ e ′ → e =⇒ ⊢sba′ eval(e).

Proof. By induction on the derivation of ⊢sba′ e ′ → e. Case ident is trivial.
Case return follows by the induction hypothesis. Case beta⋆ follows by the
induction hypothesis for ⊢sba′ eval(v) and by assumption for ⊢sba′ eval(e). ⊓⊔

The resulting system ⊢sba′ is equivalent to the existing SBA system ⊢sba .

Lemma 3. ⊢sba′ eval(e) ⇐⇒ ⊢sba eval(e) ∧ ⊢sba′ e1 → e2 ⇐⇒ ⊢sba e1 → e2

Proof. In the left-to-right direction, the only case to consider is beta⋆: from the
induction hypothesis, beta applies, leaving eval(e) to be proved, which follows
from call. In the right-to-left direction, the only case to consider is call, which
follows by the induction hypothesis and Lemma 2. ⊓⊔

First we realize that any inference tree in ⊢r′ using rule trans can be rotated
into an equivalent inference tree in which the first condition of trans is not
itself an instance of trans. Intuitively this can be understood as letting the
reachability relation → associate from the right.

Lemma 4. A proof of ⊢r′ e → e ′, ⊢r′ scope(e) ∈ Reach, and ⊢r′ e ∈ HasVals
can be transformed into an equivalent proof not containing two consecutive in-
stances of trans on a left diagonal:

T0

e0 → e ′

0

T1

e ′

0 → e1

e0 → e1

(trans)
T2

e1 → e2

e0 → e2

(trans)

Proof. The proof proceeds by mutual structural induction on the height of the
involved inference trees. All cases except trans follow immediately from the
induction hypothesis. For trans, there are two cases to consider. If the first
(left) condition is not an instance of trans, the conclusion follows immediately
from the induction hypothesis. If the first (left) condition is an instance of trans
(as above), we first construct an equivalent inference tree:

T0

e0 → e ′

0

T1

e ′

0 → e1

T2

e1 → e2

e ′

0 → e2

(trans)

e0 → e2

(trans)

By the induction hypothesis, we can transform the proofs of e0 → e ′

0 and e ′

0 → e2

accordingly. ⊓⊔

30

Finally, we need a simple helper lemma equating values reachable from values.

Lemma 5. ⊢sba′ v → v ′ =⇒ v = v ′

Proof. There are only two rules from which conclusions of the above form can
arise. The case ident is immediate. The case return follows from the induction
hypothesis and transitivity of equality. ⊓⊔

We now prove the following lemma, from which Theorem 10 follows.

Lemma 6.

⊢r′ e → v =⇒ ⊢sba′ e → v ∧

⊢r′ scope(e) ∈ Reach =⇒ ⊢sba′ eval(e) ∧

⊢r′ e ∈ HasVals =⇒ ∃ v : ⊢sba′ e → v

Proof. By Lemma 4, we can assume that no sub-trees contain two consecutive
instances of trans on a left diagonal. The proof now continues by simultaneous
structural induction on the inference trees.
Base case: ⊢sba′ eval(ep) follows immediately from the corresponding ⊢sba′ pro-
gram axiom.
Case refl-lam: If ⊢r′ λx. e → λx. e by refl-lam, ⊢sba′ eval(λx. e) follows from
the induction hypothesis, hence by ident ⊢sba′ λx. e → λx. e If ⊢r′ e ∈ HasVals
by refl-lam, there exists λx. e such that ⊢sba′ λx. e → λx. e again by ident.
Case trans: We case-analyse the first (left) condition:

– Sub-case refl-lam: By the induction hypothesis on the second (right) con-
dition, the requested result follows immediately: ⊢sba′ λx. e → v (without
applying return).

– Sub-case app: From the conditions of the app rule, we have ⊢r′ e1 → λx. e,
scope(e1 e2) ∈ Reach, and e2 ∈ HasVals. We consider each possible conclu-
sion separately:
• Sub-case x: If ⊢r′ x → e2, from the second (right) condition of trans

we have ⊢r′ e2 → v. By two applications of the induction hypothesis, we
have ⊢sba′ e1 → λx. e and ⊢sba′ eval(e1 e2). By the induction hypothesis,
we furthermore have ⊢sba′ e2 → v. By beta⋆, it now follows that ⊢sba′

x → v.
• Sub-case e1 e2: If ⊢r′ e1 e2 → e from the second (right) condition of trans

we have ⊢r′ e → v. By three applications of the induction hypothesis,
we have ⊢sba′ e1 → λx. e, ⊢sba′ eval(e1 e2), and that there exists v ′ such
that ⊢sba′ e2 → v ′. Hence by beta⋆ we have ⊢sba′ e1 e2 → e. By an-
other application of the induction hypothesis we have ⊢sba′ e → v. Hence
⊢sba′ e1 e2 → v by return.

Case app: From the conditions, we have ⊢r′ e1 → λx. e, scope(e1 e2) ∈ Reach,
and e2 ∈ HasVals. By three applications of the induction hypothesis, we have
⊢sba′ e1 → λx. e, ⊢sba′ eval(e1 e2), and there exists v ′ such that ⊢sba′ e2 → v ′.
If ⊢r′ scope(e) ∈ Reach, we get ⊢sba′ eval(e) by beta⋆. If ⊢r′ e → v by app,
there are two sub-cases:

31

– Case x: Hence ⊢r′ x → e2 and e2 = v. By beta⋆, we have ⊢sba′ x → v ′. By
the helper lemma, ⊢sba′ v → v ′ implies v = v ′, and hence ⊢sba′ x → v as
requested.

– Case e1 e2: Hence ⊢r′ e1 e2 → e and e = v. By beta⋆, we have ⊢sba′ e1 e2 → e.
⊓⊔

32

R
U

/C
S

/R
R

#125
M

ID
TG

A
A

R
D

&
H

O
R

N
:

S
U

B
C

U
B

IC
C

O
N

TR
O

L
FLO

W
A

N
A

LY
S

IS
A

LG
O

R
ITH

M
S

1

RECENT RESEARCH REPORTS

#124 Torben Braüner. Hybrid logic and its proof-theory. 318 pp. March 2009,
Roskilde University, Roskilde, Denmark.

This thesis has been accepted by Roskilde University for public defence
in fulllment of the requirements for the Danish degree doctor scientiarum
(dr.scient.). The public defence will take place at Roskilde University in Bi-
ografen/The Cinema, Building 41, on Thursday April 23rd 2009, at 1300.

#123 Magnus Nilsson. Arbejdet i hjemmeplejen: Et etnometodologisk studie
af IT-støttet samarbejde i den københavnske hjemmepleje. PhD thesis,
Roskilde, Denmark, August 2008.

#122 Jørgen Villadsen and Henning Christiansen, editors. Proceedings of the 5th
International Workshop on Constraints and Language Processing (CSLP
2008), Roskilde, Denmark, May 2008.

#121 Ben Schouten and Niels Christian Juul, editors. Proceedings of the
First European Workshop on Biometrics and Identity Management (BIOID
2008), Roskilde, Denmark, April 2008.

#120 Peter Danholt. Interacting Bodies: Posthuman Enactments of the Prob-
lem of Diabetes Relating Science, Technology and Society-studies, User-
Centered Design and Diabetes Practices. PhD thesis, Roskilde, Denmark,
February 2008.

#119 Alexandre Alapetite. On speech recognition during anaesthesia. PhD the-
sis, Roskilde, Denmark, November 2007.

#118 Paolo Bouquet, editor. CONTEXT’07 Doctoral Consortium Proceedings,
Roskilde, Denmark, October 2007.

#117 Kim S. Henriksen. A Logic Programming Based Approach to Applying Ab-
stract Interpretation to Embedded Software. PhD thesis, Roskilde, Den-
mark, October 2007.

#116 Marco Baroni, Alessandro Lenci, and Magnus Sahlgren, editors. Proceed-
ings of the 2007 Workshop on Contextual Information in Semantic Space
Models: Beyond Words and Documents, Roskilde, Denmark, August 2007.

#115 Paolo Bouquet, Jérôme Euzenat, Chiara Ghidini, Deborah L. McGuinness,
Valeria de Paiva, Luciano Serafini, Pavel Shvaiko, and Holger Wache, edi-
tors. Proceedings of the 2007 workshop on Contexts and Ontologies Rep-
resentation and Reasoning (C&O:RR-2007), Roskilde, Denmark, August
2007.

#114 Bich-Liên Doan, Joemon Jose, and Massimo Melucci, editors. Proceedings
of the 2nd International Workshop on Context-Based Information Retrieval,
Roskilde, Denmark, August 2007.

