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Preface 
 

 
 
 
A key driving factor for biometrics is the widespread national and international 
deployment of biometric systems that has been initiated in the past two years and is 
about to accelerate. While nearly all current biometric deployments are government-
led and principally concerned with national security and border control scenarios it is 
now apparent that the widespread availability of biometrics in everyday life will also 
spin out an ever increasing number of (private) applications in other domains. Crucial 
to this vision is the management of the user’s identity, which does not only imply the 
creation and update of a biometric template, but requires the development of 
instruments to properly handle all the data and operations related to the user identity. 
 
These proceedings contain the selected and revised papers that were presented during 
the first European Workshop on Biometrics and Identity management. BIOID 2008. 
The papers are categorized in four classes. These classes represent the 4 working 
groups of the COST Action 2101. For more information, see http://cost2101.org/ 
 
 

1. Biometric data quality and multimodal biometric templates,  
2. Unsupervised interactive interfaces for multimodal biometrics, 
3. Biometric attacks and countermeasures, 
4. Standards and privacy issues for biometrics in identity documents and smart 

cards.  
 
 
BIOID 2008 is an initiative of the COST Action 2101 on Biometrics for Identity 
Documents and Smart Cards. It is supported by the EU Framework 7 Programme.  
Other sponsors of the Workshop are: The European Biometrics Forum, The Danish 
Biometrics Research Project Consortium, the UK Biometrics Institute and the 
Institution of Engineering and Technology. 
 
 
The BIOID workshop was jointly organized and held at the Roskilde University in 
Denmark from May 7- May 9, 2008. 
 
 
 
 

May 2008             Ben Schouten, 
Andrzej Drygajlo, 

Niels Christian Juul and 
Michael Fairhurst  
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Quality-based Score Normalization and Frame
Selection for Video-based Person Authentication

Enrique Argones Rúa, José Luis Alba Castro, and Carmen Garćıa Mateo ?

Signal Technologies Group
Signal Theory and Communications Department

University of Vigo, Spain
eargones,jalba,carmen@gts.tsc.uvigo.es

Abstract. This paper addresses the incorporation of quality measures
to video-based person authentication. A theoretical framework to in-
corporate quality measures in biometric authentication is exposed. Two
different quality-based score normalization techniques are derived from
this theoretical framework. Furthermore, a quality-based frame selec-
tion technique and a new face image quality measure are also presented.
The ability of this quality measure and the proposed quality-based score
normalization techniques and quality-based frame selection technique to
improve verification performance is experimentally evaluated in a video-
based face verification experiment on the BANCA Database.

1 Introduction

Face verification is one of the most important and challenging biometric veri-
fication modalities. Face verification systems can be used in a wide variety of
applications, including building access and web-based access to services among
others, since low cost sensors such as web-cams can be used for image acqui-
sition. However, face verification systems are sensitive to illumination changes,
partial occlusions of the face, shadowing, changing background, low resolution
problems, image noise, pose and appearance changes.

The influence of some of these factors can be diminished by increasing the
intra-user variability registered in the user template. The incorporation of the full
video sequence to the video recognition system in both enrolment and verifica-
tion processes provides much more information than a reduced set of still images,
enabling a statistically significant improvement in verification performance [1].
The video-based person authentication system used in this paper uses a Gaussian
mixture model-universal background model (GMM-UBM) scheme [2]. Each loca-
tion in the face is modeled by a GMM-UBM, which is adapted to the video frames
in the user enrolment video by means of the MAP algorithm. This approach is
able to encode the statistically discriminant information at each location of the
face of the user.
? This work has been partially supported by Spanish Ministry of Education and

Science (project PRESA TEC2005-07212), by the Xunta de Galicia (project
PGIDIT05TIC32202PR)



However, mismatch in quality related factors between enrolment and test
sessions can lead to degraded performance even though enough discriminant
information is encoded in the user template. The use of quality measures [3] can
somehow reduce the influence of quality mismatches in the test phase.

This paper provides a theoretical framework that incorporates the quality
measures into the verification process. Starting from this theoretical framework,
two quality-based score normalization techniques are derived. A new quality
measure for frontal face images and a new quality-based frame selection tech-
nique are also proposed. The aim of this quality-based frame selection technique
is to select the high quality frames in the test video sequence in order to im-
prove verification performance. Experiments on the BANCA Database [4] will
show the effectiveness of the combined use of the quality-based score normaliza-
tion and quality-based frame selection techniques when compared to the baseline
video-based face verification system.

The paper is outlined as follows: Section 2 describes the GMM-UBM video-
based identity verification system. Section 3 describes the theoretical framework
and techniques derived to incorporate the quality measures into the verification
process. The quality-based frame selection is derived and described in Section 5.
The proposed quality measure for frontal face images is presented in Section 6.
The experimental framework for the experiments carried out in this paper is
described in Section 7. Experiments to check the effectiveness of these techniques
are shown in Section 8. Experimental results are discussed in Section 9, and paper
is finally drawn to conclusions in Section 10.

2 Video-based Face Verification

The video-based face verification system first detects the face region using a face
detector based on a cascade of boosted classifiers which use an extended set of
Haar-like features [5]. Eyes localisation is performed using the same principle.
Face is then rotated and scaled in order to set the eyes position in the same place
for all the faces. Both face and eye localisations are only roughly estimated, and
therefore localisation errors are present in the face image. Let us denote the
video frames sequence where a face is detected as V = {IV,1, . . . , IV,NV}, where
NV is the number of frames where a face is detected. Gabor jets [6] (M = 40
responses of Gabor filters with 5 scales and 8 orientations) are extracted at fixed
points along a rectangular grid of dimensions D = 10 × 10 superimposed on
each normalized face image. Frame IV,k is characterised by the moduli of all the
extracted Gabor jets IV,i = {J V,i1 , . . . ,J V,iD }. The modulus of the k-th Gabor
jet extracted from the i-th frame in V is denoted as J V,ki = {aV,ki,1 , . . . , a

V,k
i,M}.

GMM-UBM verification paradigm is adapted to video-based verification: a
64 mixtures UBM is trained for each grid location and then it is adapted to the
corresponding jets obtained from the user enrolment video by means of the MAP
technique. Independence between the distributions of the jets from each node
is assumed in order to avoid the curse of dimensionality in the UBM training.
Gaussian mixtures are constrained to have diagonal covariance matrixes. The
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verification score for the video V and claimed identity u is computed as the
following loglikelihood ratio [2]:

sV = Log

NV∏
i=1

D∏
k=1

fu,k

(
J V,ik

)
fUBM,k

(
J V,ik

)
 (1)

3 Incorporating Quality Measures in Biometric
Verification

Starting from the theoretical framework exposed in [7], the verification scores S
produced by classes C = 0 or C = 1 (false and true identity claims respectively)
are actually computed from input vectors x which are contaminated by a noise
random process N that produce noise vectors n: x = Φ (v,n), where v are the
clean vectors produced by the corresponding class. It is reasonable to assume that
the verification scores S are influenced by the noise process. Unfortunately, the
characteristics and influence of the noise process N in the scores S are unknown
in general, since the noise value n is not directly observable. However, some
measures performed over the observable noisy signal x can hopefully provide us
with useful information about the noise. These measures are called in general
quality measures [3].

We can model a quality measure as a random process Q that produces an
output measurement q which is related to the noise n present in the noisy vectors
x. In general, we can write q = Ω (x) = Ω (Φ (v,n)). When we have a set of
scores associated to known values of the quality measure Q and class C, the
conditional probability density function p (s|C,Q) can be estimated.

Since the quality measure Q depends only on the quality of the biomet-
ric signal, it is reasonable to assume that it is class independent: p (q|C = 0) =
p (q|C = 1). Besides, if we assume equiprobable classes then P (C = 0) = P (C = 1),
and thus the Bayesian verification decision is taken by:

C = c ⇐⇒ p (s|C = c,Q = q) > p (s|C = 1− c,Q = q) (2)

Which conditions must Q hold for improving the verification performance
with respect to classical verification solutions? The first step in order to address
this question is to define the boundary B between classes C = 0 and C = 1
in the sq-plane: B = {(s, q)|p (s|C = c,Q = q) = p (s|C = 1− c,Q = q)}. This
boundary can also be defined by means of an application that relates each quality
measure value q with the score values {s1, . . . , sp} such that (q, si) ∈ B. Taking
into account the definition of verification scores, class 1 (true identity claims)
should be more likely for higher values of s, and therefore we can assume that
the boundary application associates each quality factor value q with an unique
verification score value s. Thus an injective boundary function Θ (q) can be
defined such that Θ(q) = s ⇐⇒ (s, q) ∈ B, and the verification decision can be
performed according to the next equation:

C = 1 ⇐⇒ s > Θ(q) (3)

Quality-based Score Normalization and Frame Selection for Video-based Person Authentication           3



Verification performance of non quality-aided and quality-aided systems can
be compared in terms of the Bayesian error. The Bayesian error for a non quality-
aided system is:

Eclassical =
∫ +∞

−∞

{∫ θ

−∞
p (s, q|C = 1)ds+

∫ +∞

θ

p (s, q|C = 0)ds

}
dq (4)

The Bayesian error for the new framework is defined as:

Equality =
∫ +∞

−∞

{∫ Θ(q)

−∞
p (s, q|C = 1)ds+

∫ +∞

Θ(q)

p (s, q|C = 0)ds

}
dq (5)

If the threshold application Θ(q) is optimal in terms of Bayesian error then
Eclassical ≥ Equality, and the equality holds only if θ = Θ(q)∀q. Therefore there is
a demonstrated theoretical gain whenever the optimal quality-dependent thresh-
old Θ(q) is not a constant in q. In other words, the necessary and sufficient
condition to obtain a performance gain when using a quality factor is that the
optimal threshold between classes is not a constant when expressed as a function
of this quality factor.

4 Q-based Score Normalization

A solution to determine the threshold as a function of Q is to divide the problem
in many simple independent problems. If the Q space EQ is divided in a number
K of disjoint and connected neighbourhoods Ni such that EQ = N1 ∪ · · · ∪ NK
and Ni ∩ Nj = ∅ ∀i 6= j, then it is easy to determine acceptable thresholds θi
for each neighbourhood Ni.

This formulation can be easily adapted to the case that many quality mea-
sures are provided for one verification modality. In the simple case that only one
quality measure is provided, neighbourhoods are intervals defined by their limits
Ni = (li, li+1].

A reasonable approach to build these intervals must take into account that
the reliability of any threshold estimation is dependent on the number of veri-
fication attempts that belong to that interval. Thus, EQ is divided in intervals
that contain approximately the same number of verification attempts.

Let us denote the train set as T = {(s1, q1, c1) , . . . , (sNT
, qNT

, cNT
)}, and

without generalisation loss, let us suppose they are sorted by the value of the
quality factor: qi ≤ qj ∀i < j. If we define a lower bound for the quality measure
q0 = q1−ε, where ε is an arbitrarily small positive constant, then intervals limits
can then be defined as:

li =
1
2

(
qj

(i−1)NT
K

k + ql
(i−1)NT

K

m) ∀i ∈ {1, . . . ,K + 1} (6)

An optimal threshold θi can be easily found for each neighbourhood Ni. If a
soft behaviour of the thresholding function Θ(q) is assumed, then a good ap-
proximation of Θ(q) can be obtained interpolating the thresholds θi. 0th-order
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Qmin Qmax

Q

NQ

Nmax

Nmin

Fig. 1. Number of frames selected as a function of the mean value of the quality
measure all along the video sequence.

and 1st-order interpolation close solutions are shown in Sections 4.1 and 4.2
respectively.

The Q-based normalized score is finally computed as sQ = s−Θ(q).

4.1 0th-order Threshold Interpolation

0th-order threshold interpolation leads us to a stepwise constant thresholding
function that can be formally defined as:

Θ(q) =

θ1 ∀q ≤ l1
θi ∀q ∈ Ni
θK ∀q > lK+1

(7)

4.2 1st-order Threshold Interpolation

A 1st-order threshold interpolation leads us to a stepwise linear thresholding
function that can be formally defined as:

Θ(q) =


2 θ2−θ1l3−l1 q + θ1(l2+l3)−θ2(l1+l2)

l3−l1 ∀q ≤ l1+l2
2

2 θi+1−θi

li+2−li q + θi(li+1+li+2)−θi+1(li+li+1)
li+2−li ∀q ∈

[
li+li+1

2 , li+1+li+2
2

]
2 θK−θK−1
lK+1−lK−1

q + θK−1(lK+lK+1)−θK(lK−1+lK)
lK+1−lK−1

∀q ≥ lK+lK+1
2

(8)

5 Quality-based Frame Selection

Quality measures provide information about the reliability of a given score: a
verification decision taken on the basis of a high quality frontal face image will
be more reliable than a decision taken on the basis of a poor quality frontal face
image. This hypothesis will be verified later on Section 8.

A video sequence has not a constant quality. Blurring provoked by fast move-
ments of the user, heavy pose changes, partial occlusions and other factors can
affect some frames in the video whilst the other frames can result unaffected.

Quality-based Score Normalization and Frame Selection for Video-based Person Authentication           5



The idea behind the proposed quality-based frame selection is to keep the most
high quality frames in the video for verification, whilst low quality frames are
discarded. Besides, a video sequence with a low mean quality measure value will
have only a few frames with a high quality, whilst a video with a high mean
quality measure value will have many frames with a high quality. Therefore the
proposed frame selection keeps the NQ best frames (those with the highest val-
ues of the quality measure) in a video V, where NQ grows linearly with the mean
quality measure value all along the video QV . If NQ is bigger than the number
of frames in the video NV , then all the frames in the video are processed. The
following equation defines this dependence:

NQ =


Nmin if QV < Qmin
(QV −Qmin)Nmax−Nmin

Qmax−Qmin
+Nmin if Qmin ≤ QV ≤ Qmax

Nmax if QV > Qmax

(9)

N = min{NQ, NV} (10)

Figure 1 shows the dependence between N and the mean value of the quality
measure Q.

6 Frontal Face Image Quality Measure

The proposed quality measure for frontal face images takes into account two
issues:

General image quality The sharpness of the image (associated to a good fo-
cus and slow distortion due to fast object movement) is a good general
quality measurement. Given an image I of dimensions H×W , its first order
derivative calculated with the Sobel operator ∇xyI, and its second order
derivative calculated with the Laplacian operator ∇2

xyI, two different coef-
ficients describing the sharpness of the image are derived:

ρsob (I) =
‖∇xyI‖
HW

(11)

ρlapl (I) =
‖∇2

xyI‖
HW

(12)

Frontal face specific quality The face symmetry is used as a frontal face spe-
cific quality factor. Faces with a non frontal pose or with a large rotation
will provide a bad symmetry coefficient. Given a frontal face image I, we
define the horizontally flipped version of I as fI. The asymmetry coefficient
of I is defined as:

ρasym (I) =
‖I − fI‖
‖I‖

(13)

However these measures by themselves are not enough to characterise the
quality mismatch between the enrolment video and the test video. Let us call
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ρ̂enrol
x to the mean quality coefficient calculated along the whole enrolment video.

Relative quality coefficients are then defined as:

ρrelative
x (I) = ρx (I)− ρ̂enrol

x (14)

All the coefficients involved in the frontal face image quality measure are nor-
malized dividing its value by their standard deviation. Finally, the frontal face
quality image measure and the frontal face video quality measure are defined as:

qI = −

[
ρasym (I)
σρasym

+
ρrelative
asym (I)
σρrelativeasym

]
+

∑
x∈{sob,lapl}

[
log (ρx (I))
σlog(ρx)

+
ρrelative
x (I)
σρrelativex

]

qV =
∑
I∈V

qI (15)

7 Experimental Framework: BANCA Database

The BANCA Database [4] is divided in two disjoint groups g1 and g2 with
13 males and 13 females each. Each user records 12 video sessions, where one
true and one false identity claim is performed. False identity claims are per-
formed always to users with the same gender and in the same group. Sessions
are divided in 3 different environments: controlled (good quality recordings), de-
graded (recordings artificially degraded) and adverse (bad quality recordings).
Four sessions are recorded in each environment. The experiments conducted on
this paper follow the Pooled protocol defined in [4]. This protocol uses one true
identity claim from the controlled conditions for enrolment purposes, and the
rest of the database for testing. This protocol provides us with a good quality
enrolment and a wide quality range in the test attempts. The Weighted Error
Rate (WER) is used for performance measurement:

WER(ρ) =
ρFAR+ FRR

1 + ρ
, (16)

where FAR stands for False Acceptance Rate and FRR stands for False Re-
jection Rate. For each of the values of ρ = {1, 10}, thresholds are obtained for
each group. Then this thresholds are used in the other group and the test WER
is obtained. This performance measure allows us to evaluate the system perfor-
mance in conditions where FAR and FRR must be balanced (ρ = 1) or FAR is
more critical (ρ = 10).

8 Experiments

In the experiments conducted on this paper we test the verification performance
of three systems. The first one is the video-based face verification system de-
scribed in Section 2. This system is used as a baseline. The second system is an
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System Group WER(10) WER(1.0)

Reference 1 9.09(6.34,11.84) 16.72(12.54,20.90)

System 2 5.23(4.33,6.13) 11.28(7.45,15.11)

All 7.14(5.69,8.59) 13.98(11.09,16.86)

0th-order Q-norm 1 6.63(4.63,8.62) 13.83(9.84,17.83)

2 6.49(4.40,8.58) 9.48(5.90,13.06)

All 6.56(5.11,8.01) 11.64(8.90,14.38)

1st-order Q-norm 1 6.05(4.05,8.05) 14.28(10.34,18.22)

2 7.13(4.50,9.76) 8.41(5.01,11.81)

All 6.60(4.94,8.27) 11.32(8.64,14.00)

0th-order Q-norm 1 6.25(4.44,8.06) 11.83(7.91,15.75)

and Q-selection 2 7.56(5.18,9.95) 9.27(5.73,12.82)

All 6.92(5.42,8.43) 10.54(7.89,13.19)

1st-order Q-norm 1 6.08(4.08,8.08) 12.83(8.80,16.87)

and Q-selection 2 6.95(4.56,9.33) 8.20(4.85,11.56)

All 6.52(4.96,8.08) 10.49(7.85,13.12)

Table 1. WER(0.1), WER(1.0) and WER(10) face verification performance for the
reference system, the Q-based score normalization and the joint Q-based score normal-
ization and frame selection.

improved version of the baseline system: the Q-based score normalization tech-
niques described in Section 4 are incorporated into the baseline system. Finally,
the third system is an improved version of the second system: the Q-based frame
selection strategy described in Section 5 is incorporated into the second system.

The Q-based normalization system needs one only parameter: the number of
quality bins that group the identity claims. After some experiments this number
was finally fixed to 4 for convenience. On the other hand, the Q-based frame
selection technique requires some parameters to be fixed. These parameters de-
pend on the mean length of the videos to be tested and the range of the quality
measure. In our experiments we used Qmax = 0, Qmin = −20, Nmax = 550 and
Nmin = 100.

Figure 2 shows the true and false score distribution as a function of the frontal
face image quality factor described in Section 6. Optimal constant threshold and
the a posteriori thresholds obtained for this group by the quality-based 0th-order
and 1st-order score normalization techniques are also plotted for comparison
purposes.

Table 1 shows the WER(1.0) and WER(10) face verification performance
for the three tested systems.

Finally, DET curves for both group 1 and group 2 of BANCA are plotted in
Figure 3.
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Fig. 2. Score distribution and a posteriori thresholds found for the group 2 of BANCA
users.

Fig. 3. DET curves of the three video-based face recognition systems for group 1 (left)
and group 2 (right) of the BANCA Database.

9 Discussion

Figure 2 shows the thresholds estimated using both 0th-order and 1st-order score
normalization techniques and the threshold obtained when the quality measure
is not taken into account (the constant black line). It is clear that quality-based
approaches lead to non constant class boundaries and therefore the incorporation
of this quality measure into the verification process will provide improvements in
verification performance. Furthermore, this Figure also shows that high-quality
attempts are associated, as hypothesized in Section 5, with larger reliability
values than low-quality attempts, where clouds of points belonging to true and
false identity claims are more overlapped. This motivates the use of the quality-
based frame selection algorithm proposed in this paper.

Experimental results shown in Table 1 show that the incorporation of the
frontal face quality measure presented in Section 6 using the Q-based score
normalization technique for both 0th-order and 1st-order obtain verification im-
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provements in WER(1.0). It also obtains small improvements in WER(10) (a
quality measure designed to evaluate biometric systems in high security envi-
ronments). Most important, statistically significant improvements are obtained
in WER(1.0) when the Q-based frame selection algorithm is also incorporated
into the verification system. Figure 3 shows that DET curves of quality-aided
systems (using the Q-based frame selection or not) are very similar. However, re-
sults in Table 1 show that frame selection provides improvements in verification
performance. This indicates that a priori thresholds fit better after the frame
selection, enabling better WER results.

10 Conclusions

This paper presented a theoretical framework and two practical solutions to in-
corporate quality measures into any verification process. A quality-based frame
selection technique has been also presented. Besides, a new quality measure for
frontal face images was presented. This quality aids were incorporated into a
GMM-UBM video-based face verification system based on Gabor wavelets. Ex-
periments on the P protocol of the BANCA Database demonstrate the conve-
nience of the proposed face image quality measure and the effectiveness of both
quality-based score normalization and quality-based frame selection techniques.
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burg. Face Recognition by Elastic Bunch Graph Matching. IEEE Transactions on
Pattern Analysis and Machine Intelligence, 19(7):775 – 779, July 1997.

7. Krzysztof Kryszczuk and Andrzej Drygajlo. Q – stack: Uni- and Multimodal Clas-
sifier Stacking with Quality Measures. In Michal Haindl, Josef Kittler, and Fabio
Roli, editors, 7th International Workshop on Multiple Classifier Systems, volume
4472 of LNCS, pages 367 – 376, 2007.

10          Enrique Argones Rua, Jose Luis Alba Castro and Carmen Garcia Mateo



Face Quality Assessment System in Video Sequences 
 

Kamal Nasrollahi, Thomas B. Moeslund 

 Laboratory of Computer Vision and Media Technology, Aalborg University 
Niels Jernes Vej 14, 9220 Aalborg Øst, Denmark 

{kn, tbm}@cvmt.dk 

 

Abstract. When a person passes by a surveillance camera a sequence of image 
is obtained. Before performing any analysis on the face of a person, the face 
first needs to be detected and secondary the quality of the different face images 
needs to be evaluated. In this paper we present a system based on four simple 
features including out-of-plan rotation, sharpness, brightness and resolution, to 
assess the face quality in a video sequence. These features are combined using 
both a local scoring system and weights. The system is evaluated on two 
databases and the results show a general agreement between the system output 
and quality assessment by a human. 

Keywords: Face quality assessment, face detection, out-of-plan rotation, 
surveillance video. 

1   Introduction 

Considering a person passing by a surveillance camera, a sequence of images of that 
person is captured by the camera. Depending on the application, most of these images 
are useless due to problems like not facing the camera, motion blur, darkness and too 
small size of the region of interest in that image. Usually considering some (one or 
two) of the best images is sufficient. There is therefore a need for a mechanism which 
chooses the best image(s) in terms of quality in a sequence of images. This is called 
Quality Assessment. Image quality assessment is useful in surveillance cameras and 
also in other applications such as compression, digital photography to inform the user 
that a low- or high-quality photo had been taken, printing to encourage (or 
discourage) the printing of better (or poorer) pictures and image management to sort 
out good from poor photos [1]. This paper is concerned with Face Quality Assessment 
(FQA). 

In different works related to FQA [1-5], different features of the face have been 
used including: Sharpness, illumination, head rotation, face size, presence of skin 
pixels, openness of eyes and red eyes. Xiufeng et al. [4] have tried to standardize the 
quality of face images by facial symmetry based methods. Adam and Robert [5] have 
extracted 6 features for each face and after assigning a score to each feature, combines 
them into a general score. Subasic et al. [2] consider more features and interpret the 
scores related to each feature as a fuzzy value. Fronthaler et al. [3] have studied 



orientation tensor with a set of symmetry descriptors to assess the quality of face 
images. 

In a face quality assessment system there are two problems to be dealt with: 
Reduction the computation and increasing the reliability of the system. In this paper 
we deal with the first problem by using few and simple features. We have analyzed 
different features and found that 4 features are sufficient for FQA. These features are 
out-of-plan-rotation, sharpness, brightness, and face size. In order to deal with the 
second problem, which is increasing the reliability of the system, we have used 
locally scoring technique.  

 

Fig. 1. Block Diagram of the proposed system 

 
The block diagram of the proposed system is shown in figure 1. Given a sequence 

of color images, the face detection step extracts the face region(s) for each image and 
feeds them to the face quality assessment block. In this step the quality of the faces 
for each image is computed and at the end of the sequence the best face for each 
individual in this sequence is chosen and fed to an application for further processing. 

Since some of the features used in the face detection step are also used by the face 
quality assessment block we briefly describe it in the next section. In Section 3 the 
assessment process is presented and section 4 shows the experimental results and 
finally section 5 concludes the paper. 

2   Face Detection 

Face detection is not the main focus of this paper but since some of the extracted 
features for the face(s) in this block are used in the assessment process too, we briefly 
describe it here.  

Given a color image, first of all, according to a Gaussian model of skin color, a 
probability image of the input image is produced. Then using an adaptive threshold, 
this probability image is segmented to a binary one which has the skin regions 
separated from the non-skin ones. Here after a cascading classifier using the extracted 
features for each region decides if this region is a face or not (See figure 2.). 

The extracted features for each face include: face size, center of the mass and 
orientation of the face, number of holes inside the face, the holes area to its 
surrounding area. For more details regarding the face detection the reader is referred 
to [6]. 
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Fig. 2. Face detection process, From left to right: Input color image, its probability and 
segmented counterpart and detected faces 

3   Quality assessment 

For each face region detected by the Face Detection, we use both some of the 
extracted features from the face detection block, and also new features to assess the 
quality of them. For each feature we assign a locally computed score so that we can 
decide which image is the best in terms of quality in the given sequence of images. 
The following subsections describe the details of these features and the scoring 
process. 

3.1   Pose estimation: least out-of-plan rotated face(s)  

This feature is one of the most important features in assessing the usability of the 
face, because wide variation in pose can hide most of the useful features of the face. 
The previous face quality assessment systems [2, 4, 5] have involved facial features 
like vertical position of the eyes, distance between the two eyes and vertical 
symmetry axis to estimate the pose of the face. It is obvious that most of these 
features may be hidden in various conditions like having spectacles or different 
lightening condition or even in rotations more than 60° [5]. Hence using the facial 
features to estimate the pose of the face cannot be reliable. Furthermore in the quality 
assessment the exact rotation of the face is not important but choosing the least 
rotated face is. So, we deal with the face as a whole, and calculate the difference 
between the center of mass and the center of the detected face region. Whenever the 
rotation of the face increases the difference between these two points increases too. 

Given a face in a binary image as shown in figure 3, we calculate the center of 
mass using the following equation:  
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where 
��, �� is the center of mass, b is the binary image containing the detected 

region as a face, m is the width, n is the height of the detected region and A is the area 
of this region. 
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Fig. 3. Center of mass (+) and center of the region (*) 

 
Then we calculate the center of the region detected as a face using the equation 2: 
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where �� ��� �� are the right most and the left most pixel in the face region and 

�� ��� �� are the lowest and top pixel, respectively, in this region as shown in figure 
3. Now we calculate the distance between these two centers as: 
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�� � ��� (3) 

 
The minimum value of this distance in a sequence of images gives us the least out-

of-plan rotated face as shown in figure 4. To convert this value to a local score in that 
sequence we use the following equation for each of the images in the sequence: 

 

 � �
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(4) 

where ���� is the minimum value of the D in the given sequence.  
 

 

Fig. 4. A sequence of different head poses and the associated values for the distance and !" 

 
Since the center of mass and the detected region are known from the face detection 

block the only computation for obtaining this feature is equation 3. The technique 
used by [5, 7] in order to compute this feature, involves the analysis of gradients to 
locate the left and right sides of face as well as the vertical position of the eyes. From 
these values the approximate location of the eyes is estimated and the brightest point 
between the eyes is expected to lie on the face's axis of symmetry. Their method is 
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not effective when subjects are wearing glasses, or when faces are not close to frontal. 
While our method is robust in these cases (see the following figure). 

 

 

Fig. 5. The introduced feature in presence of spectacles and the associated scores 

3.2   Sharpness 

Since in real world applications the objects are moving in front of the camera, it is 
possible that the captured image is affected by motion blur, so defining a sharpness 
feature can be useful for FQA.  

 

 

Fig. 6. An image with different sharpness conditions and the associated scores 

 
Well-focused images, which have a better sharpness compared to blurring images, 

should get a higher score for this feature. Following [8], if �
�, � be a part of the 
image which contains the face, #�
�, � be the result of applying a low-pass filter to 
it,  then the average value of the pixels of the following equation is the sharpness of 
the face: 

 
$ � �	%
�
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�, � 

 

 
(5) 

Since it is difficult, at least computationally, to consider an upper limit for the best 
value of sharpness for all face images in order to have an acceptable normalization, 
we have used a local maximum. In this way, after calculating the sharpness for all of 
the chosen faces we assign the following score to the sharpness of each of them: 
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(6) 

where $�&' is the maximum value of the sharpness in this sequence. Figure 6 
shows some images of one person with different values in sharpness and their 
associated scores. 
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3.3   Brightness 

Dark images of a face are in general not usable, so we need a way to measure the 
brightness of the face. Since the region of the face is usually a small region then we 
can consider the average value of the illumination component of all of the pixels in 
this region as the brightness of that region. So the following score determines the 
brightness of the image: 

 

 ( �
)

)�&'
 

 

 
 
(7) 

where )�&' is the maximum value of the brightness in this sequence. Figure 7 
shows some images of one person in different brightness conditions and their 
associated scores. 
 

 

Fig. 7. An image with different brightness conditions and their associated score 

 
The brighter the image, the higher the score, yields the risk of favoring too bright 

images. In the real surveillance sequences too bright images are uncommon and in the 
case of a too bright image a face detector is highly to disregard the face anyway. 

 3.4   Image resolution 

Faces with higher resolution can yield better results than lower resolution ones. But it is only 
true up to a specific limit [5]. This limit depends on the application which is going to use the 
face after assessing its quality. But usually considering 50 and 60, respectively, for the width 
and height of the face is suitable [5, 6]. So we can define the score related to the image 
resolution as follows: 

 

%* � min .1,
0��12
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(8) 

3.5   Choosing the best face in a given sequence 

After calculating the four above mentioned features for each of the images in a given 
sequence, we combine the scores of these features into a general score for each image, 
as shown in the following equation: 
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(9) 

 
where %� are the score values for the above features and 0� the associated weights 

for each score. The images are sorted based on their combined scores and depending 
on the application, one or more images with the greatest values in S are considered as 
the highest quality image(s) in the given sequence. 

4   Experimental Evaluations 

We have used both still images and movie samples to evaluate our system. The still 
images are from the FRI CVL [9] database (DB1). This database consists of 
sequences of 114 individuals. Each sequence has 7 images with different head 
rotation (figure 5). Since the images in this database do not have wide variations in 
sharpness, brightness and size we have used them mainly for assessing the first 
feature. If the other features of the face have not had wide variations, the least rotated 
face can give us the best face in terms of the visibility of the facial features. 

In order to assess the other features as well as the first feature, we have used the 
video dataset prepared for the Hermes project [10] (DB2). This dataset contains 48 
sequences (6 videos for each of the 8 participants) where these people walk towards a 
camera while looking from side to side. This provides good examples for assessing all 
the features together.  

According to equation 9 and the experimentally obtained values for the weights of 
the scores which are shown in Table 1, a combined score is produced for each image 
in each sequence. The images in each sequence are sorted based on this quality score. 

 

Table 1. The values of the scores weight 

Weight 0� 0� 0( 0* 
Value 1 0.9 0.6 0.8 

 
In order to compare the above explained quality scores of the proposed system to a 

human perception of quality, we have annotated the images in each sequence in our 
datasets according to their visual features and the visibility of the face and sorted 
them manually based on our perception of the quality. Table 2 illustrates the results of 
this comparison using these two databases, in which, the correct matching means the 
matching between the human perception and system results for the best images in 
each sequence. While the quality of the images is not too poor and the faces size is 
not too small the order of the selected images by the proposed system is similar to the 
order of the selected images by the human. By the way, even for the poor quality 
images, although it is possible that the images be sorted in different way by the 
system and the human, but in 100% of the cases we can find the best chosen image by 
the human inside the first four chosen images by the system. 
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Table 2. Experimental results 

Database Number of 
sequences 

Number of faces 
in sequences 

Face detection 
rate 

Correct 
matching 

DB1 114 7 94.3% 92.1% 
DB2 48 avg. 15 90.5% 87.1% 

 
Figure 8 shows the results of the quality based ranking by the proposed system and 

the human for an examples from the FRI CVL dataset. In general the human and 
system rankings are in agreement. Slight differences like those seen in the figure 
occur when the images in the database are very similar e.g., like the three in the 
center. 

 

 

Fig. 8. An example from the FRI CVL database and the quality based rankings 

 
Figure 9 shows a sequence of images from the Hermes dataset and the results of 

sorting their faces based on the quality both by a human and the proposed system. It is 
obvious from these images that the selected faces by the system match to the selected 
faces by the human for the first five images. 

 

Fig. 9. Quality based rankings for a sequence from Hermes dataset 

 
Figure 10 shows another example from the Hermes dataset. In this sequence the 

size of the head is not changing widely. But since the person turning around his head 
while walking the other features are changing. It can be seen that in this case the most 
important feature is head rotation and the proposed system ranking has an acceptable 
agreement with the human ranking. 

 

18          Kamal Nasrollahi and Thomas B. Moeslund



 

Fig. 10. Quality based rankings in the presence of head rotation 

  
Figure 11 shows another example from the Hermes dataset in which the quality of 

the images are very poor and the walking person has spectacles. In this figure the 
details of our locally assigned scores and also the combined scores are shown.  

 

 

Fig. 11. A poor quality sequence of images and the details of the locally scoring technique 

 
As seen in the above figures (8-11), the quality based rankings by the proposed 

system and the human are very close. A few incorrect ordering were observed due to: 
our system cannot detect the exact direction of the face, as well as the facial 
expressions. When the images in the sequence are very similar and the face image are 
too small then the possibility of miss ranking by the system increases. But in general 
very good results are obtained.  
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5   Conclusion 

In this paper we present a face quality assessment system based on four simple 
features including out-of-plan rotation, sharpness, brightness and resolution. These 
features are combined using both a local scoring system and weights. The system is 
evaluated on two databases and the results show a general agreement between the 
system output and quality assessment by a human. For all the sequences of these 
databases (100%) the best chosen image by the human is one of the first four chosen 
images by the system and in 89.6% of the cases the first chosen image is the same.  
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Abstract. In this paper we provide a theoretical discussion of the im-
pact of uncertainty in quality measurement on the expected benefits
resulting from an inclusion of quality measures in classification. While
an ideal signal quality measure should be a precise quantification of the
actual signal properties relevant to the classification process, real qual-
ity measurement may be uncertain. We show how does the degree of
uncertainty in quality measurement impact the gains in class separa-
tion achieved thanks to using quality measures as conditionally relevant
classification feature, and demonstrate that while noisy quality measures
become irrelevant, they do not impair class separation beyond the base-
line result. We present supporting experimental results using synthetic
data.

Key words: quality measures, feature relevance, classifier ensembles

1 Introduction

Degradation of biometric signal quality has been shown to impair the perfor-
mance of biometric classification systems. One of the remedies to this problem is
the use of dedicated metrics that capture the quality of biometric signals. These
metrics are referred to as quality measures (qm). Ideally, a qm should aptly
quantify the direct impact that the extraneous, noisy factors have on the col-
lected signal with respect to the deployed classifier. An example of such quality
measure could be a microphone that records the noise that masks the speech, but
does not capture the speech at the same time. However, it is not always possible
or practical to devise a setup capable of capturing the impact of extraneous,
quality-degrading factors directly. In this case, one must infer the quality degra-
dation from the collected signals themselves. Indeed, this is frequently the case
for most biometric quality measures proposed in the literature. Consequently, an
indirect measurement of the quality degradation may carry a measurement error
and the qm may be to some degree uncertain. An important question arises: how
much does the uncertainty in quality measurement impact the value of quality
measures as auxiliary feature from the viewpoint of biometric classification? This
paper answers this question from a theoretical perspective. We adopt the generic
framework of classification with quality measures, Q− stack, proposed in [1, 2],
since it has been shown to be a generalization of existing algorithms of classifi-
cation with qm. Consequently, the results presented in this paper are valid for



any instantiation of classification system with qm accounted for by the model
of Q − stack. Using this framework as a reference, we prove that uncertainty
in quality measurement reduces the conditional relevance of quality measures
as features to the stacked classifier. We demonstrate the practical implications
of this finding using synthetic datasets, where additive and multiplicative noise
models are used. This paper is structured as follows: Section 2 gives a theoretical
discussion of the impact of uncertainty in qm measurement on class separation,
Section 3 gives experimental support for the theoretical findings, and Section 4
concludes the paper.

2 Signal quality and quality measures

In a typical biometric classification system with quality measures one has two
sources of complementary information: the baseline scores x, and the quality
measures qm. The baseline scores x are obtained from biometric classifiers op-
erating on feature sets derived from class-selective raw biometric data, and can
be viewed as a compressed representation of this data. The quality measures qm

convey information about the conditions of data acquisition and the extent of
extraneous noise that shapes the raw data, and therefore are class-independent.
In order to make use of the quality information, many algorithms have been
proposed - for single classifier systems they were often referred to as adaptive
model/threshold selection [3], while for multiple-classifier systems they are fre-
quently referred to as quality-dependent fusion [4, 5]. Recently proposed frame-
work of Q−stack [1] is a generalization of these methods, where baseline classifier
scores x and quality measures qm are features to a second-level stacked classifier
which models the dependencies between x and qm. From this perspective, qm

become conditionally relevant classification features, which together with scores
x grant better class separation than that achieved in the domain of x alone.

If a degradation of observed biometric data is important from the classifica-
tion perspective, this fact will be reflected in a shift of score x. In real situations
quality measures must be estimated from measurement of the noisy process that
degrades the data. An ideal quality measure would give an error-free estimate of
every instance of noise affecting particular observations and score x. In practice,
especially in situations where measuring the noisy process directly is impossible
or very troublesome, quality measures must be derived from the observed data
itself - and indeed this is the most common case [6]. It is then likely that the
quality measurement is done with certain degree of error, or uncertainty.

A schematic representation of this situation is shown in Figure 1. The param-
eters of processes A, B, N and D as well as the nature of the function Φ(x′, n)
are used exclusively for the purpose of data generation and are never used in
order to adjust the parameters of classifiers applied. Let us now denote the class
separation D1

A,B obtained in the domain of x alone

Dx
A,B =

∫
∞

−∞

|pA(x) − pB(x)|dx. (1)
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Fig. 1. Diagram of the data flow of the experiment.

Consider class separation De
A,B in the domain of evidence space e = [x, qm],

defined between class conditional distributions pA(x, qm) and pB(x, qm). This
separation can be expressed in terms of Matusita distance

De
A,B =

∫
∞

−∞

∫
∞

−∞

|pA(x, qm) − pB(x, qm)|dxdqm =

=

∫
∞

−∞

∫
∞

−∞

|pA(qm|x)pA(x)− pB(qm|x)pB(x)|dxdqm

(2)

Suppose that qm is measuring the actual signal-distorting condition n with
uncertainty d, reflected in an increasingly noisy measurement of qm. In this
situation

d ≫ n ⇒ pA(qm|x) = pB(qm|x) = p(qm), (3)

where p(qm) is the stochastic process that describes the observed noisy qm =
n + d. Consequently

De
A,B =

∫
∞

−∞

(

∫
∞

−∞

p(qm)|pA(x)− pB(x)|dx)dqm =

∫
∞

−∞

p(qm)(

∫
∞

−∞

|pA(x)− pB(x)|dx)dqm =

∫
∞

−∞

p(qm)Dx
A,Bdqm = Dx

A,B

∫
∞

−∞

p(qm)dqm = Dx
A,B.

(4)

The result given by Equation 4 is the same if the expression for Matusita
distance is replaced by another distance measure, for instance by divergence or
by the Kullback-Leibler distance.

The important conclusion is that independently of the marginal distributions
of x and qm or their mutual dependence relationships, increasing the uncertainty
in quality measurement results in the reduced conditional relevance of qm. As
a result, class separation in the space defined by qm and x approaches class
separation observed in the domain of x alone. In Section 3 we demonstrate the
implications of this finding using synthetic datasets.
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3 Experiments

In this section we illustrate the theoretical predictions given in Section 2. Using
synthetic datasets we show the impact of increasing uncertainty in quality mea-
surement on classification accuracy. The choice of synthetic over real biometric
datasets is dictated by the fact that in reality measurement of noise without un-
certainty is impossible. Also, once quality measurement is taken, there is no way
of knowing what this uncertainty actually is. The use of synthetic datasets gives
us the experimental comfort of a full control over all stochastic, data-generating
processes involved in the experiment.

In the experiments reported here, we generate following data: hypothetical
(never observed), noise-free baseline classifier scores x′, Environmental condition
n which effects scores x′, resulting in noisy baseline scores x = Φ(x′, n), and
measurement noise d, which causes uncertainty in measurement of n. Quality
measures qm are estimated according to qm = n + d. In the absence of noisy
measurement, qm measures n without uncertainty. We use two models Φ(x′, n)
of impact of environmental conditions on scores, namely an additive (Φ(x′, n) :
x = x′ + n), and an multiplicative noise model (Φ(x′, n) : x = x′n).

We use four different classifier types as stacked classifiers: a Linear Discrimi-
nant Analysis - based classifier: LDA, a Quadratic Discriminant Analysis - based
classifier: QDA, a Bayes classifier using Gaussian Mixture Model - based distri-
bution representation: Bayes, and a Support Vector Machines - based classifier
using RBF kernel: SV M . Separate training and testing datasets are generated.
The classifiers are trained using 1000 training data points and then deployed
to classify another 1000 testing data points. The knowledge of the underlying
statistical processes is not used to tune the parameters of the deployed stacked
classifiers. For each noise model type, the magnitude of uncertainty in quality
measurement d was controlled by adjusting the variance σ2

d. Classification per-
formance of the stacked classifiers as a function of correlation ρ between the
resulting quality measures qm and noisy scores x was recorded. The value of ρ is
a measure of dependence between x and qm which can be evaluated in practical
applications.

3.1 Additive noise model

Consider Gaussian processes, which generate observations according to p(x′|A) =
N (µx′,A, σ2

x′,A) and p(x′|B) = N (µx′,Bσ2

x′,B), where µx′,A = −1, σ2

x′,A = 1, and

µx′,B = 1, σ2

x′,B = 1. Bayes error [7] associated with the classification of x′

into classes A and B can be analytically estimated to be E′

Bayes ≈ 0.1587. Let
the noise-generating process N produce noise instances n according to p(n) =
N (µN , σN ) ,µN = 0 ,σ2

N = 1. If no noise would be present, observed scores
would be x = x′. Assume that in the presence of noise N the observed scores x

are affected by the noise n according to x = Φ(x′, n) = x′ + n. consequently the
class-conditional distributions of observed scores p(x|A) and p(x|B) are given
by convolution of the probability density functions [8]: p(x|A) = p(x′ + n|A) =
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p(x′|A) ∗ p(n|A) = N (µN + µx′,A, σ2

N + σx′,A), and p(x|B) = p(x′ + n|B) =
p(x′|B) ∗ p(n|B) = N (µN + µx′,B, σ2

N + σx′,M ).

Let us now measure the quality measure qm. OF course it would be best
to measure n directly, qm ∝ n. This ideal measurement may in practice be not
feasible and the noise measurement may be uncertain. We model this possible
uncertainty by adding white Gaussian noise of controlled variance σ2

d to the
measurement of qm. In this scenario, for σ2

d = 0 ⇒ qm ∝ n, and for σ2

d →
∞ the quality measure qm becomes independent on the actual noise n, and
thus it ceases to be informative from the viewpoint of classification using Q −
stack. Since all involved processes are Gaussian then the dependency between
quality measurements and scores can be measured by computing the correlation
coefficient ρ between qm and x.

In the experiments shown in this section we classify 1000 testing data points,
using classifiers trained on a separately generated set of 1000 training data
points. The data are generated by processes described above. The impact of
ρ on the class-conditional distributions evidence, p(e|A), p(e|B) is shown in
Figure 2.
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Fig. 2. Class-conditional evidence distributions p(e|A) and p(e|B) with Q −
stackdecision boundaries for LDA, QDA, SVM and Bayes classifiers. Quality measures
taken at σ2

d = 0.

In Figure 2 quality measures qm represent the ideal case when, σ2

d = 0. In the
experiments shown in Figure 2 this resulted in the correlation coefficient between
scores x and quality measures qm of ρ ≈ 0.58. Corresponding decision boundaries
ΨLDA, ΨQDA, ΨBayes, ΨSV M are shown, as estimated by corresponding stacked
classifiers, as well as the baseline score decision threshold τ(x).

Figure 3 demonstrates graphically an example of the impact of the uncer-
tainty in estimating qm, on classification results in the evidence space e =
[x, qm]. Here, the measurement of quality measure is very noisy at σ2

d = 20,
resulting in a low correlation coefficient between x and qm of ρ ≈ 0.13. Conse-
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quently the decision boundaries Ψ between classes A and B tend towards x = τ ,
the decision boundary obtained when using only x as classification feature. As
the difference between classification in the evidence spaces of e = [x, qm] and
e = [x] wanes with growing σ2

d, so does the benefit of using quality measure as
added dimension in the evidence vector.

−4 −2 0 2 4 6

−25

−20

−15

−10

−5

0

5

10

15

20

Scores x

Q
u
a
li
ty

m
ea

su
re

q
m

Classifiers LDA,QDA, ρ=0.100

 

 

data, class A

data, class B

ΨLDA(x, qm)

ΨQDA(x, qm)

τ(x)

(a) Classifiers τ (x), LDA and QDA

−6 −4 −2 0 2 4

−25

−20

−15

−10

−5

0

5

10

15

20

Scores x

Q
u
a
li
ty

m
ea

su
re

q
m

Bayes classiifer ρ=0.100

 

 

data, class A

data, class B

ΨBayes(x, qm)

ΨSV M(x, qm)

τ(x)

(b) Classifiers τ (x), Bayes and SVM

Fig. 3. Class-conditional evidence distributions p(e|A) and p(e|B) with Q − stack

decision boundaries for LDA, QDA, SVM and Bayes classifiers. Quality measures taken
at σ2

d = 20

Compare the behavior of the decision boundary ΨSV M in Figures 2(b) and
3(b). The curve shown in Figure 3(b) shows a clear overfitting to the training
data as a result of an increase in dimensionality of e beyond necessity. This
is not the case in Figure 2(b). Such overfitting may be avoided by clustering
quality measures [9], or by simply choosing a classifier of a smaller parametric
complexity.

Figure 4 presents the explicit relationship between the correlation coefficient
ρ between x and qm and the classification error rates in the evidence space using
decision boundaries τ(x), ΨLDA, ΨQDA, ΨBayes and ΨSV M . The variance σ2

d of
the process D that adds uncertainty to the measurement of qm was changed
from σ2

d = 0 to σ2

d = 20. Figure 4 shows the classification errors after 50 in-
dependent experimental runs in terms of mean Half Total Error Rate (HTER).
The error bars show the standard deviation of HTER. The numerical results of
this experiment are gathered in Table 3.1.

3.2 Multiplicative noise model

In this section we show an analogous experiment as reported in Section 3.1, but
here the noise N is multiplicative rather than additive. Now, the parameters of
stochastic processes A, B and N are µx′,A = 3, σ2

x′,A = 1, µx′,B = 6, σ2

x′,B = 3,

and µN = 4, σ2

N = 1. Noise instances n are affecting x′ according to the function
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Fig. 4. Impact of the correlation ρ between the observed scores x and the observed
quality measures qm , for additive noise.

Table 1. Selected HTER results from Figure 4(b), 1000 data points, mean values and
standard deviations after 50 repetitions for each value of σ2

d.

σ2
d 0 0.4 1 2.6 7 15 20

ρ(x, qm) 0.5785 0.4852 0.4075 0.3012 0.2086 0.1441 0.1272

HTER

µτ(x) 0.241 0.2368 0.2387 0.2426 0.2418 0.2423 0.2411

στ(x) 0.0329 0.0299 0.0286 0.0326 0.0336 0.0286 0.0302

µLDA 0.1603 0.1884 0.2074 0.2249 0.2343 0.2386 0.2389

σLDA 0.029 0.0305 0.0291 0.031 0.0294 0.0312 0.0295

µQDA 0.1596 0.1883 0.208 0.2249 0.2349 0.2388 0.2385

σQDA 0.0252 0.0293 0.0301 0.0287 0.0333 0.0333 0.0271

µBayes 0.1618 0.1948 0.2186 0.2338 0.2398 0.2411 0.2406

σBayes 0.0134 0.016 0.0157 0.0185 0.0168 0.0171 0.0169

µSV M 0.1602 0.1896 0.2091 0.2269 0.2378 0.2444 0.2455

σSV M 0.0128 0.0139 0.0156 0.0163 0.0165 0.0165 0.0182

On quality of quality measures for classificationn           27



x = Φ(x′, n) = n · x′, generating noisy observations (scores) x. Similarly as
in Section 3.1, the uncertainty in measuring qm is controlled by adjusting σ2

d.
Examples of evidence distributions and corresponding decision boundaries are
shown in Figure 5 (for σ2

d = 0), and in Figure 6 (for σ2

d = 20)
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Fig. 6. Classification in the evidence space e = [x, qm] using (a) LDA, QDA , and (b)
Bayes, SV M stacked classifiers, for σ2

d = 20.

Figure 7 presents the explicit relationship of the correlation coefficient ρ

between x and qm and the classification error rates in the evidence space using
decision boundaries τ(x), ΨLDA, ΨQDA, ΨBayes and ΨSV M , for σ2

d changed in
the range of 0 to 20. Obtained classification errors are recorded for respective
classifiers after 50 independent experimental runs in terms of mean Half Total
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Error Rate (HTER). The error bars show the standard deviation of HTER.
Numerical data from this experiment are gathered in Table 2.
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Fig. 7. Impact of the correlation ρ between the observed scores x and the observed
quality measures qm , for multiplicative noise.

4 CONCLUSIONS

We have proved that the use of uncertain qm in the framework of Q − stack

does not impair class separation in the evidence space, and therefore does not
negatively impact class separation in respect to the baseline systems which do
not use qm. We have instantiated this theoretical result with synthetic datasets,
using additive and multiplicative models of noise. The conducted experiments
showed that as the uncertainty of qm increases, the classification performance
approaches that of a system that uses no quality measures. This result is ex-
plained by the fact that uncertain qm loose their conditional relevance to the
classification process.

Another important conclusion from the presented study concerns the problem
of model selection for classification with qm. As the presented results show,
qm collected with a high certainty allow for successful deployment of stacked
classifiers of less constrained complexity. As the uncertainty of qm grows, stacked
classifiers of restricted complexity proved to be less prone to overtraining than
those with more degrees of freedom. This overtraining result can be clearly seen
from the error bars in Figures 4 and 7, but also from the shapes of decision
boundaries in Figures 2, 3, 5 and 6. This result shows that the sensitivity of the
stacked classifier to overtraining depends not only on problem dimensionality
but on the strength of dependencies between variables in the evidence vector.
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Table 2. Selected HTER results from Figure 7(b), 1000 data points, mean values and
standard deviations after 50 repetitions for each value of σ2

d.

σ2
d 0.000 0.400 1.000 2.600 7.000 15.000 20.000

ρ(x, qm) 0.000 0.007 0.012 0.014 0.019 0.022 0.022

HTER

µτ(x) 0.201 0.202 0.202 0.203 0.202 0.205 0.203

στ(x) 0.035 0.032 0.037 0.035 0.033 0.030 0.037

µLDA 0.141 0.160 0.177 0.191 0.197 0.203 0.202

σLDA 0.035 0.035 0.035 0.031 0.033 0.033 0.036

µQDA 0.150 0.173 0.186 0.201 0.199 0.203 0.203

σQDA 0.080 0.086 0.085 0.087 0.069 0.060 0.061

µBayes 0.140 0.163 0.177 0.194 0.197 0.203 0.203

σBayes 0.014 0.015 0.017 0.017 0.015 0.016 0.019

µSV M 0.144 0.170 0.186 0.204 0.215 0.225 0.226

σSV M 0.015 0.015 0.017 0.017 0.018 0.017 0.017
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Abstract. This paper analyzes two recently released image quality 
specifications for single-finger scanners and proposes three new specifications 
targeted to different types of applications. A comparison of the potential effects 
on fingerprint recognition accuracy of the various specifications is carried out 
using an approach based on the definition of “operational quality”. The 
experimental results show that the three new image quality specifications 
proposed in this work have an accuracy/cost tradeoff better than the existing 
ones. 

1. Introduction 

Fingerprint recognition is one of the most reliable and effective 
biometric technologies and is being adopted as the main identity 
verification method in several large scale applications. Some countries 
already store fingerprint data in electronic identity documents and 
many others plan to do so in the near future. Examples of recent large-
scale government projects based on fingerprint recognition include: the 
US-VISIT [12] and PIV [10] programs in the United States, the 
Biometric Passport in Europe [2], the Malaysian government 
multipurpose card [7] and the Singapore biometric passport [11] in 
Asia. 
In large-scale biometric applications, the choice of the acquisition 
devices is one of the most critical issues since many, often conflicting, 
requirements have to be taken into account, such as the need for high-
quality images, interoperability requisites and budget.  
Typically, in large-scale projects a set of specifications is given for the 
input devices, in order to guarantee a minimum quality level for some 



relevant parameters. In the FBI Image Quality Specifications (IQS) for 
fingerprint scanners [3] [4], the “quality” is defined as “fidelity” in 
reproducing the original fingerprint pattern, and it is quantified by 
parameters traditionally used for vision, acquisition and printing 
systems: geometric accuracy, gray level dynamic range, Signal-to-
Noise Ratio (SNR), Spatial Frequency Response (SFR), etc. This 
definition of quality is clearly appropriate to IAFIS and other 
applications where the images may be examined by forensic experts. In 
fact human experts’ comparison techniques heavily rely on very fine 
details such as pores, incipient ridges, etc., for which the fidelity to the 
original signal is fundamental.  
On the other hand, the situation is different in totally-automated 
biometric systems, where: i) the images are stored but used only for 
automated comparisons, or ii) only fingerprint templates are stored. As 
discussed in a recent work [1], in these cases it may be more 
appropriate to define the fingerprint scanner quality as the ability of a 
fingerprint scanner to acquire images that maximize the accuracy of 
automated recognition algorithms (operational quality). A first 
advantage of the operational quality is that it allows to estimate the loss 
of performance of a scanner compliant to a given IQS with respect to 
an “ideal scanner”. In [1], the impact on the recognition accuracy of 
each quality parameter has been separately assessed, to understand 
which are the most critical requirements. This work evaluates the 
simultaneous effect of all the requirements referring to two recently 
released IQS for single-finger scanners (PIV and PassDEÜV) and 
proposes three new sets of IQS (CNIPA-A, CNIPA-B and CNIPA-C) 
targeted to different applications where single finger scanners are 
required. 
The rest of this paper is organized as follows: section 2 reviews and 
compares the above five fingerprint scanner IQS and section 3 studies 
their potential impact on recognition accuracy; finally section 4 draws 
some conclusions. 

2. IQS for single finger scanners 

This section presents some IQS for single-finger scanners to be used in 
different applications. 
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• PIV: established by the US Federal Bureau of Investigation (FBI) for 
the US Personal Identification Verification program, whose aim is to 
improve the identification and authentication for access to U.S. 
Federal facilities and information systems [4] [9]; 

• PassDEÜV: established by the German Federal Office for 
Information Technology Security (BSI) for the capture and quality 
assurance of fingerprints by the passport authorities and the 
transmission of passport application data to the passport 
manufacturers [13]; the PassDEÜV requirements are identical to the 
FBI AFIS requirements (see [3]) except for the acquisition area, 
which can be smaller; 

• CNIPA-A/B/C: these three new set of specifications are here 
proposed for the first time; they are currently being evaluated by 
CNIPA (the Italian National Center for ICT in the Public 
Administration) for inclusion within the guidelines for the Italian 
public administrations involved in biometric projects. In particular: 
o CNIPA-A is conceived for: i) enrolment in large-scale 

applications where device interoperability is crucial (e.g. 
passports, national identity card); ii) identity verification in 
large-scale applications where the enrolment has been 
performed with an IAFIS IQS or CNIPA-A complaint scanners 
(e.g. passport or visa verification); 

o CNIPA-B is conceived for: i) enrolment and verification in 
medium-scale projects (e.g. intra-organization projects); ii) 
identity verification in large-scale applications where the 
enrolment has been performed with CNIPA-A scanners (e.g. 
national identity card verification); 

o CNIPA-C is conceived for enrolment and verification in small-
scale applications, where typically users are authenticated on the 
same device (e.g. logical and physical security in small 
organizations). 

 
The five IQS are mainly based on the following quality parameters: 
• Acquisition area: capture area of the scanner (w×h). 
• Native resolution: the scanner’s true internal resolution (RN) in 

pixels per inch (ppi). 
• Output resolution: the resolution of the scanner’s final output 

fingerprint image in ppi. 
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• Gray-level quantization: number of gray-levels in the final output 
fingerprint image. 

• Geometric accuracy: geometric fidelity of the scanner, measured as 
the absolute value of the difference D, between the actual distance X 
between two points on a target and the distance Y between those 
same two points as measured on the output scanned image of that 
target; PIV and PassDEÜV evaluate this parameters in two different 
modalities: Across-bar (DAC) and Along-bar (DAL), see [8] [9] for 
more details, while CNIPA requires to measure the Relative 

difference ( X
D

D l =Re ). 

• Input/output linearity: the degree of linearity is measured as the 
maximum deviation DLin of the output gray levels from a linear least 
squares regression line fitted between input signal and output gray 
levels scanning an appropriate target (see[8] [9]). 

• Spatial frequency response: PIV and PassDEÜV evaluate the SFR 
using the device Modulation Transfer Function (MTF) measured at 
each nominal test frequency f, using a continuous-tone sine wave 
target; CNIPA specifications assess this factor by dividing the 
acquisition area in 0.25”×0.25” regions and measuring, for each 
region, the Top Sharpening Index (TSI), see [5] [6] for more details. 

• Gray level uniformity: defined as the gray-level differences found in 
the image obtained by scanning a uniform dark (or light) gray target. 
This parameter is evaluated by dividing the acquisition area in 
0.25”×0.25” regions and measuring the differences between: i) the 
average gray-levels of adjacent rows/columns ( )light

RC
dark
RC DD , , ii) the 

average gray-level of any region and the gray-level of each of its 
pixels ( )light

PP
dark
PP DD , ; iii) the average gray-levels of any two regions 

( )light
SA

dark
SA DD , . 

• Signal-to-noise ratio: the signal is defined as the difference between 
the average output gray-levels obtained from acquisition of a 
uniform light gray and a uniform dark gray target, measuring the 
average values over independent 0.25”×0.25” areas; the noise is 
defined as the standard deviation of the gray-levels in those areas. 

• Fingerprint gray range: given a set of scanned fingerprint images, 
the dynamic range (DR) of each image is defined as the total number 
of gray levels that are present in the image. 
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Table 1 reports, for each of the above quality parameters, the 
requirements that a scanner has to meet in order to be compliant with 
the five specifications. 
 
Table 1. A comparison of PIV, PassDEÜV and CNIPA-A/B/C 
requirements for the main quality parameters. 

Requirement 
CNIPA Parameter PIV IQS [4] [9] PassDEÜV IQS [13]
IQS B IQS A IQS C 

w ≥ 12.8mm  
h ≥ 16.5mm  

w ≥ 16.0mm  
h ≥ 20.0mm 

w ≥ 25.4mm 
h ≥ 25.4mm

w ≥ 15.0mm 
h ≥ 20.0mm 

w ≥ 12.8mm 
h ≥ 16.5mm Acquisition area 

Native resolution RN ≥ 500ppi 
Output resolution RN ± 2% RN ± 1% RN ± 1% RN ± 1.5% RN ± 2% 

Gray-level 
quantization 256 gray-levels (8 bpp) 

In 99% of the tests: In all the 
tests:  

In all the 
tests:  

In all the 
tests:  

In 99% of the tests: Geometric  
accuracy DAC ≤max{0.0013”,0.018·X} DAC ≤max{0.0007”,0.01·X}

DAL ≤ 0.016” DRel≤1.5% DRel≤2.0% DRel≤2.5% DAL ≤ 0.027” 

Input/output 
linearity DLin≤ 7.65 No requirements No requirements 

For each 
region: 

For each 
region: 

For each 
region: MTFmin(f) ≤ MTF(f) ≤ 1.12 

see 
MTFmin(f) ≤ MTF(f) ≤ 1.05 

see 
Spatial frequency 

response [1] for PIV MTFmin(f) [1] MTFmin(f) values TSI≥0.20 TSI≥0.15 TSI≥0.12 
In 99% of the cases: In 99% of the cases: 

dark
RCD

Gray level 
uniformity 

 ≤ 1.5;  ≤ 3 
light
RCD dark

RCD  ≤ 1 ;  ≤ 2  
light
RCD

For 99% of the pixels: For 99.9% of the pixels: 
No requirements dark

PPD  ≤ 8;  ≤ 22  
light
PPD dark

PPD  ≤ 8;  ≤ 22  
light
PPD

For every two small areas: For every two small areas: 
dark
SAD  ≤ 3;  ≤ 12  

light
SAD dark

SAD  ≤ 3;  ≤ 12  
light
SAD

1Signal-to-noise SNR ≥ 70.6 SNR ≥ 125 SNR≥70.6 SNR≥49.4 SNR ≥30.9 
For 10% of 
the images: 

For 10% of 
the images: 

For 10% of 
the images: Fingerprint  

gray range 
For 80% of the images: DR ≥ 200 for 80% images; 

DR ≥ 150 DR ≥ 128 for 99% images DR ≥ 150 DR ≥ 140 DR ≥ 130 

3. Impact of the IQS on the recognition accuracy 

In order to evaluate the impact on fingerprint recognition accuracy of 
the IQS described in section 2, a systematic experimentation has been 
carried out. Following the testing methodology introduced in [1] and 
using the same test database, fingerprint images acquired by 
hypothetical scanners compliant with each IQS have been simulated. 
                                                 
1 Actually in PIV IQS and CNIPA this requirement is given by setting the maximum noise 

standard deviation to 3.5. To make it comparable with the corresponding PassDEÜV IQS, 
here we provide this value as a SNR under the hypothesis of a 247 gray-level range (see [3]): 
SNR = 247/3.5 = 70.6.  
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To this purpose, the transformations described in [1] have been 
sequentially applied to the original fingerprint images according to the 
worst-case scenario hypothesized in table 2. 
Table 2. The table reports, for each quality parameter, the characteristic of the scanners 
hypothesized for enrolment and verification. In fact, in a typical large-scale application, the 
scanner used during enrolment may be different from those used during verification. Note that 
“different” does not necessarily imply a distinct model/vendor: in fact, two scanners of the 
same model may produce different output images. For instance if a certain scanner model is 
compliant to a 500ppi±1% output resolution specification, one of such devices may work at 
505ppi and another at 495ppi.  

Parameter Enrolment scanner Verification scanner 

Acquisition area The minimum-allowed The minimum-allowed 

Output resolution The minimum-allowed 
(ResOR-RRes%) 

The maximum-allowed  
(ResOR+RRes%) 

Geometric 
accuracy Negligible The maximum-allowed 

Spatial frequency 
response The minimum-allowed The minimum-allowed 

Signal-to-noise 
ratio The minimum-allowed The minimum-allowed 

Fingerprint gray 
range The minimum-allowed The minimum-allowed 

 
The outcome of this analysis is an estimation of the loss of accuracy 
that scanners compliant with each specification may cause with respect 
to the performance that would be obtained using “ideal” scanners (i.e. 
devices with negligible perturbations). The loss of accuracy is 
quantified by the relative EER difference between the two cases, 
expressed as a percentage value (see [1]); for instance, if the relative 
EER difference is 100%, it means that the EER obtained by the 
simulated scanners is twice the EER obtained by the ideal scanners. All 
the experiments have been carried out using ten state-of-the-art 
fingerprint recognition algorithms. Figure 1 reports a box-plot for each 
specification: each box-plot shows descriptive statistics about the 
relative EER difference of the ten algorithms. 
 
In order to better understand the results summarized in figure 1, it is 
useful to compare the five IQS as shown in table 3, where the 
“strictness” of the various quality parameters with respect to the FBI 
IAFIS IQS [3] is highlighted. The most “tolerant” specification is 
CNIPA-C, which has the least demanding requirements for all the 
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parameters: as it was reasonable to expect, this specification can cause 
the largest performance drop (182% on the average). Less tolerant but 
still not very strict are PIV and CNIPA-B (both with three “L” and 
three “M” requirements); however the loss of performance that can be 
caused by them is definitely different: on the average 156% and 44%, 
respectively. This means that the impact of the various quality 
parameters on the recognition accuracy is not uniform: the first three 
parameters in table 3 are more critical than the last three ones. The two 
most demanding specifications (PassDEÜV and CNIPA-A) cause 
definitely smaller performance drops (on the average 20% and 18%, 
respectively); table 3 shows that CNIPA-A has the most strict 
requirement for the acquisition area, while PassDEÜV for spatial 
frequency response, signal-to-noise ratio and fingerprint gray range. 
CNIPA-A IQS produces the smallest loss of performance, mainly due 
to the larger acquisition area that is the most critical parameter, as 
proved in [1]. 
 
 
 

 

 

 

 

Fig. 1. A box-plot for each specification. Each box-plot graphically shows descriptive statistics 
of a set of data: the top and bottom of the vertical line denotes the largest and smallest 
observation, respectively; the rectangle contains 50% of the observations (from the first to the 
third quartile) and highlights the median (second quartile); finally the mean of all the 
observations is marked with a black circle. 
 

-50%
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50%

%

150%

200%
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300%
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450%

%

PIV PassDEÜV CNIPA-A CNIPA-B CNIPA-C

500

100

250

400

PIV PassDEÜV CNIPA-A CNIPA-B CNIPA-C
Mean 156% 20% 18% 44% 182%
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Table 3. For each of the quality parameters a label in {“L: Low”, “M: Medium”, “H: High”} is 
used to characterize the level of “strictness” of the requirement in the specifications. “H” is 
used when the constraint is as “strict” as in the FBI IAFIS-IQS [3]; “M” and “L” are used when 
the specification is moderately or significantly relaxed, respectively, with respect to the 
corresponding FBI IAFIS-IQS. 

Level of “strictness” of the requirements Parameter PIV IQS PassDEÜV CNIPA-A CNIPA-B CNIPA-C 
Acquisition area L M H M L 

Output resolution accuracy L H H M L 
Geometric accuracy2 L H H M L 

Spatial frequency response3 M H M L L 
Signal-to-noise ratio M H M L L 

Fingerprint gray range M H M L L 
 

4. Conclusions 

This paper analyzed two recently released IQS for single-finger 
scanners (PIV and PassDEÜV) and proposed three new IQS (CNIPA-
A/B/C) targeted to different applications. A comparison of the potential 
effects on recognition accuracy of the various specifications has been 
carried out using the operational quality approach introduced in [1]. 
The three new IQS have been designed according to outcomes of [1], 
and trying to define IQS with an optimal accuracy/cost tradeoff. 
Although the results of this analysis partially depend on the specific 
scanner used for collecting the test database (see [1]), we believe that 
similar results would be obtained starting from images acquired by 
other scanners. According to the experimental results, we can conclude 
that the three proposed specifications are well suited for the 
applications they are targeted to. In particular: 

• CNIPA-A specification is able to guarantee the best 
performance among the five IQS reviewed, thanks to the higher 
acquisition area, which proved to be the most important 
parameter; 

                                                 
2 CNIPA-A/B/C IQS set requirements on a slightly different measurement of geometric 

accuracy; however it can shown that PIV IQS is comparable to CNIPA-C requirement and 
PassDEÜV requirement (the same of the IAFIS IQS) is comparable to CNIPA-A 
requirement (see [1]). 

3 Although CNIPA-A/B/C IQS on spatial frequency response are based on a different measure 
(see [5] [6]), according to our internal tests, PIV-IQS requirement is close to CNIPA-A. 
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• CNIPA-B specification is able to guarantee an accuracy that is 
clearly better than PIV and not too far from PassDEÜV; on the 
other hand, the cost of a device compliant to CNIPA-B would 
be definitely lower than that of one compliant to PassDEÜV, 
thanks to the less demanding requirements on five parameters; 

• CNIPA-C specification can guarantee an accuracy similar to 
PIV but, also in this case, the cost of a device compliant to 
CNIPA-C would be definitely lower than the cost of PIV-
compliant devices. 
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Abstract. Gabor filters have demonstrated their effectiveness in auto-
matic face recognition. However, one drawback of Gabor-based face rep-
resentations is the huge amount of data that must be stored. One way to
reduce space is to quantize Gabor coefficients using an accurate statisti-
cal model which should reflect the behavior of the data. Statistical im-
age analysis has revealed one interesting property: the non-Gaussianity of
marginal statistics when observed in a transformed domain (like Discrete
Cosine Transform, wavelet decomposition, etc.). Two models that have
been used to characterize this non-normal behavior are the Generalized
Gaussian (GG) and the Bessel K Form densities. This paper provides an
empirical comparison of both statistical models in the specific scenario
of modeling Gabor coefficients extracted from face images. Moreover, an
application for biometric template reduction is presented: based on the
underlying statistics, compression is first achieved via Lloyd-Max algo-
rithm. Afterwards, only the best nodes of the grid are preserved using
a simple feature selection strategy. Templates are reduced to less than
2 Kbytes with drastical improvements in performance, as demonstrated
on the XM2VTS database.

1 Introduction

Gabor filters are biologically motivated convolution kernels that have been widely
used in face recognition during the last decade (see [1] for a recent survey).
Basically, Gabor-based approaches fall into one of the following categories: a)

Extraction of Gabor responses from a set of key points in face images and b)

Convolution of the whole image with a set of Gabor filters. As highlighted in [1],
one of the main drawbacks of these approaches (specially the ones included in
category b) is the huge amount of memory that is needed to store a Gabor-based
representation of the image. Even in the case of a), considering 100 points, 40
Gabor filters and float (4 bytes) representation, the template size reaches 32

⋆ This work has been partially supported by Spanish Ministry of Education and
Science (project PRESA TEC2005-07212), by the Xunta de Galicia (project
PGIDIT05TIC32202PR)



Kbytes which is considerably bigger than those employed by commercial sys-
tems. For instance, Cognitec’s [2] templates occupy 1800 bytes each one, and
L-1 Identity Solutions’ [3] template size ranges from 648 bytes to 7 Kbytes. One
way to reduce the room needed for storing a Gabor-based face representation is
to quantize Gabor coefficients using an accurate statistical model.

Statistical analysis of images has revealed, among other characteristics, one
interesting property: the non-Gaussianity of image statistics when observed in
a transformed domain, e.g. wavelet decomposition. This means that the coef-
ficients obtained through such transformations are quite non-Gaussian being
characterized by high kurtosis, sharp central cusps and heavy tails. Among oth-
ers, the works in [4–7] have observed this behavior, taking advantage of such a
property for different applications. Different statistical priors have been proposed
to model marginal distributions of coefficients, such as Generalized Gaussians
(GGs, pioneered by the work of [4]), Bessel K forms (BKFs) [8] and alpha-stable
distributions [9]. In [10], the authors concluded that Bessel K forms were more
accurate than the classical Generalized Gaussian densities for modeling marginal
distributions. The first goal of this paper is to provide an empirical evaluation of
these two priors in the specific context of (Gabor-based) face recognition. Once
demonstrated that GGs perform better in this scenario, we took advantage of
the undelying statistics to compress data using coefficient quantization by means
of Lloyd-Max algorithm. At this point, and in order to further reduce the tem-
plate size, we decided to apply feature selection by means of the Best Individual
Feature (BIF) algorithm [11–13]. This way, the template is compressed because
of the lower number of features that are kept and, at the same time, system
performance is drastically increased.

The paper is organized as follows: Section 2 presents the system used to ex-
tract Gabor features from face images. Section 3 introduces the two statistical
densities, Generalized Gaussians and Bessel K Forms, involved in the evalua-
tion, as well as the obtained results. The application for biometric template size
reduction based on feature selection and coefficient quantization is presented in
Section 4. Finally, conclusions are outlined in Section 5.

2 Gabor Feature Extraction

A set of 40 Gabor filters {ψm}m=1,2,...,40 with the same configuration as in [14]
(5 spatial frequencies and 8 orientations), is used to extract textural information
from face images. The baseline face recognition system that we have used in
this paper relies upon extraction of Gabor responses at each of the nodes from
a nx × ny (10 × 13) rectangular grid (Figure 1). All faces were geometrically
normalized -so that eyes and mouth are in fixed positions-, cropped to a standard
size of 150x116 pixels and photometrically corrected by means of histogram
equalization and local mean removal. The region surrounding each grid-node in
the image is encoded by the convolution of the image patch with these filters,
and the set of responses is called a jet, J . Therefore, a jet is a vector with 40
complex coefficients, and it provides information about a specific region of the
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image. At node pi = [xi, yi]
T and for each Gabor filter ψm, m = 1, 2 . . . , 40, we

get the following Gabor coefficient:

gm(pi) =
∑∑

I(x, y)ψm (xi − x, yi − y) (1)

where I(x, y) represents the photometrically normalized image patch. Hence, the
complete jet extracted at pi is given by J (pi) = [g1(pi), g2(pi), . . . , g40(pi)]. For
a given a face with n = nx×ny grid-nodes {p1,p2, . . . ,pn}, we get n Gabor jets
{J (p1),J (p2), . . . ,J (pn)}.

3 Modeling Marginal Distributions of Gabor coefficients

Generalized Gaussians have been already used in [7] to model Gabor coefficients
extracted from face images, with good results. On the other hand, [10] compared
BKF against GG, concluding that the BKF density fits the data at least as
well as the Generalized Gaussian, and outperforms GGs in capturing the heavy
tails of the data histogram. The goal of this section is to introduce Generalized
Gaussians and Bessel K Forms, and compare the fitting provided by both models
in the specific scenario we are considering.

3.1 Univariate Generalized Gaussians

Pioneered by the work of [4], Generalized Gaussians have been successfully used
to model marginal distributions of coefficients produced by various types of
transforms [5, 6, 15, 7]. The pdf of a GG is given by the following expression:

Fig. 1. Rectangular grid over the preprocessed (geometrically and photometrically nor-
malized) face image. At each node, a Gabor jet with 40 coefficients is computed and
stored.
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Pµ,β,σ =
1

Z (β)σA (β)
exp

(
−

∣∣∣∣ x− µ

σA (β)

∣∣∣∣
β
)

(2)

where β is the so-called shape parameter, µ represents the mean of the dis-
tribution, and σ is the scale parameter. In the following we will consider zero
mean data, i.e. µ = 0. Z (β) and A (β) in Eq. (2) are given by:

Z (β) =
2

β
Γ

(
1

β

)
(3)

A (β) =

√
Γ (1/β)

Γ (3/β)
(4)

where Γ (.) represents the Gamma function. It should be noted that the Lapla-
cian, Gaussian and Uniform distributions are just special cases of this generalized
pdf, given by β = 1, β = 2 and β →∞ respectively.

3.2 Bessel K Form Densities

Bessel K Form (BKF) densities [8] have recently emerged as a valid alternative for
coefficient modeling. As well as the GG, the BKF distribution is characterized by
two parameters (p and c) with analogous meaning to that of β and σ respectively.
The BKF density is given by:

BKF (x; p, c) =
2

Z(p, c)
|x|(p−0.5)

K(p−0.5)

(√
2

c
|x|

)
(5)

where Kν is the modified Bessel function of order ν defined in [16], and Z is
the normalizing constant given by:

Z(p, c) =
√
πΓ (p)(2c)(0.5p+0.25) (6)

The BKF density is based on a physical model for image formation (the
so-called transported generator model), and its parameters have been usually
estimated using moments [8], and k statistics unbiased cumulants estimators
[10].

3.3 Comparing GGs and BKFs for Modeling Gabor Coefficients of

Face Images

As stated above, [10] claims that BKFs outperform GGs. However, no descrip-
tion of the method used to estimate the Generalized Gaussian parameters was
included (moments, Maximum Likelihood, etc.). This Section introduces the ex-
perimental framework used for evaluating both GGs and BKFs:

From a set of face images {F1,F2, . . . ,FT}, we extract Gabor jets using the
rectangular grid introduced in Section 2. Regardless of the node from which they
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have been computed, the coefficients corresponding to a given Gabor filter ψm

(real and imaginary parts separately) are stored together forming two sets of
coefficients Sreal

m and Simag
m (Only experiments with the real part are provided.

Analogous results were observed for the imaginary part). Now, our goal is to
assess which statistical model, GGs or BKFs, provides a more accurate fit. To
this aim, we performed the following experiment:

– For each pair of orientation and scale, i.e. for each filter ψm, both BKF and
GG parameters were estimated on 10 different random subsets sampled from
Sreal

m .
– For each coefficient and set, the Kullback-Leibler (KL) distance [17] was

measured between the observed histogram and the two estimated densities.
– The average KL for the m−th coefficient, as well as the associated standard

deviation, were stored.

The k statistics unbiased cumulants estimators [10] were used to determine
the parameters of the BKF distributions, while Maximum Likelihood (ML) [6]
was employed to estimate GG parameters. Examples of observed histograms on
a log scale along with the two fitted densities are shown in Figure 2 for coeffi-
cients 1, 9, 17, 25 and 33 (i.e. the coefficients with vertical orientation from each
frequency subband). From these plots, it seems that both densities are equiva-
lent in the last 3 (lowest) frequency subbands. However, Generalized Gaussians
are quite more accurate than BKF in the first two (highest) frequency subbands
(specially when fitting the central cusp). In agreement with [10], Bessel K Forms
seem slightly better in capturing the heavy tails of the observed histogram for
the 1st frequency subband.

Figure 3 shows, for each Gabor coefficient, the mean KL distance (left) as well
as the associated standard deviation (right) between the observed histograms
and the two estimated densities. It is clear that Generalized Gaussians provide
a much better modeling than BKFs in the two first scales (highest frequency
scales-coefficients from 1 to 16), a slightly better behavior in the third scale
(coefficients from 17 to 24) and equal performance in the remaining two scales.

As stated above, BKF parameters were estimated using a robust extension
of the moments method, while GG parameters were determined using ML. In
[6] it is also described a way to estimate Generalized Gaussian parameters using
moments. In order to compare BKFs and GGs with similar parameter estimation
procedures, the experiment described above was repeated using GGs fitted via
the moments-based method. Results are shown in Figure 4, demonstrating that
even with comparable estimation procedures, GGs do outperform BKFs.

4 Biometric Template Reduction

We have demonstrated that, in the case of Gabor coefficients extracted from face
images, the Generalized Gaussians model provides a better fit than the one based
on Bessel K Forms. Using the GG model, coefficients can be compressed by means
of Lloyd-Max quantization algorithm (the one with minimum mean squared error
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Fig. 2. Examples of observed histograms (on a log scale) along with the BKF and GG
fitted densities
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Fig. 3. Left: Mean KL distance between observed histograms and the two estimated
densities (GG and BKF). Right: Associated standard deviation
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(MSE) for a given number NL of representative levels) [18, 19]. Hence, instead
of storing the original coefficient, we only need to keep two indices (one for
the real part and another for the imaginary part) per coefficient (2 × 40 × n

indices per face). Using NL quantization levels, we can represent a coefficient
with 2× ⌈log

2
(NL)⌉ bits. In our case, a face is therefore represented by

40× n× 2× ⌈log
2
(NL)⌉

8
= 10n× ⌈log

2
(NL)⌉ = 1300× ⌈log

2
(NL)⌉ bytes (7)

If Nf faces are to be stored, then

1300×Nf × ⌈log
2
(NL)⌉+ 40× 4(bytes)×NL(centroids) bytes (8)

are needed. The second term in the previous expression represents the storage
required for the NL centroids in each coefficient band (given that both real and
imaginary parts have very similar GG parameters, only NL centroids have been
used to quantize each band). Authentication experiments on configuration I [20]
of the XM2VTS database [21] demonstrate that high compression rates can
be achieved without loss of performance (see Table 1). This table presents the
False Acceptance Rate (FAR), the False Rejection Rate (FRR) and the Total
Error Rate (TER=FAR+FRR) using both original and compressed (with NL

quantization levels) data. It seems clear that only NL = 8 levels are enough,
since no degradation is observed. However, even in this case, 6 bits per coefficient
are needed (3 bits for the real part and 3 bits for the imaginary part), and
130×6×40

8
= 3900 bytes are required to store a template. At this point, one

can think of, at least, two other possibilities to reduce the amount of data to
be stored: i) reduce the number of Gabor jets extracted from the rectangular
grid and ii) reduce the number of coefficients that form a jet. Regarding the
former, one straightforward way to achieve the goal is to reduce the size of
the grid, but this can lead to a decrease in performance. A wiser strategy may
include feature selection, i.e. preserve those jets that are good at discriminating
between clients and impostors, and discard the remaining ones. The benefits of
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Fig. 4. Left: Mean KL distance between observed histograms and the two estimated
densities (GG fitted via a moments-based method and BKF). Right: Associated stan-
dard deviation
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Table 1. Face Verification on the XM2VTS database. False Acceptance Rate (FAR),
False Rejection Rate (FRR) and Total Error Rate (TER) over the test set using both
raw and compressed data and the whole set of 130 jets. Moreover, approximate storage
saving is provided for each quantization level

Test Set
Storage Saving FAR(%) FRR(%) TER(%)

NL = 2 ≈97% 12.15 18.25 30.40

NL = 4 ≈94% 4.19 8.00 12.19

NL = 8 ≈91% 3.49 5.50 8.99

NL = 16 ≈87% 3.85 5.50 9.35

NL = 32 ≈84% 3.71 5.00 8.71

NL = 64 ≈81% 3.53 5.50 9.03

NL = 128 ≈78% 3.57 5.00 8.57

NL = 256 ≈75% 3.63 4.75 8.38

NL = 512 ≈72% 3.66 4.75 8.41

Raw data 0% 3.79 5.25 9.04

such methodology are not limited to reducing storage but also increasing system
performance. One technique that has demonstrated good performance despite
its simplicity is the Best Individual Feature (BIF) selection approach [11–13].
In [13], different tools for Gabor jet similarity fusion were evaluated, concluding
that, in the specific scenario of face verification with little amount of data for
building client templates, simple approaches such as BIF performed even better
than more complex techniques like SVMs, Neural Networks, etc. (see [13] for
details). The idea behind BIF (as its name reads) is to select the best individual
features according to some criterion (e.g. individual classification accuracy). We
fixed the number of features to be selected by BIF to 1, 10, 20, . . . and performed
authentication experiments on configuration I of the Lausanne protocol [20]. The
“best” jets were selected employing both training and evaluation data, while
system performance was measured on the disjoint test set (see [20] for details
on data partition and protocol). Table 2 shows the TER over the test set for
different quantization levels and number of jets selected by BIF, highlighting
those configurations that achieve less than 5% of TER. By employing the best
20 jets with coefficients quantized using NL = 64 levels, the error rate drops to
4.7% and, at the same time, template size is reduced to 1.2 Kbytes (see Table
3 for the corresponding template sizes). Equal performance (4.8%) is achieved
with original data and 10 jets but at the cost of a considerably bigger (3.2
Kbytes) template size. Compared to the original system with 130 jets and original
coefficients, the use of 20 jets and 64 levels implies an increase in performance
of 48.09% while approximately saving 97% of space.
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Table 2. Face Verification on the XM2VTS database. Total Error Rate (TER) over
the test set for different quantization levels and number of jets selected by BIF (NJets)

NL raw
NJets 2 4 8 16 32 64 128 256 512 data

1 64.2 42.8 27.2 30.9 23.1 22.3 21.2 21.3 20.8 18.7

10 37.5 14.1 5.9 5.8 6.5 5.1 5.8 5.4 5.3 4.8

20 31.4 10.1 5.7 5.6 5.6 4.7 4.8 5.0 4.9 5.3

30 27.9 10.5 6.6 5.5 5.3 5.4 6.1 5.1 5.3 5.3

40 25.4 9.1 5.6 5.6 5.7 6.1 5.6 5.4 5.8 5.3

50 25.4 8.3 6.1 5.8 6.0 5.4 4.9 5.7 5.3 5.4

60 23.9 8.9 6.5 5.8 6.0 5.6 5.6 5.5 5.9 5.8

Table 3. Template syze (Kbytes) for different quantization levels and number of jets
selected by BIF (NJets)

NL raw
NJets 2 4 8 16 32 64 128 256 512 data

1 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.32

10 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 3.2

20 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 6.4

30 0.3 0.6 0.9 1.2 1.5 1.8 2.1 2.4 2.7 9.6

40 0.4 0.8 1.2 1.6 2 2.4 2.8 3.2 3.6 12.8

50 0.5 1 1.5 2 2.5 3 3.5 4 4.5 16

60 0.6 1.2 1.8 2.4 3 3.6 4.2 4.8 5.4 19.2

5 Conclusions

This paper has presented an empirical comparison of two statistical priors for
modeling Gabor coefficients extracted from face images. The main conclusion
is that Generalized Gaussians provide a more accurate fitting than Bessel K
Forms in this specific scenario. Taking advantage of the underlying statistics,
Gabor coefficients were compressed using Lloyd-Max quantization algorithm,
and further storage reduction was achieved by means of Best Individual Feature
selection. Finally, both biometric template reduction and drastic increase in
performance compared to the original system have been obtained.
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Abstract. A new 3D face database that includes a rich set of expressions, 
systematic variation of poses and different types of occlusions is presented in 
this paper. This database is unique from three aspects: i) the facial expressions 
are composed of judiciously selected subset of Action Units as well as the six 
basic emotions, and many actors/actresses are incorporated to obtain more 
realistic expression data; ii) a rich set of head pose variations are available; and 
iii) different types of face occlusions are included. Hence, this new database can 
be a very valuable resource for development and evaluation of algorithms on 
face recognition under adverse conditions and facial expression analysis as well 
as for facial expression synthesis. 

1. Introduction 

In recent years face recognizers using 3D facial data have gained popularity due to 
their lighting and viewpoint independence. This has also been enabled by the wider 
availability of 3D range scanners. The 3D face processing can be envisioned as a 
single modality biometric approach in lieu of the 2D version or in a complementary 
mode in a multi-biometric scheme. Another goal application of 3D facial data is the 
understanding of facial expressions in an affective human-computer interface. 

Most of the existing methods for facial feature detection and person recognition 
assume frontal and neutral views only, and hence biometry systems have been 
adapted accordingly. However, this may be uncomfortable for the subjects and limit 
the application domains. Therefore, the newly emerging goal in this field is to develop 
algorithms working with natural and uncontrolled behaviour of subjects. A robust 
identification system can also cope with the subjects who try to eschew being 
recognized by posing awkwardly and worse still, by resorting to occlusions via 
dangling hair, eyeglasses, facial hair and other accessories. 

On the other hand, understanding of facial expressions has wide implications 
ranging from psychological analysis to affective man-machine interfaces. Once the 
expression is recognized, this information can also be used to help the person 
identifier. 



 

 

The desiderata of a 3D face database enabling a range of facial analysis tasks 
ranging from expression understanding to 3D recognition are the following: i) Action 
units from Facial Action Coding System (FACS) [1], both single and compound;  ii) 
Emotional expressions; iii) Ground-truthed poses;  iv) Occlusions originating from 
hair tassel, eyeglasses and a gesticulating hand. Motivated by these exigencies, we set 
out to construct a multi-attribute 3D face database. 

1.1. Comparisons with Major Open 3D Face Databases 

Various databases for 3D face recognition and occasionally 3D expression analysis 
are available. Most of them are focused on recognition; hence contain a limited range 
of expressions and head poses. Also, none of them contain face occlusions.  One of 
the most popular 3D database FRGC v.2 [2], though the biggest one in the number of 
subjects has only a few mild expressions. The database richest in the spectrum of 
emotional expressions is BU-3DFE [3]. Every subject displays four intensity levels of 
the six emotions. Table I lists publicly available databases of relevance and compares 
with our database. 

Table 1. List of some well known 3D face databases. Subj.: subjects Samp.: samples per 
subject, Occl.: occlusions, NA: not available 

Database Subj Samp. Total Expression Pose Occl. 

FRGC v.2 
[2] 

466 1-22 4007 
Anger, happiness, 
sadness, surprise, 

disgust, puffy 
NA NA 

BU-3DFE 
[3] 

100 25 2500 

Anger, happiness, 
sadness, surprise, 
disgust, fear (in 4 

levels) 

NA NA 

ND2006 [4] 888 1-63 13450 
Happiness, sadness, 

surprise, disgust, other 
NA NA 

York [5] 350 15 5250 
Happiness, anger, eyes 

closed, eye-brows 
raised 

Uncontrol
led up & 

down 
NA 

CASIA [6] 123 15 1845 
Smile, laugh, anger, 
surprise, closed eyes 

NA NA 

GavabDB 
[7] 

61 9 549 
Smile, frontal 

accentuated laugh, 
frontal random gesture 

Left, right, 
up, down 

NA 

3DRMA [8] 120 6 720 NA 

Slight 
left/right 

& 
up/down 

NA 

Bosphorus 81 31-53 3396 
34 expressions (action 
units & six emotions) 

13 yaw, 
pitch & 
cross 

rotations  

4 
occlusions 
(hand, hair, 
eyeglasses) 
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A new comprehensive multi-expression, multi-pose 3D face database enriched 

with realistic occlusions is presented in this paper. The database has the following 
merits: i) in addition to the basic six emotional expressions subjects have acted 
several action units from the FACS [1]; ii) Various ground-truthed head poses are 
available; iii) A number of facial occlusion types are captured from the subjects.  
Finally in order to achieve more natural looking expressions, we have employed 
actors and actresses from professional theatres, opera and the conservatory school. 

The content of the database is given in Section 2, and data acquisition is explained 
in Section 3. In Section 4 the acquired data are evaluated. Finally conclusion is given 
in Section 5. 

2. Database Content 

The database consists of 81 subjects in various poses, expressions and occlusion 
conditions. Many of the male subjects have facial hair like beard and moustache. The 
majority of the subjects are aged between 25 and 35. There are 51 men and 30 women 
in total, and most of the subjects are Caucasian. There are total of 3396 face scans. 
Each scan has been manually labelled for 24 facial landmark points such as nose tip, 
inner eye corners, etc, provided that they are visible in the given scan. These feature 
points are given in Table II. 

The database has two versions: 
• Bosphorus v.1: This version includes 34 subjects with 10 expressions, 13 poses, 

four occlusions and four neutral faces, thus resulting in a total of 31 scans per 
subject. 

• Bosphorus v.2: This version is designed for both expression understanding and 
face recognition. There are 47 people with 53 different face scans per subject. Each 
scan is intended to cover one pose and/or one expression type, and most of the 
subjects have only one neutral face, though some of them have two. Totally there 
are 34 expressions, 13 poses, four occlusions and one or two neutral faces. In 
addition, Bosphorus v.2 also incorporates 30 professional actors/actresses out of 
47, which hopefully provide more realistic or at least more pronounced 
expressions. 
In the following subsections, the collected facial expressions, head poses and 

occlusions are explained. 

2.1. Facial Expressions 

Two types of expressions have been considered in the Bosphorus databases. In the 
first set, the expressions are based on action units (AUs) of the FACS [1]. AUs are 
assumed to be building blocks of expressions, and thus they can give broad basis for 
facial expressions. Since each action unit is related with the activation of a distinct set 
of muscles, they can be assessed quite objectively. Although there are 44 AUs in 
general, we have collected a subset which consists of those AUs that are easier to 
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enact. The selected action units were grouped into 20 lower face AUs, five upper face 
AUs and three AU combinations. 

Table 2. Manually labeled 24 facial landmark points. 

 
 
In the second set, facial expressions corresponding to certain emotional 

expressions were collected. These are: happiness, surprise, fear, sadness, anger and 
disgust. It is stated that these expressions are universal among human races [9]. 

During acquisition of each action unit, subjects were given explications about these 
expressions and they were given feedback if they did not enact correctly. Also to 
facilitate the instructions, a video clip showing the correct facial motion for the 
corresponding action unit is displayed on the monitor [10]. However, in the case of 
emotional expressions, there were no video or photo guidelines so that subjects tried 
to improvise. Only if they were able to enact, they were told to mimic the expression 
in a recorded video. Moreover, a mirror was placed in front of the subjects in order to 
let them check themselves. 

In Table III., the 34 expressions in the database are given. Also, Fig. 1 shows some 
3D faces displaying the happiness emotions of actors/actresses. These facial images 
are rendered with texture mapping and synthetic lighting. 

 

 
Fig. 1. Some samples from happiness expression captured from actors/actresses. 

Texture mapping and synthetic lighting is applied for rendering. 
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Table 3. Expressions in the Bosphorus database. Presence of the corresponding expressions are 
denoted by bullets (•). A sample image for each expression is shown at the bottom part. 
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2.2. Head Poses 

Various poses of the head are acquired for each subject (Table IV. and Fig. 2). There 
are three types of head poses which correspond to seven yaw angles, four pitch 
angles, and two cross rotations which incorporate both yaw and pitch. For the yaw 
rotations, subjects align themselves by rotating the chair on which they sit to align 
with stripes placed on the floor corresponding to various angles. For pitch and cross 
rotations, the subjects are required to look at marks placed on the walls by turning 
their heads only (i.e., no eye rotation). Thus, a coarse approximation of rotation 
angles can be obtained. 

2.3. Occlusions 

For the occlusion of eyes and mouth, subjects choose a natural pose for themselves; 
for example, as if they were rubbing their eyes or as if they were surprised by putting 
their hands over their mouth. Second, for the eyeglass occlusion, subjects used 
different eyeglasses from a pool. Finally, if subjects’ hair was long enough, their faces 
were also scanned with hair partly occluding the face (Table V.). 

 
Table 4. Head poses and occlusions in the Bosphorus database. 

 
Head Poses 

1) Yaw Rotations 

a) Neutral 
b) +10° 
c) +20° 
d) +30° 
e) +45° 
f) +90° 
g) -45° 
h) -90° 
2) Pitch Rotations 

i) Strong upwards 
j) Slight upwards 
k) Slight downwards 
l) Strong upwards 
3) Cross Rotations 

m) Yaw and pitch 1 (approximately 200 pitch and 450 yaw) 
n) Yaw and pitch 2 (approximately -200 pitch and 450 yaw) 

Occlusions 
a) Occlusion of eye with hand – as natural as possible 
b) Occlusion of mouth with hand – as natural as possible 
c) Eye glasses (not sunglasses, normal eyeglasses) 
d) Hair 
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Fig. 2. Head poses in the Bosphorus database. 

3. Data Acquisition 

Facial data are acquired using Inspeck Mega Capturor II 3D, which is a commercial 
structured-light based 3D digitizer device [11]. The sensor resolution in x, y & z 
(depth) dimensions are 0.3mm, 0.3mm and 0.4mm respectively, and colour texture 
images are high resolution (1600x1200 pixels). It is able to capture a face in less than 
a second. Subjects are made to sit at a distance of about 1.5 meters away from the 3D 
digitizer. A 1000W halogen lamp was used in a dark room to obtain homogeneous 
lighting. However, due to the strong lighting of this lamp and the device’s projector, 
usually specular reflections occur on the face. This does not only affect the texture 
image of the face but can also cause noise in the 3D data. To prevent it, a special 
powder which does not change the skin colour is applied to the subject’s face. 
Moreover, during acquisition, each subject wore a band to keep his/her hair above the 
forehead to prevent hair occlusion, and also to simplify the face segmentation task. 

Scanner software is used for acquisition and 3D model reconstruction. The 
reconstruction from the acquired image data is performed during the acquisition 
session right after the scanning. This process involves some automatic and manual 
steps via scanner’s software. Although somewhat time consuming, it guarantees that 
faulty acquisitions are detected and hence can be repeated. In this phase data is also 
segmented manually by selecting a polygonal face region. In order to remove noise, 
several basic filtering operations (like Gaussian and Median filtering) are applied. 
Finally, each scan is down-sampled and saved in two separate files that store colour 
photograph and 3D coordinates. A segmented 3D face approximately consists of 35K 
points. 
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4. Characteristics of the 3D Face Data 

In the sequel, we will discuss the pose, expression and occlusion modalities of the 
face as well as evaluating its quality aspects. 

4.1. Discussion of Data Content 

This database contains great amount of variations for each individual due to 
expressions, head poses and occlusions, as explained in Section 2. Important 
characteristics of these variations are discussed below. 

Expressions: Not all subjects could properly produce all AUs, some of them were not 
able to activate related muscles or they could not control them. Therefore, in the 
database few expressions are not available for some of the subjects. Also, the captured 
AUs need to be validated by trained AU experts. Second, since no video acquisition 
was possible for this database, the AUs were captured at their peak intensity levels, 
which were judged subjectively. Notice that there was no explicit control for the 
valence of pronounced expressions. As in any other database, acted expressions are 
not spontaneous and thoroughly natural. All these factors constitute the limitations of 
this database for expression studies. 

Poses: Although various angles of poses were acquired, they are only approximations. 
Especially poses including pitch rotations can be subject dependent, since subjects are 
requested to look at marks placed in the environment. This introduces slight angle 
differences due to the difference of rotation centres changing from subject to subject. 
Eye rotation may also cause some difference, though the subjects were warned in that 
case. 

Occlusions:  The subject to subject variation of occlusions is more pronounced as 
compared to expression variations. For instance, while one subject occludes his mouth 
with the whole hand, another one may occlude it with one finger only; or hair 
occlusion on the forehead may vary a lot in tassel size and location. 

4.2. Discussion of Data Quality 

Quality of the acquired data can be quite important depending on the application. Due 
to 3D digitizing system and setup conditions significant noise may occur. To reduce 
noise, we tried to optimize experimentally the acquisition setup by trying different 
lighting conditions and controlling the camera and subject distances. However, there 
are other sources of problems. These are explained below. 
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Fig. 3. Commonly occurring problems during image acquisition and face reconstruction. Top 
row shows basic filtering and self-occlusion problem. In the middle row, noise due to hair, 
movement, and facial hair is seen. At the bottom left, a mistake in the depth level of the tongue, 
and at the right, its correction is displayed. 

Movements:  Though images are captured within one second, motion of the subjects’ 
faces can be source of severe data corruption. A comfortable seat with a headrest was 
used to diminish the subject movements during long acquisition sessions. However, 
this problem can also happen for instance due to breathing or muscle contractions 
during expressions. Therefore, faces that were deemed to be seriously faulty were re-
captured. In the database, movement noise emerges especially in case of expressions, 
but depends on the subject and occasionally occurs. An example is shown at the 
middle row of Fig. 3. 

Hairs and Eyes: Data on hair and facial hair, such as beard and eyebrows, generally 
causes spiky noise. Spiky surfaces arise also over the eyes. Basic smoothing filtering 
reduces these types of noises (Fig. 3). 

Self-occlusions: Since data are captured from single views with this system, self-
occlusions occur. The consequences are holes in the facial data, and uncompleted and 
distorted facial contours. Holes are formed due to missing data, mostly at the sides of 
the nose. Even slight head rotations generate high amount of self occlusions. In Fig. 3 
these problems can be observed. Any processing was not performed for these 
problems. 
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Discontinuity: Discontinuity problems develop either inside the mouth when mouth is 
open, or in occluded face scans. The reconstruction of depth values at these 
discontinuous regions can sometimes be faulty. These errors are corrected by manual 
intervention using the system’s software (Fig. 3). 

5. Conclusion and Future Work 

We have described the components, merits and limitations of a 3D face database, rich 
in Action Units, emotional expressions, head poses and types of occlusions. The 
involvement of actors/actresses, especially in the case of expressions, is considered to 
be an advantage. 

We are planning several avenues of research on this database. Face recognition 
experiments have already been carried out on this database. These experiments 
consider the effect of face registration on the identification performance when the 
reference face model is obtained from neutral faces while test faces contain a variety 
of expressions. This research is presented in a companion paper [12]. Another 
research path is that of automatic facial landmarking. Automatically located 
landmarks can be used as initial steps for better registration of faces, for expression 
analysis and for animation. Various algorithms ranging from active appearance 
models to bunch graphs and statistical matched filter are studied. 

For facial analysis and synthesis applications, non-rigid registration of faces is a 
very important intermediate step. Although variations due to expressions can be 
analyzed by rigid registration or landmark-based non-rigid registration methods, more 
faithful analysis can only be obtained with detailed non-rigid registration. Improved 
registration with non-rigid methods facilitates automatic expression understanding, 
face recognition under expressions and realistic face synthesis studies. Non-rigid 
registration is quite an ill-posed problem and needs further attention. We are 
conducting research along this line as well. 
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Abstract. This paper presents an evaluation of several 3D face recogniz-
ers on the Bosphorus database which was gathered for studies on expres-
sion and pose invariant face analysis. We provide identification results of
three 3D face recognition algorithms, namely generic face template based
ICP approach, one-to-all ICP approach, and depth image-based Principal
Component Analysis (PCA) method. All of these techniques treat faces
globally and are usually accepted as baseline approaches. In addition,
2D texture classifiers are also incorporated in a fusion setting. Exper-
imental results reveal that even though global shape classifiers achieve
almost perfect identification in neutral-to-neutral comparisons, they are
sub-optimal under extreme expression variations. We show that it is pos-
sible to boost the identification accuracy by focusing on the rigid facial
regions and by fusing complementary information coming from shape
and texture modalities.

1 Introduction

3D human face analysis has gained importance as a research topic due to recent
technological advances in 3D acquisition systems. With the availability of afford-
able 3D sensors, it is now possible to use three-dimensional face information in
many areas such as biometrics, human-computer interaction and medical anal-
ysis. Especially, for automatic face recognition, expression understanding, and
face/facial feature localization problems, three-dimensional facial data offers bet-
ter alternatives over using 2D texture information alone [1]. The information loss
when projecting the inherently 3D facial structure to a 2D image plane is the
major factor that complicates the task of analyzing human faces. Problems arise
especially when adverse situations such as head pose variations, changes in il-
lumination conditions, or extreme facial expressions are present in the acquired



data. The initial motivation for the exploitation of 3D information was to over-
come these problems in human facial analysis. However, most of the proposed
solutions are still limited to controlled acquisition conditions and constrained
to frontal and mostly neutral 3D faces. Although there are increasing number
of studies that focus on pose and/or expression invariant face recognition, the
databases upon which they are based have not been systematically constructed
for the analysis of these variations or they remain limited in scope. For example,
the most frequently used 3D face database, the Face Recognition Grand Chal-
lenge (FRGC) database [2], contains mostly frontal faces with slight arbitrary
pose variations. In the FRGC database, there are several acquisitions for differ-
ent expressions which are labeled according to the emotions such as sadness and
happiness. Comparison of publicly available 3D face databases in terms of pose,
expression and occlusion variations can be found in [3].

The desiderata of a 3D face database enabling a range of facial analysis
tasks ranging from expression analysis to 3D recognition are the following: i)
Action units (FACS) [4], both single and compound; ii) Emotional expressions;
iii) Ground-truthed poses; iv) Occlusions originating from hair tassel and a ges-
ticulating hand. Motivated by these exigencies, we set out to construct a multi-
attribute database. In this paper, we present the characteristics of the database
collected as well as preliminary results on face registration and recognition.

2 The Bosphorus 3D Face Database

The Bosphorus database is a multi-expression, multi-pose 3D face database en-
riched with realistic occlusions such as hair tassel, gesticulating hand and eye-
glasses [5, 3]. The variety of expressions, poses and occlusions enables one to set
up arbitrarily challenging test situations along the recognition axis or along the
expression analysis axis. We want to point out the opportunities that the Bospho-
rus database provides for expression understanding. The Bosphorus database
contains two different types of facial expressions: 1) expressions that are based
on facial action units (AU) of the Facial Action Coding System (FACS) and
2) emotional expressions that are typically encountered in real life. In the first
type, a subset of action units are selected. These action units are grouped into
three sets: i) 20 lower face AUs, ii) five upper face AUs and iii) three AU com-
binations. In the second type, we consider the following six universal emotions:
happiness, surprise, fear, sadness, anger and disgust. Figure 1(b) shows all differ-
ent types of expressions. To the best of our knowledge, this is the first database
where ground-truthed action units are available. In order to achieve more natural
looking expressions, we have employed professional actors and actresses.

Facial data are acquired using Inspeck Mega Capturor II 3D, which is a
commercial structured-light based 3D digitizer device [6]. The 3D sensor has
about x = 0.3mm, y = 0.3mm and z = 0.4mm sensitivity in all dimensions and
a typical pre-processed scan consists of approximately 35K points. The texture
images are high resolution (1600 × 1200) with perfect illumination conditions.
The locations of several fiducial points are determined manually on both 2D
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and 3D images. On each face scan, 24 points are marked on the texture images
provided that they are visible in the given scan. The landmark points are shown
in Figure 1(a).

(a) (b)

Fig. 1. a) Manually located landmark points and b) expressions for the Bospho-
rus database.

The Bosphorus database contains 3396 facial scans of 81 subjects. There
are 51 men and 30 women in the database. Majority of the subjects are Cau-
casian and aged between 25 and 35. The Bosphorus database has two parts: the
first part, Bosphorus v.1, contains 34 subjects and each of these subjects has
31 scans: 10 types of expressions, 13 different poses, four occlusions, and four
neutral/frontal scans. The second part, Bosphorus v.2, has more expression vari-
ations. In Bosphorus v.2, there are 47 subjects having 53 scans1. Each subject
has 34 scans for different expressions, 13 scans for pose variations, four occlu-
sions and one or two frontal/neutral face. 30 of these 47 subjects are professional
actors/actresses.

3 Face Recognition Methodology

In this work, we apply commonly used techniques in face recognition to pro-
vide benchmarks for further studies. We have selected five face recognition ap-
proaches: three of them use shape information, and two use facial texture infor-
mation. Two of the shape-based approaches are based on the Iterative Closest
Point (ICP) algorithm, namely one-to-all ICP and average face model-based ICP
(AFM-based ICP). The third one employs PCA coefficients obtained from 2D
depth images. These techniques are explained in detail in Section 3.2. Texture-
based approaches use either raw pixel information or PCA coefficients (eigenface

1 Some subjects have fewer than 53 scans due to acquisition errors
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technique). Before proceeding to identification methods, it is worthwhile to men-
tion landmarking of faces because all these methods heavily rely on the quality
of the initial alignment of facial surfaces.

3.1 Landmarking

Almost all 3D face recognition algorithms first need an accurate alignment be-
tween compared faces. There are various methods to align faces and most of them
require several landmark locations that are easily and reliably detectable. ICP-
based approaches which are explained later in this section, usually require these
points at the initialization step. In our work, in addition to using 22 manually
located landmark coordinates, we employ an automatic landmark localization
method which estimates these points using the shape channel. The automatic
landmarking algorithm consists of two phases [7]. In the first phase, a statisti-
cal generative model is used to describe patches around each landmark. During
automatic localization, patches extracted from the facial surface are analyzed
with these statistical models, and the region that produces the best likelihood
value for each corresponding model is selected as the location of a landmark. A
coarse-to-fine strategy is used to keep the search fast. We use inner and outer eye
corners, nose tip and mouth corners, as these landmarks correspond to discrim-
inative local structures. Figure 2(a) and 2(b) in Section 4 shows automatically
found landmarks for a sample face image.

3.2 Shape-based Matchers

One-to-All ICP Algorithm: The 3D face recognition problem can be con-
sidered as a special case of a 3D object recognition problem. The similarity
between two objects is inferred by features calculated from 3D models. Notice
that most approaches require precise alignment (registration) of objects before
similarity calculation and the performance depends heavily upon the success of
registration [1].

The Iterative Closest Point (ICP) algorithm [8] has been one of the most
popular registration techniques for 3D face recognition systems due to its sim-
plicity The ICP algorithm basically finds the best rigid transformation (i.e.,
translation, scale, and rotation matrices) to align surface A to surface B. Tradi-
tionally, a probe face is registered to every gallery face and an estimate of the
volumetric difference between aligned facial surfaces is used as a dissimilarity
measure. Therefore, we call this method one-to-all ICP. If we assume 3D point
cloud representations of faces, dissimilarity can be estimated by the sum of the
distances between corresponding point pairs in given facial surface pair. Indeed,
ICP uses this measure during its iterations and after convergence, it outputs this
dissimilarity measure as the alignment error.

AFM-based ICP Algorithm: The one-to-all ICP approach requires as many
alignments as the size of the gallery set, this easily becomes infeasible when
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the gallery set size is large. For example, NESEDEN SURE BILGISI
GELICEK. An alternative approach would be to use a generic face model.
All gallery faces are registered to this generic face model offline, before the iden-
tification phase [9], [10]. Thereby, only alignments between the probe faces and
the generic face are needed to compute dissimilarities for the whole gallery set.
This approach significantly shortens the identification delay by reducing the
time complexity of the alignment phase. In the rest of the paper, we refer to this
method as AFM-based registration.

Depth Image-based PCA Algorithm Most 3D sensors provide shape data
in the form of 3D point clouds for the visible part of the object being scanned.
For frontal facial 3D scans, the visible region usually contains the ear-to-ear
frontal part of a human face. Therefore, there is at most one depth measure-
ment, i.e., z coordinate, for any (x,y) coordinate pair. Due to this property, it is
possible to project 2.5D data to an image plane where the pixels denote depth
values. Images constructed in this way are called depth images or range images.
3D data should undergo post-processing stages during the conversion to depth
images. Surface fitting is one of the important post-processing steps. A practical
option for surface fitting is to obtain 3D triangulation of point cloud data and
then to estimate the surface points inside the triangular patches by bilinear in-
terpolation. Except for steep regions, such as the sides of the nose, information
loss is minimal in depth image construction. Once 3D information is converted
to 2D images, numerous approaches employed for 2D texture-based face recog-
nition systems can be used for 3D face identification. Among them, using PCA
coefficients as features is usually accepted as a baseline system for 3D depth
image-based recognition. In our work, we perform whitening after computing
PCA coefficients and use cosine distance for similarity calculation. As a pattern
classifier, 1-nearest neighbor algorithm produces the estimated class label.

3.3 2D Texture Matchers

The Bosphorus database contains high quality texture information for each 3D
facial model. In order to compare the performances of shape and texture chan-
nels we also implemented two 2D recognizers. The first, pixel-based method,
simply uses gray-scale pixel information to represent a face. Texture images are
normalized by scaling with respect to eye-to-eye distances. Illumination varia-
tions are handled by histogram equalization. In the pixel-based method, we use
two regions: i) the whole face and ii) the upper facial region to test expression
sensitivity. The second texture-based approach is the Eigenface technique where
each face is transformed to a subspace by a PCA projection. As in the depth
image method, we perform whitening and use 1-nearest neighbor classifier.

4 Experimental Results

We have performed recognition experiments on a subset of the Bosphorus database.
The selected subset contains only neutral and expression-bearing images without
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any pose variations or occlusions. Only one neutral image per person is used for
enrollment, and the rest are used as the test set. First three rows of Table 1 show
three experimental configurations. For the Bosphorus v.1, we have two experi-
ments: one with the neutral probe set and the other with the non-neutral probe
set. For v.2, there is only one experiment containing all non-neutral images of
every subject in the probe set.

We have analyzed the effect of the number of landmarks and the effect of au-
tomatically detected landmarks in our tests. We use several subsets of landmarks
that are presented in Figure 1(a). The performance of the automatic landmark
detection module is summarized in Figure 2(c). We see that the most successful
landmarks are the inner eye corners. In approximately 80% of the cases, they are
found within tolerance, where the tolerance threshold is defined as 10% of the
eye-to-eye distance. In general, inner eye corners and nose tip can be detected
successfully, but outer eyebrows, and chin tip point usually can not be local-
ized efficiently. The performance of the depth-image based automatic landmark
detection is low. However, we include it here to test the performance of face
recognizers with automatic landmarks.

(a) (b) (c)

Fig. 2. Automatically located landmarks: the locations of a) seven fiducial landmarks
found by the first phase, b) all 22 landmarks after the second phase, and c) the perfor-
mance of automatic landmarking. Circle size denotes average pixel distance error for
each landmark location.

We have performed recognition experiments on the v.1 and v.2 expression
subsets, as summarized in Table 1. The first experiment was the one-to-all ICP
experiment (One-to-All ICPM22 method in Table 1): Although this takes a long
time, we provide these results as a benchmark. In the ICP coarse alignment
stage, we used the 22 manually detected landmarks. As observed in Table 1,
one-to-all ICP yields 99.02% correct identification on the v.1 neutrals. However,
the performance drops to 74.04% for v.1 non-neutral and to 72.41% for v.2.
This performance drop is to be expected, since the gallery includes only one
neutral face. Next, we compare the AFM approach with the one-to-all ICP. The
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AFM approach is very fast since it performs only one match. The results of
this approach with 22 manually detected landmarks is denoted as AFMM22 in
Table 1. On the v.1 database, AFM based identification classifies every facial
image in the neutral probe accurately. However, in the non-neutral v.1 probe
set, the correct classification rate drops to 71.39%. For v.2 tests, only 67.67%
of the probe set is identified correctly. On comparison with one-to-all results,
we see that AFM performs better on neutral faces, but suffers a small drop in
performance in faces with expressions. Since this drop is not very large, we use
the AFM approach for the rest of the tests.

Table 1. Correct classification rates (%) of various methods on the Bospho-
rus database. Coarse alignment configurations used in these methods are denoted as
subscripts: M and A is for manual and automatic landmarking, respectively. The num-
bers used in the subscripts denote the number of landmarks used; i.e., AFMM5 is the
AFM method aligned with five manual landmark points.

Method
v.1 v.1 v.2

Neutral Non-neutral Non-neutral

Gallery Set Size 34 34 47
Probe Set Size 102 339 1508

AFMM5 99.02 69.62 65.12
AFMM7 100.00 73.75 68.83
AFMM8 99.02 72.27 69.36
AFMM22 100.00 71.39 67.67
AFMA7 80.39 62.24 -
AFMA22 81.37 62.24 -
One-to-All ICPM22 99.02 74.04 72.41
DI− PCAM22 (Whole face) 100.00 71.09 70.56
DI− PCAM22 (Eye,Nose) 100.00 85.55 88.79
TEX-Pixel (Whole face) 97.06 93.51 92.52
TEX-Pixel (Upper face) 97.06 90.56 92.59
TEX-Eigenface (Whole Face) 97.06 87.61 89.25
Fusion of AFMM7 and TEX-Pixel (Whole face) - - 95.09
Fusion of DI− PCAM22 (Eye,Nose) and - - 98.01
and TEX-Pixel (Whole face)

The effect of facial landmarks on the identification rate is next analyzed.
For this purpose, we look further into two quantities: 1) The subset of facial
landmarks that should be used in coarse alignment and 2) The performance
change caused by the use of automatic landmark localizer. For the first case, we
formed three landmark subsets of size five, seven and eight. Landmark subset
of size five only uses landmark points around the nose. The landmark set with
seven landmarks contains eye corner points, nose tip, and mouth corners. The
eight-point subset is the same as the seven-point set but with the added chin
tip point. We see that using only seven landmarks leads to better performance
than using all 22 landmarks. Accuracy in v.1 non-neutral set is 73.75% (see
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Table 1, marked as AFMM7) and in v.2, it is 68.83%. If faces are registered
according to the nose region only (using five landmarks, AFMM5 in Table 1),
we see degradation in accuracy. Adding chin tip to the previously selected seven
landmarks does not change the identification rate significantly.

If we turn back to our second question about the effect of automatic land-
marking on the identification rates, we see significant performance drop with au-
tomatic landmarking. Entries marked as AFMA7 and AFMA22 in Table 1 show
that, irrespective of which landmark subset is used, there is approximately 20%
and 10% accuracy decrease in neutral and non-neutral probe sets, respectively.
This is mostly due to the localization errors in landmark detection.

Regarding all ICP-based experiments, we see that AFMM7 presents a good
compromise in that: i) It is computationally much faster that one- to-all perfor-
mance and performs only a little worse; and ii) It relies on only 7 landmarks,
which are easier to find.

The next set of experiments are with the depth image PCA method (DI− PCAM22

methods in Table 1). We have tried two versions: Using the whole face, and using
only the eyes and the nose regions. Both perform perfectly with the neutral faces
in v.1. In non-neutral v.1, and v.2, the performance of the whole face is 71.09%
and 70.56%, respectively. When only the eye and nose regions are included, per-
formance rises to 85.55% in v.1 non-neutrals and to 88.79% for v.2. Overall, we
see that local PCA-based representation of eye and nose region is the best shape
modality-based recognizer.

We have also used 2D textures to classify the faces. We have obtained very
good identification performance with texture images. Note that the texture im-
ages are of very high quality, with perfect illumination and high resolution. The
performance obtained with texture pixels is reported for i) the whole face and
ii) the upper part (denoted as TEX-Pixel in Table 1). The eigenface technique
is also applied (TEX-Eigenface). Identification performances of all three algo-
rithms on the neutral v.1 are identical: 97.06%. On the non-neutral v.1, the
three algorithms obtain 93.51%, 90.56%, and 89.25%, respectively. Recognition
performance on the v.2 are unexpectedly higher: 92.52%, 92.59% and 89.25%,
respectively. We note that the texture performances are higher than the shape
performances. This is due to the perfect illumination conditions and the high
resolution of the 2D images

And lastly, we fuse the results of the 3D and 2D classifiers. Using product
rule to combine the dissimilarity scores of AFM-based ICP method and pixel-
based textural classifier (See Table 1, Fusion of AFMM7 and TEX-Pixel), we
achieve 95.09% correct identification rate in the v.2 experiment. If DI-PCA of
the eye/nose region is used as a shape classifier in fusion, 98.01% accuracy is ob-
tained (See Figure 3(b) for all 30 images misclassified in the v.2 set). Cumulative
matching characteristic (CMC) curves of local DI-PCA and texture classifiers,
together with their fusion performance, are shown in Figure 3(a). Notice that
although rank-1 performance of the texture classifier is higher, shape classifier
becomes superior after rank 3.
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Fig. 3. a) CMC curve for i) local PCA based depth image algorithm, ii) pixel-based
texture algorithm and iii) their fusion, and b) Misclassified faces in the v.2 set by the
fusion of DI-PCA and TEX-Pixel method.

5 Conclusion

In this work, benchmarking studies on a new challenging 3D face database are
presented. We have used 3D recognition methods with proven performance: Two
of these algorithms use ICP alignment for dissimilarity calculation. One is based
on generic face template (AFM) for fast registration, and the other exhaustively
searches the closest face model from the gallery set for a given probe image.
In addition to ICP-based methods, depth images are also used where feature
construction is handled via the PCA technique.

3D cameras almost always yield 2D texture images in addition to 3D data.
At close range and under good illumination, the texture images turn out to be
of high quality. In fact, texture images singly or in complementary role to 3D
data can boost the performance. In our study, fusion of the shape and texture
based methods has yielded recognition performances as high as 98.01%. The
main conclusions of our work are as follows:

– The performance obtained with the one-to-all registration is comparable to
that of AFM registration, both with neutral and expression faces. On the
other hand, AFM method is orders of magnitude faster. Therefore AFM is
preferable.

– The 3D recognition performance suffers heavily from inexactitude of land-
marks. The present landmarking algorithm causes a heavy performance drop
of 10-20% percentage points. Therefore real-time and reliable face landmark-
ing remains still an open problem.
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– Depth images with PCA form a viable competitor to the 3D point cloud
feature set, and in fact outperform it. It remains to see if alternative feature
sets, e.g., subspace methods or surface normals can bring improvements.

– The fusion of 2D texture and 3D shape information is presently the scheme
with the highest performance.

The Bosphorus database is suitable for studies on 3D human face analysis un-
der challenging situations such as in the presence of occlusion, facial expression,
pose variations. The future work will consist of i) improving landmark localiza-
tion performance, ii) testing the sensitivity of 3D face recognition algorithms
under pose changes, and iii) employing different representation methods other
than point clouds and depth images.
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Abstract. Face recognition is one of the most challenging biometric modalities 
for personal identification. This is  due to a number of factors, including the 
complexity  and  variability  of  the  signal  captured  by  a  face  device.  Several 
issues  incur  in  the  management  of  a  face  template  as  user’s  identity.  Data 
dimensionality reduction, compactness of the representation, uniqueness of the 
template and ageing effects, are just but a few of the issues to be addressed. In 
this paper we present the current state of the art in face recognition technology 
and how this related to the proper management of a user’s identity. Some real 
cases are presented and some conclusions are drawn.

Keywords:  face  recognition,  biometrics,  identity  management,  pattern 
recognition, computer vision.

1   Introduction

A recent poll from Harris Interactive, involving 1,000 adults within US, shows that 
the  majority  of  US  citizens  would  favor  an  increase  in  surveillance  systems  to 
increase security. 70% of the interviewed were in good favor of expanded camera 
surveillance on streets and in public places. This is but one of the many recalls to the 
impact of biometric research in social life. The increasing need for reliable security 
systems, in turn, highlights the need for pursuing advanced research in the field. It is 
not the case, not anymore, that a simple algorithmic solution can provide the answer 
to  the emerging needs.  It  is  rather  important  that  reliable,  easy to  use,  and smart 
systems are devised and introduced in the society.

Security is primarily advocated in recurrent scenarios such as, street surveillance 
and access control. In these applications recognition at a distance is the key element 
for a successful identification. There are not as many viable solution for identification 
at a distance. Even though several remarkable examples are emerging from iris and 
gate technologies, today’s most reliable systems are those based on face recognition.

Face  recognition/verification has  attracted the attention of  researchers  for  more 
than two decades and it  is  among the most popular research areas  in the field of 
computer vision and pattern recognition. Several approaches have been proposed for 
face  recognition  based  on  2D  and  3D  images.  In  general,  face  recognition 
technologies are based on a two step approach:



• an off-line enrollment procedure is established to build a unique template 
for each registered user. The procedure is based on the acquisition of a 
pre-defined set of face images (or a complete video), selected from the 
input  image  stream,  and  the  template  is  build  upon  a  set  of  features 
extracted from the image ensemble;

• an on-line identification or verification procedure where a set of images 
are acquired and processed to extract a given set of features. From these 
features  a  face  description  is  built  to  be  matched  against  the  user's 
template.

Regardless of the acquisition devices exploited to grab the image streams, a simple 
taxonomy can be based on the computational architecture applied to: extract powerful 
features  for  identification  and  to  derive  a  template  description  for  subsequent 
matching. The two main algorithmic categories can be defined on the basis of the 
relation between the subject and the face model, i.e. whether the algorithm is based on 
a subject-centered (eco-centric) representation or on a camera-centered (ego-centric) 
representation. The former class of algorithms relies on a more complex model of the 
face, which is generally 3D or 2.5D, and it is strongly linked with the 3D structure of 
the face.

These methods rely on a more complex procedure to extract the features and build 
the face model, but they have the advantage of being intrinsically pose-invariant. The 
most popular face-centered algorithms are those based on 3D face data acquisition 
and on face depth maps. The ego-centric class of algorithms strongly relies on the 
information content of the gray level structures of the images. Therefore, the face 
representation is  strongly pose-variant  and the model is  rigidly linked to  the  face 
appearance, rather than to the 3D face structure. The most popular image-centered 
algorithms are the holistic or subspace-based methods, the feature-based methods and 
the hybrid methods.

Over  these  fundamental  classes  of  algorithms  several  elaborations  have  been 
proposed.  Among  them,  the  kernel  methods  greatly  enhanced  the  discrimination 
power of several ego-centric algorithms, while new feature analysis techniques such 
as  the  local  binary  pattern  (LBP)  representation  greatly  improved  the  speed  and 
robustness of Gabor-filtering based methods. The same considerations are valid for 
eco-centric  algorithms,  where  new  shape  descriptors  and  3D  parametric  models, 
including  the  fusion  of  shape  information  with  the  2D face  texture,  considerably 
enhanced the accuracy of existing methods.

2   Face biometric technologies

Gartner Group in 2005 recognized biometrics to be one of the most promising IT 
technologies for the future. The graph in figure 1 well represents the expected follow-
up of biometrics in the IT research and market for the near future. AT the same time, 
biometric  apparently  received  more  attention  from  the  media  and  advertising 
companies,  than  the  real  application  breakthrough.  This,  in  turn,  indicates  the 
requirement for an increased focus on killer applications and a closer involvement of 
industries in research.
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Fig. 1. Gartner’s group graph representing the technology trend in IT.

While several industrial products for deploying face recognition already exist, still 
there is a great need to enhance the basic technologies implied. For example, ageing, 
spoofing and  illumination compensation  are  still  open issues  which  require  to  be 
addressed. At the same time, the proper management of the user’s identity can not be 
viewed as detached from the algorithms applied to process the raw signal and to build 
the biometric template. In the case of face biometrics several techniques have been 
proposed which can  be broadly  divided  into two main categories:  image-centered 
(eco-centric) and subject-centered (ego-centric). In this paper the eco-centric methods 
will be considered as well as their impact in the management of the user’s identity.

Almost all biometric identification techniques, including face-based methods, rely 
on a two step process. In the first step a set of features are extracted from the images. 
In the second step the extracted features are fed into a classifier to actually identify 
the class to which the probe face belongs. The classification is a crucial process which 
can be easily tailored to any feature representation. Once the classifier is tuned to the 
adopted feature representation, it must be also tuned to the population of subjects to 
be correctly classified. Toward this end it is necessary to model each possible instance 
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of all possible classes (the “rest of the world”) to define the discrimination parameters 
(the classification threshold)  to  distinguish the  representation of  one subject  from 
every other subject.

On  the  contrary,  the  feature  extraction  heavily  depends  on  the  template 
representation and on the physical characteristics of the raw biometric signal. This 
leads to a variety of different (and incompatible) methods to draw face-based identity 
representations. The differences include the template size, the discrimination power 
and the compactness of the representation.

The  heterogeneity  in  the  face-based  representations  led  to  a  proliferation  of 
identification  systems  and  industrial  solutions  which  are  hardly  compatible.  The 
reminder of the paer tries to summarize the main advantages and drawbacks of the 
main algorithms for face-based identity representation and matching.

2.1  Subspace methods

The most popular techniques for frontal face identification and authentication are the 
subspace methods.  These algorithms consider the entire  image as a feature vector 
with the aim to find projections (bases) that optimize some criterion defined over the 
feature vectors that correspond to different lasses. Then the original high dimensional 
image space is projected into a low dimensional one. In all these approaches the face 
representation (the template) is a vector of eigenvalues determining the position of the 
subject’s sample in the feature space, defined by the basis vectors. The classification 
is  usually  performed  according  to  a  simple  distance  measure  in  the  final 
multidimensional space. The recurrent obsession in subspace methods is to reduce the 
dimensionality of the search space. A large database with 1000 gray level images with 
a resolution of 512x512 pixels, can be reduced to a small set of vectors, each with the 
same  size  of  each  sample  image.  Even  though  the  dimensionality  reduction  is 
performed according to a minimization criterion to enhance some data features, the 
immediate  effect  of  this  process  is  to  reduce the information content  in  the  data. 
Dimensionality  reduction  always  produces  an  effect  similar  to  low-pass  filtering, 
where the size of the data is reduced at the cost of a lower discrimination power.

Various  criteria  have  been  employed  in  order  to  find  the  bases  of  the  low 
dimensional spaces. Some of them have been defined in order to find projections that 
they best express the population without using the information of how the data are 
separated to different classes. Another class of criteria is the one that deals directly 
with the discrimination between classes. Finally, statistical independence in the low 
dimensional  feature  space  is  a  criterion  that  is  used  in  order  to  find  the  linear 
projections.

The  first  method  employed  for  low  dimension  representation  of  faces  is  the 
eigenfaces (PCA)  approach  [1].  This  representation  was  used  in  [2]  for  face 
recognition.  The  idea  behind  the  eigenface  representation  is  to  apply  a  linear 
transformation that  maximizes the scatter  of  all  projected samples.  This  operation 
corresponds  to  a  singular  value  decomposition  of  the  data  ensemble.  The  PCA 
approach was extended to a nonlinear alternative using kernel functions (KPCA) [3]. 
Recently KPCA with fractional power polynomial kernel has been successfully used 
along with Gabor features for face recognition [4].
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Fig. 2. (left) Sample database composed of 92 faces. (right) Set of 92 base vectors 
obtained with the PCA decomposition.

Another subspace method that aims at representing the facial face without using 
class  information  is  the  non  negative  matrix  factorization (NMF)  [5].  The  NMF 
algorithm,  like  PCA,  represents  a  face  as  a  linear  combination  of  bases.  The 
difference with PCA is that it does not allow negative elements in both the bases 
vectors and the weights of the linear combination. This constraint results to radically 
different bases than PCA. On the one hand the bases of PCA are eigenfaces, some of 
which resemble distorted versions of the entire face. On the other hand the bases of 
NMF are localized features that correspond better to the intuitive notions of face parts 
[5].  An  extension  of  NMF  that  gives  even  more  localized  bases  by  imposing 
additional locality constraints is the so-called local non negative matrix factorization 
(LNMF) [6]. 

Linear discriminant analysis (LDA) is an alternative method to PCA maximizing 
the separation among different classes (subjects). In [7,8], it was proposed to apply 
LDA in a reduced PCA space for facial image retrieval and recognition, the so-called 
fisherfaces.  In  this  approach  the  PCA decomposition  is  first  applied  ensuring the 
scatter  matrix  to  be  non-singular.  The  dimension  of  the  new  features  is  further 
reduced  by  using  Fisher's  Linear  Discriminant (FLD)  optimization  criterion  to 
produce the final linear transformation. The drawback of this method is the low-pass 
effect produced by the PCA. The initial dimensionality reduction may sensibly reduce 
the discrimination power of the final representation [11].

To overcome this  limitation,  direct  LDA (D-LDA)  algorithms  for  discriminant 
feature extraction were proposed [9,10,11]. The DLDA algorithms are usually applied 
using direct diagonalization methods for finding the linear projections that optimize 
the discriminant criterion.

To make nonlinear  problems tractable,  LDA has been generalized to  its  kernel 
version,  namely  general  discriminant  analysis  (GDA)  [12]  or  kernel  Fisher 
discriminant  analysis  (KFDA) [13].  In GDA the original  input  space is  projected 
using a nonlinear mapping from the input space (the facial image space) to a high-
dimensional feature space, where different classes of faces are supposed to be linearly 
separable. The idea behind GDA is to perform LDA in the feature space instead of the 
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input space. The interested reader can refer to [12-16.] for different versions of KFDA 
and GDA. 

The main drawback of the methods that use discriminant criteria is that they may 
cause overtraining. Moreover, it is quite difficult to build a discriminant function on 
small training sample sets with reasonable generalization abilities [17,18]. This is true 
in many practical cases where a very limited number of facial images are available in 
database training sets. The small number of facial images, for each face class, affects 
both linear and the nonlinear methods where the distribution of the client class should 
be evaluated in a robust way [13]. In [19] it has been shown that LDA outperforms 
PCA only when large and representative training datasets are available.

In order to find linear projections that minimize the statistical dependence between 
its components the independent component analysis has been proposed [20, 21] for 
face  recognition.   ICA has  been  applied  in  the  original  input  space  of  the  facial 
images [20] or using Gabor based features of the facial images [21]. The nonlinear 
alternative of ICA using kernel methods has been also proposed in [22].

2.2  Elastic graph matching

The elastic graph matching (EGM) is a practical implementation of the dynamic link 
architecture (DLA) for object recognition [23]. In EGM, the reference object graph is 
created  by  overlaying  a  rectangular  elastic  sparse  graph  on the  object  image and 
calculating a Gabor wavelet bank response at each graph node. The graph matching 
process is implemented by a stochastic optimization of a cost function which takes 
into account both jet similarities and node deformation. A two stage coarse-to-fine 
optimization procedure suffices for the minimization of such a cost function.

In [24] it has been shown that EGM outperforms eigenfaces and self-associative 
neural networks for face recognition. In [25] the graph structure has been enhanced by 
introducing a  stack like  structure,  the  so-called  bunch graph.  In  the  bunch  graph 
structure for every node a set of Gabor jets is computed for different instances of a 
face (e.g., with mouth open or closed, etc.). That way, the bunch graph representation 
covers a variety of possible face appearances [26]. Practical methods for increasing 
the robustness of EGM against translations, deformations and changes in background 
have been presented in [27,28].

Several variations of the standard EGM have been proposed [29-33]. Among them, 
is the morphological elastic graph matching (MEGM) where the Gabor features are 
replaced by multiscale morphological features, obtained through a dilation-erosion of 
the facial image [32]. In [29] the standard coarse to fine approach [28] for EGM is 
replaced by a simulated annealing method that optimizes a cost function of the jet 
similarity  distances  subject  to  node  deformation  constraints.  The  multiscale 
morphological analysis has given comparable verification results with the standard 
EGM approach, without the need to compute Gabor filter banks. Another variant of 
EGM has been presented in [33], where morphological signal decomposition has been 
used instead of the standard Gabor analysis.

To  enhance  the  EGM  performance,  several  techniques  have  been  proposed 
weighting the graph nodes according to their relevance for recognition [29,33-35]. As 
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an example, linear discriminant techniques have been employed for selecting the most 
discriminating features [28,29,33,36,37].

In  [34]  the  selection  of  the  weighting  coefficients  was  based  on  a  nonlinear 
function  that  depends  on  a  small  set  of  parameters.  These  parameters  have  been 
determined on the training set by maximizing a criterion using the simplex method. In 
[29,33] the set of node weighting coefficient was not calculated by some criterion 
optimization but by using the first and second order statistics of the node similarity 
values. A Bayesian approach for determining which nodes are more reliable has been 
used in [26].  A more sophisticated scheme for  weighting the  nodes of  the elastic 
graph,  by  constructing  a  modified  class  of  support  vector  machines,  has  been 
proposed in  [35].  It  has  been also shown that  the verification performance of  the 
EGM can be highly improved by proper node weighting strategies.

The subspace of the face verification and recognition algorithms consider the entire 
image as  a  feature vector  and their  aim is to  find projections that  optimize some 
criterion defined over the feature vectors that  correspond to different classes.  The 
main drawback of these methods is that they require the facial images to be perfectly 
aligned.  That  is,  all  the  facial  images  should  be  aligned  in  order  to  have  all  the 
fiducial points (e.g. eyes, nose, mouth, etc.) represented at the same position inside 
the feature vector. For this purpose, the facial images are very often aligned manually 
and  moreover  they  are  anisotropically  scaled.  Perfect  automatic  alignment  is  in 
general a difficult task to be assessed. On the contrary, elastic graph matching does 
not require perfect alignment in order to perform well. The main drawback of the 
elastic graph matching is the time required for multiscale analysis of the facial image 
and for the matching procedure. A recent approach tries to overcome this limitation 
by using the Shift Invariant Feature Transform (SIFT) as graph nodes [38,39]. SIFT 
features can be extracted with a fast algorithm from the images, thus reducing the 
computation time required to build the representation. This enhanced method proved 
to produce superior performances than holistic methods, on standard databases.

5 0 1 0 0 1 5 0 2 0 0 2 5 0 3 0 0 3 5 0 4 0 0
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1 0 0

1 5 0

2 0 0

Fig. 3. Example graph constructed from a set of 11 SIFT feature points.
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2.3  Dynamic face recognition

Historically  face  recognition  and  authentication  has  been  treated  as  the  matching 
between snapshots containing the representation of a face. In the human visual system 
the analysis of visual information is never restricted to a time-confined signal. Much 
information on the analysed visual data is contained within the temporal evolution of 
the data itself. Therefore a considerable amount of the “neural power” in humans is 
devoted to the analysis and interpretation of time variations of the visual signal.

On  the  other  hand,  processing  single  images  considerably  simplifies  the 
recognition process. Therefore, the real challenge is to exploit the added information 
in the time variation of face images, limiting the added computational burden. An 
additional difficulty in experimenting dynamic face recognition is the dimensionality 
of  the  required  test  data.  A  statistically  meaningful  experimental  test  requires  a 
considerable  number  of  subjects  (at  least  80 to  100)  with  several  views taken at 
different times. Collecting video streams of 4 to 5 seconds from each subject and for 
each  acquisition  session  implies  the  storage  and  subsequent  processing  of  a 
considerable amount (hundreds of Gigabytes) of data.

There are only few face recognition systems in the literature based on the analysis 
of  image  sequences.  The  developed  algorithms  generally  exploit  the  following 
advantages from the video sequence:
1. The matching process is repeated over more images and the resulting scores are 

combined according to some criterion. Several approaches have been proposed to 
integrate  multiple  similarity  measurements  from  video  streams.  Most  of  the 
proposed  algorithms  rely  on  the  concept  of  data  fusion  [64]  and  uncertainty 
reduction [73].

2. The input sequence is filtered to extract the image data best suited for recognition. 
This method is often coupled with a template representation based on a sequence 
of face views. An example of this use is the  IRDB (Incremental Refinement of 
Decision  Boundaries)  [81,89]  where  the  face  representation  is  dynamically 
augmented  by  processing  and  selecting  subsequent  frames  in  the  input  video 
stream on the basis of the output of a statistical classifier.

3. The  motion  in  the  sequence  is  used  to  infer  the  3D structure  of  the  face  and 
perform 3D instead of  2D recognition [40].  An interesting similar  approach  is 
based on the generalization of classic single view matching to multiple views [40, 
41] and the integration of video into a time-varying representation called “identity 
surfaces”.

4. Map the processing algorithm to extend the face template representation from 2D 
to 3D, where the third dimension is time. There are few examples of this approach 
including  composite  PCA,  extended  HMMs,  parametric  eigenspaces,  multi-
dimensional  classifiers,  neural  networks  and  other,  video  oriented,  integrated 
approaches.

5. Detect and identify facial expression either for face re-normalization or emotion 
understanding.
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3   Face representations

3.1 Face representation from single images

Holistic  methods  for  face  identification  require  a  large  (statistically  significant) 
training  set  to  build  the  base  vectors  determining  the  low dimension  space.  The 
generalization capabilities of these methods have been tested to some extent but are 
still unclear. Up to now tests have been performed on databases with limited size. 
Even the FRGC database [93,94] only comprises few thousands subjects. Scaling up 
to  larger  databases,  including  hundred  of  thousands  individuals,  even  if  possible, 
would make the problem very difficult  to be numerically analyzed. Managing the 
identity by these face representations requires to be able to discriminate each single 
individual through a single feature space, but this can be hardly guaranteed. The best 
performing  face  recognition  methods,  based  on  holistic  processing,  under  real 
conditions  reach  an  equal  error  rate  (EER)  around  1%.  This  corresponds  to  100 
wrongly  classified  subjects  over  a  database  of  10,000  individuals  or  1,000  over 
100,000. The template size depends on the dimensionality of the representation space 
i.e. the number of basis vectors selected for the database representation. This value 
depends on the population of subjects, the variability of the face appearance (pose, 
expression, lighting, etc.), the number of classes and the discrimination power to be 
achieved. Therefore, coping with many variations in the face appearance, for example 
to deal with ageing, the size of the subspace and hence the representation can become 
indefinitely large.

An advantage of EGM is the strong dependence on the input signal rather than on 
the population of subjects analyzed. Therefore, the subject’s identity is represented 
exclusively from information related to data captured from each subject. The relation 
to the “rest of the world” is limited to the classification parameters which must be 
tuned for classification. The resulting EGM face template can be very compact as it is 
limited to the graph structure with the associated Gabor weights. This allows to cope 
with  many  variations,  including  ageing,  without  affecting  the  size  of  the 
representation.

The drawbacks of EGM stem from the adaptation of the graph to the subject’s face. 
In order to be non-ambiguous it generally requires a good initialization.

3.2 Face representation from video streams

An  advantage  of  processing  face  video  over  single  images  stems  from  the 
possibility  to  define  “dynamic  templates”.  This  representations  can  exploit  both 
physical  and  behavioral  traits,  thus  enhancing  the  discrimination  power  of  the 
classifier. The representation of the subject’s identity can be arbitrarily rich at the cost 
of a large template size.

Several approaches have been proposed to generalize classical face representations 
based on a single-view to multiple view representations. Examples of this kind can be 
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found  in  [43,44]  and  [46-48]  where  face  sequences  are  clustered  using  vector 
quantization into different views and subsequently fed to a statistical classifier.

Recently,  Krüger,  Zhou  and  Chellappa  [49-57]  proposed  the  “video-to-video” 
paradigm, where the whole sequence of faces, acquired during a given time interval, 
is associated to a class (identity). This concept implies the temporal analysis of the 
video  sequence  with  dynamical  models  (e.g.,  Bayesian  models),  and  the 
“condensation” of the tracking and recognition problems.

Other face recognition systems, based on the still-to-still and multiple stills-to-still 
paradigms,  have  been  proposed  [42,58,59].  However,  none  of  them  is  able  to 
effectively handle the large variability of critical parameters, like pose, lighting, scale, 
face expression,  some kind of  forgery in  the subject  appearance (e.g.,  the beard). 
Typically, a face recognition system is specialized on a certain type of face view (e.g. 
frontal  views),  disregarding  the  images  that  do  not  correspond  to  such  view. 
Therefore, a powerful pose estimation algorithm is required.

In order to improve the performance and robustness, multiple classifier systems 
(MCSs) have been recently proposed [60].

Achermann and Bunke [61]  proposed the  fusion of  three  recognizers  based on 
frontal and profile faces. The outcome of each expert, represented by a score, i.e., a 
level of confidence about the decision, is combined with simple fusion rules (majority 
voting, rank sum, Bayes’s combination rule). Lucas [43,44] used a n-tuple classifier 
for combining the decisions of experts based on sub-sampled images.

Other  interesting  approaches  are  based  on  the  extension  of  conventional, 
parametric classifiers to improve the “face space” representation. Among them are the 
extended  HMMs  [72],  the  Pseudo-Hyerarchical  HMMs  [91,92]  and  parametric 
eigenspaces [64], where the dynamic information in the video sequence is explicitely 
used to improve the face representation and, consequently, the discrimination power 
of the classifier. In [71] Lee et al. approximate face manifolds by a finite number of 
infinite  extent  subspaces  and  use  temporal  information  to  robustly  estimate  the 
operating part of the manifold.

There  are  fewer methods that  recognize  from manifolds  without  the  associated 
ordering of face images. Two algorithms worth mentioning are the Mutual Subspace 
Method (MSM) of  Yamaguchi  et  al.  [83,90] and the  Kullback-Leibler  divergence 
based method of Shakhnarovich et al. [78]. In MSM, infinite extent linear subspaces 
are used to compactly characterize face sets i.e. the manifolds that they lie on. Two 
sets  are  then  compared  by  computing  the  first  three  principal  angles  between 
corresponding  principal  component  analysis  (PCA)  subspaces  [48].  The  major 
limitation of MSM is its simplistic modelling of manifolds of face variation. Their 
high nonlinearity invalidates the assumption that data is well described by a linear 
subspace. Moreover, MSM does not have a meaningful probabilistic interpretation.

The  Kullback-Leibler  divergence  (KLD)  based  method  [78]  is  founded  on 
information-theoretic  grounds.  In  the  proposed  framework,  it  is  assumed that  i-th 
person’s  face  patterns  are  distributed  according  to  pi(x).  Recognition  is  then 
performed by finding pj(x) that best explains the set of input samples – quantified by 
the  Kullback-Leibler  divergence.  The  key  assumption  in  their  work,  that  makes 
divergence computation tractable, is that face patterns are normally distributed.
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4   Conclusions

The representation of faces strongly depends on the algorithm used to extract  the 
facial features. Many techniques have been proposed to build face templates from still 
images and video. Even though holistic, subspace methods are the most widely used 
and studied, the template size can be very large if a large number of variation modes 
is required. On the other hand, the discrimination power of the algorithms strongly 
relies on the population adopted to perform the training of the subspace representation 
process. This, in turn, makes the subspace methods, strongly affected by the database. 
The same  does  not  hold  for  other  face  representations,  such  as  the  elastic  graph 
matching and other derived methods. On the other hand, while it can be relatively 
easy to adapt the representation to cope with the variability in the face appearance (for 
example due to ageing), the performances are greatly affected by the accuracy in the 
localization of the graph nodes on the face image.

Dynamic face representations are the most rich and compact at  the same time. 
They can provide remarkable performances and a high discrimination power, at the 
cost of a larger template size. From the results provided in the literature this can be 
the  right  avenue  to  be  pursued  to  build  a  robust  and  yet  flexible  identity 
representation.

References

1. M.  Kirby  and  L.  Sirovich:  Application  of  the  Karhunen-Loeve  procedure  for  the 
characterization  of  human  faces.  IEEE  Transactions  Pattern  Analysis  and  Machine 
Intelligence, vol. 12, no. 1, pp. 103–108, Jan. 1990.

2. M. Turk and A. P. Pentland: Eigenfaces for recognition. Journal of Cognitive Neuroscience, 
vol. 3, no. 1, pp. 71–86, 1991.

3. B.  Schölkopf,  A.  Smola,  and  K.  R.  Müller:  Nonlinear  component  analysis  as  a  kernel 
eigenvalue problem. Neural Comput., vol. 10, pp. 1299–1319, 1999.

4. L.  Chengjun: Gabor-based kernel pca with fractional power polynomial  models for  face 
recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 26, no. 5, 
pp. 572 – 581, May 2004.

5. D.D.  Lee  and  H.S.  Seung:  Learning  the  parts  of  objects  by  non-negative  matrix 
factorization. Nature, vol. 401, pp. 788–791, 1999.

6. S.Z. Li, X.W. Hou, and H.J. Zhang: Learning spatially localized, parts-based representation. 
In Proceedings CVPR, 2001, pp. 207–212.

7. H. Yu and J. Yang: A direct lda algorithm for high-dimensional data with application to face 
recognition. Pattern Recognition, vol. 34, pp. 2067–2070, 2001.

8. L.  Juwei,  K.N. Plataniotis,  and A.N. Venetsanopoulos: Face recognition using lda-based 
algorithms. IEEE Transactions on Neural Networks, vol. 14, no. 1, pp. 195–200, 2003.

9. G. Baudat and F.  Anouar,  “Generalized discriminant analysis using a kernel  approach,” 
Neural Comput., vol. 12, pp. 2385–2404, 2000.

10.K.-R. Muller, S. Mika, G. Ratsch, K. Tsuda, and B. Scholkopf: An Introduction to Kernel-
Based Learning Algorithms. IEEE Trans.  Neural Networks, vol. 12, no. 2, pp. 181-201, 
2001. 

11.L. Juwei, K.N. Plataniotis, and A.N. Venetsanopoulos: Face recognition using kernel direct 
discriminant analysis algorithms. IEEE Transactions on Neural Networks, vol. 14, no. 1, pp. 
117–126, 2003.

82          Massimo Tistarelli and Enrico Grosso



12.S.  Mika,  G.  Ratsch,  J.  Weston,  B.  Scholkopf,  and  K.-R.Muller:  Fisher  Discriminant 
Analysis with Kernels. In Proceedings IEEE Int’l Workshop Neural Networks for Signal 
Processing IX, pp. 41-48, Aug. 1999.

13.S. Mika, G. Ratsch, B. Scholkopf, A. Smola, J. Weston, and K.-R. Muller: Invariant Feature 
Extraction and Classification in Kernel Spaces. Advances in Neural Information Processing 
Systems 12, Cambridge, Mass.: MIT Press, 1999.

14.A.K. Jain and B. Chandrasekaran: Dimensionality and sample size considerations in pattern 
recognition practice.  In  Handbook of  Statistics,  P.  R.  Krishnaiah and L.  N. Kanal,  Eds. 
Amsterdam: North-Holland, vol. 2, pp. 835–855, 1987.

15.S.J.  Raudys  and  A.K.  Jain:  Small  sample  size  effects  in  statistical  pattern  recognition: 
recommendations for  practitioners.  IEEE Transactions on Pattern Analysis  and Machine 
Intelligence, vol. 13, no. 3, pp. 252–264, 1991.

16.A. Martinez and A. Kak, “PCA versus LDA,” IEEE Trans. Pattern Analysis and Machine 
Intelligence, vol. 23, no. 2, pp. 228–233, 2001.

17.M.S.  Bartlett,  J.R.  Movellan,  and  T.J.  Sejnowski:  Face  recognition  by  independent 
component analysis. IEEE Transactions on Neural Networks, vol. 13, no. 6, pp. 1450–1464, 
2002.

18.L. Chengjun and H. Wechsler: Independent component analysis of Gabor features for face 
recognition. IEEE Transactions on Neural Networks, vol. 14, no. 4, pp. 919–928, July 2003.

19.F.  Bach  and  M.Jordan:  Kernel  Independent  Component  Analysis.  Journal  of  Machine 
Learning Research, vol. 3, pp. 1-48, 2002.

20.M. Lades, et al.: Distortion invariant object recognition in the dynamic link architecture. 
IEEE Trans. on Computers, vol. 42, no. 3, pp. 300–311, March 1993.

21.J. Zhang, Y. Yan, and M. Lades: Face recognition: eigenface, elastic matching, and neural 
nets. Proceedings of the IEEE, vol. 85, no. 9, pp. 1423–1435, 1997.

22.L. Wiskott, J. Fellous, N. Kruger, and C. v. d. Malsburg: Face recognition by elastic bunch 
graph matching. IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 19, 
no. 7, pp. 775–779, July 1997.

23.L. Wiskott: Phantom faces for face analysis. Pattern Recognition, vol. 30, no. 6, pp. 837–
846, 1997.

24.R. P.  Wurtz:  Object  recognition robust  under translations,  deformations,  and changes in 
background. IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 19, no. 
7, pp. 769–775, July 1997.

25.B. Duc, S. Fischer, and J. Bigun: Face authentication with Gabor information on deformable 
graphs. IEEE Transactions on Image Processing, vol. 8, no. 4, pp. 504–516, Apr. 1999.

26.C. Kotropoulos, A. Tefas, and I. Pitas: Frontal face authentication using discriminating grids 
with morphological feature vectors. IEEE Transactions on Multimedia, vol. 2, no. 1, pp. 14–
26, Mar. 2000.

27.C. Kotropoulos, A. Tefas,  and I.  Pitas: Morphological elastic graph matching applied to 
frontal face authentication under well-controlled and real conditions. Pattern Recognition, 
vol. 33, no. 12, pp. 31–43, Oct. 2000.

28.C.  Kotropoulos,  A.  Tefas,  and  I.  Pitas:  Frontal  face  authentication  using morphological 
elastic graph matching. IEEE Transactions on Image Processing, vol. 9, no. 4, pp. 555–560, 
Apr. 2000.

29.P.  T.  Jackway  and  M.  Deriche:  Scale-space  properties  of  the  multiscale  morphological 
dilation-erosion. IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 18, 
no. 1, pp. 38–51, 1996. 

30.A. Tefas, C. Kotropoulos, and I. Pitas: Face verification using elastic graph matching based 
on morphological  signal  decomposition.  Signal  Processing,  vol.  82,  no.  6,  pp.  833–851, 
2002.

Identity Management in Face Recognition Systems           83



31.N. Kruger: An algorithm for the learning of weights in discrimination functions using A 
priori constraints. IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 19, 
no. 7, pp. 764–768, July 1997.

32.A.  Tefas,  C.  Kotropoulos,  and  I.  Pitas:  Using  support  vector  machines  to  enhance  the 
performance of elastic graph matching for frontal face authentication. IEEE Transactions on 
Pattern Analysis and Machine Intelligence, vol. 23, no. 7, pp. 735–746, 2001.

33.Haitao Wang, Stan Z. Li, Yangsheng Wang, Weiwei Zhang:  Illumination Modeling and 
Normalization  for  Face  Recognition.  Proceedings  of  IEEE  International  Workshop  on 
Analysis and Modeling of Faces and Gestures. Nice, France. 2003. 

34.Kyong I. Chang KevinW. Bowyer Patrick J. Flynn: Face Recognition Using 2D and 3D 
Facial Data. In Proceedings Workshop in Multimodal User Authentication, pp. 25-32, Santa 
Barbara, California, December. 2003. 

35.Kyong I. Chang Kevin W. Bowyer Patrick J. Flynn: An Evaluation of Multi-modal 2D+3D 
Face Biometrics. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2004.

36.Daniel González-Jiménez,  Manuele Bicego,  J. W. H. Tangelder,  B. A. M Schouten, 
Onkar Ambekar,  José Luis Alba-Castro,  Enrico Grosso  and  Massimo Tistarelli:  Distance 
Measures  for  Gabor  Jets-Based  Face  Authentication:  A  Comparative  Evaluation.  In 
Proceedings 2nd Int.l Conference on Biometrics -  ICB 2007, Seoul August 28-30 2007, pp 
474-483, Springer LNCS 4642.

37.Bicego M., Brelstaff G., Brodo L., Grosso E., Lagorio A. and Tistarelli M.: Distinctiveness 
of faces: a computational approach. ACM Transactions on Applied Perception, Vol. 5, n. 2, 
2008.

38.D.R. Kisku,  A. Rattani,  E.  Grosso  and M. Tistarelli:  Face Identification by SIFT-based 
Complete  Graph  Topology.  In  Proceedings  of  IEEE  Int.l  Workshop  on  Automatic 
Identification Advanced Technologies (AutoId 2007) Alghero June 7-8 2007, pp 69-73.

39.A. Rattani, D.R. Kisku, M. Bicego, M. Tistarelli (2007) “Feature Level Fusion of Face and 
Fingerprint  Biometrics”,  Proc.  of  first  IEEE  Int.l  Conference  on  Biometrics:  Theory, 
Applications and Systems (BTAS 07), September 27th to 29th, 2007, Washington DC.

40.G. Gordon, M. Lewis: Face Recognition Using Video Clips and Mug Shots. In Proceedings 
of  the  Office  of  National  Drug  Control  Policy  (ONDCP)  International  Technical 
Symposium (Nashua, NH), October 1995.

41.Y. Li, S. Gong, and H. Liddell: Video-based online face recognition using identity surfaces. 
In Proceedings IEEE International Workshop on Recognition, Analysis, and Tracking of 
Faces and Gestures in Real-Time Systems, pages 40-46, Vancouver, Canada, July 2001.

42.Y. Li, S. Gong, and H. Liddell: Modelling faces dynamically across views and over time. In 
Proceedings  IEEE  International  Conference  on  Computer  Vision,  pages  554-559, 
Vancouver, Canada, July 2001.

43.Lucas, S.M.  : Continuous n-tuple classifier and its application to real-time face recognition. 
In IEE Proceedings-Vision Image and Signal Processing Vol 145, No. 5, October 1998, pp. 
343.

44.Lucas,  S.M.  ,  Huang,  T.K.:  Sequence  recognition  with  scanning  N-tuple  ensembles.  In 
Proceedings ICPR04 (III) pp 410-413.

45.Eickeler, S.  , Müller, S., Rigoll, G.: Recognition of JPEG compressed face images based on 
statistical methods. Image and Vision Computing, Vol 18, No. 4, March 2000, pp. 279-287.

46.Raytchev, B.  , Murase, H.: Unsupervised recognition of multi-view face sequences based on 
pairwise  clustering  with  attraction  and  repulsion.  Computer  Vision  and  Image 
Understanding, Vol. 91, No. 1-2, July-August 2003, pp. 22-52.

47.Raytchev,  B.  ,  Murase,  H.:  VQ-Faces:  Unsupervised  Face  Recognition  from  Image 
Sequences. In Proceedings ICIP02 (II), pp 809-812.

48.Raytchev,  B.  ,  Murase,  H.:  Unsupervised  Face  Recognition  from  Image  Sequences.  In 
Proceedings ICIP01(I), pp 1042-1045.

84          Massimo Tistarelli and Enrico Grosso



49.Zhou, S.  , Krueger, V., Chellappa, R.: Probabilistic recognition of human faces from video. 
Computer  Vision  and  Image  Understanding,  Vol.  91,  No.  1-2,  July-August  2003,  pp. 
214-245.

50.Zhou,  S.  ,  Krueger,  V.,  Chellappa,  R.:  Face  Recognition  from  Video:  A  Condensation 
Approach. In Proceedings IEEE AFGR02, pp 212-217.

51.Zhou,  S.  ,  Chellappa,  R.:  Probabilistic  Human Recognition  from Video.  In  Proceedings 
ECCV02 (III), pp 681.

52.Zhou, S.  , Chellappa, R.: A robust algorithm for probabilistic human recognition from video. 
In Proceedings ICPR02 (I), pp 226-229.

53.Zhou,  S.  ,  Chellappa,  R.:  Rank constrained recognition under unknown illuminations.  In 
Proceedings AMFG03, pp 11-18.

54.Zhou,  S.K.  ,  Chellappa,  R.,  Moghaddam,  B.:  Visual  Tracking  and  Recognition  Using 
Appearance-Adaptive  Models  in  Particle  Filters.  Image  Processing,  Vol  13,  No.  11, 
November 2004, pp. 1491-1506.

55.Zhou,  S.K.  ,  Chellappa,  R.,  Moghaddam,  B.:  Intra-personal  kernel  space  for  face 
recognition. In proceedings IEEE AFGR04, pp. 235-240.

56.Zhou, S.K.  , Chellappa, R.: Multiple-exemplar discriminant analysis for face recognition. In 
Proceedings ICPR04 (IV), pp 191-194.

57.Zhou, S.K.  ,  Chellappa,  R.:  Probabilistic identity characterization for face recognition. In 
Proceedings CVPR04 (II), pp 805-812.

58.A.J.  Howell  and  H.  Buxton:  Towards  Unconstrained  Face  Recognition  from  Image 
Sequences. In Proceeding. of the IEEE International Conference on Automatic Face and 
Gesture Recognition (FGR’96), Killington, VT, pp.224-229, 1996.

59.Y. Li, S. Gong, H. Liddell: Support Vector Regression and Classification Based Multiview 
Face Detection and Recognition. In Proceedings of the IEEE International Conference on 
Automatic Face and Gesture Recognition (FGR’00), Grenoble, France, pp.300-305, 2000.

60.F. Roli and J. Kittler Eds. Multiple Classifier Systems. Springer Verlag, LNCS 2364, 2002.
61.B. Achermann and H. Bunke: Combination of Classifiers on the Decision Level for Face 

Recognition.  Technical  Report  IAM-96-002,  Institut  für  Informatik  und  angewandte 
Mathematik, Universität Bern, January 1996.

62.Mou,  D.  ,  Schweer,  R.,  Rothermel,  A.:  Automatic  Databases  for  Unsupervised  Face 
Recognition. In Proceedings FaceVideo04, pp 90.

63.Song,  X.  ,  Lin,  C.Y.,  Sun,  M.T.:  Cross-Modality  Automatic  Face  Model  Training  from 
Large Video Databases. In Proceedings FaceVideo04, pp 91.

64.Arandjelovic, O.  , Cipolla, R.: Face Recognition from Face Motion Manifolds using Robust 
Kernel Resistor-Average Distance. In Proceedings FaceVideo04, pp 88.

65.Aggarwal,  G.  ,  Chowdhury,  A.K.R.,  Chellappa,  R.:  A system identification approach for 
video-based face recognition. In Proceedings ICPR04 (IV), pp 175-178.

66.Matsui, A.  , Clippingdale, S., Uzawa, F.: Matsumoto, T.: Bayesian face recognition using a 
Markov chain Monte Carlo method. In Proceedings ICPR04 (III), pp 918-921.

67.Clippingdale, S.  ,  Fujii, M.: Face Recognition for Video Indexing: Randomization of Face 
Templates Improves Robustness to Facial Expression. In Proceedings VLBV03, pp 32-40.

68.Clippingdale,  S.  ,  Ito,  T.:  A  Unified  Approach  to  Video  Face  Detection,  Tracking  and 
Recognition. In Proceedings ICIP99 (I), pp 662-666.

69.Roark, D.A.  , O'Toole, A.J., Abdi, H.: Human recognition of familiar and unfamiliar people 
in naturalistic video. In Proceedings AMFG03, pp 36-41.

70.Gorodnichy, D.O.  : Facial Recognition in Video. In Proceedings AVBPA03, pp 505-514.
71.Lee,  K.C.  ,  Ho,  J.,  Yang,  M.H.,  Kriegman,  D.J.:  Video-based  face  recognition  using 

probabilistic appearance manifolds. In Proceedings CVPR03 (I), pp 313-320.

Identity Management in Face Recognition Systems           85



72.Liu, X.  ,  Chen, T.: Video-based face recognition using adaptive hidden Markov models. In 
Proceedings CVPR03 (I), pp 340-345.

73.Huang, K.S.  , Trivedi, M.M.: Streaming face recognition using multicamera video arrays. In 
Proceedings ICPR02 (IV), pp 213-216.

74.Gross, R.  , Brajovic, V.: An Image Preprocessing Algorithm for Illumination Invariant Face 
Recognition. In Proceedings AVBPA03, pp 10-18.

75.Gross, R.  , Yang, J., Waibel, A.: Growing Gaussian Mixture Models for Pose Invariant Face 
Recognition. In Proceedings ICPR00 (I), pp 1088-1091.

76.Krüger, V.  , Gross, R., Baker, S.: Appearance-Based 3-D Face Recognition from Video. In 
Proceedings DAGM02, pp 566.

77.Krüger, V.  , Zhou, S.: Exemplar-Based Face Recognition from Video. In Proceedings, IEEE 
AFGR02, pp 175-180.

78.Shakhnarovich,  G.  ,  Fisher,  J.W.,    Darrell,  T.J.  :  Face  Recognition  from  Long-Term 
Observations. In Proceedings ECCV02 (III), pp 851.

79.Shakhnarovich,  G.  ,  Viola, P.A.,  Moghaddam, B.:  A unified learning framework for real 
time face detection and classification. In Proceedings IEEE AFGR02, pp 14-21.

80.Li, Y.; Gong, S.; Liddell, H.: Video-based online face recognition using identity surfaces. In 
Proceedings IEEE ICCV Workshop on RATFG01, pp 40-46.

81.Weng,  J.  ,  Evans,  C.H.,  Hwang,  W.S.:  An  Incremental  Learning  Method  for  Face 
Recognition under Continuous Video Stream. In Proceedings IEEE AFGR00, pp 251-256.

82.Ho,  P.  :  Rotation  Invariant  Real-time  Face  Detection  and  Recognition  System.  MIT-AI 
Memo 2001-010, May 31, 2001.

83.Yamaguchi, O.  , Fukui, K., Maeda, K.: Face Recognition Using Temporal Image Sequence. 
In Proceedings IEEE AFGR98, pp 318-323.

84.Nagao, K.  , Sohma, M.: Weak Orthogonalization of Face and Perturbation for Recognition. 
In Proceedings CVPR98, pp 845-852.

85.Nagao, K.  , Sohma, M.: Recognizing faces by weakly orthogonalizing against perturbations. 
In Proceedings ECCV98 (II), pp 613.

86.Edwards,  G.J.  ,  Taylor,  C.J.,  Cootes,  T.F.:  Improving  Identification  Performance  by 
Integrating Evidence from Sequences. In Proceedings CVPR99 (I), pp 486-491.

87.Cootes, T.F.  ,  Wheeler, G.V.,  Walker, K.,  Taylor, C.J.: Coupled-View Active Appearance 
Models. In Proceedings BMVC00, pp 52-61.

88.Edwards,  G.J.  ,  Taylor,  C.J.,  and  Cootes,  T.F.:  Learning to  Identify  and Track Faces in 
Image Sequences. In Proceedings IEEE AFGR98, pp 260-265.

89.Déniz, M. Castrillón, J. Lorenzo and M. Hernández: An Incremental Learning Algorithm 
for Face Recognition.  In Proceedings  Int.l  Workshop on Biometric Authentication 2002, 
Copenaghen, Denmark, Springer Verlag, LNCS 2359, pp 1-9.

90.K.  Fukui  and  O.  Yamaguchi:  Face  recognition  using  multiviewpoint  patterns  for  robot 
vision. In Proceedings International Symposium of Robotics Research, 2003.

91.Bicego,  M.,  Grosso,  E.  and Tistarelli,  M.:  Person authentication from video of  faces:  a 
behavioral and physiological approach using Pseudo Hierarchical Hidden Markov Models. 
In Proceedings Intern.l Conference on Biometric Authentication 2006, Hong Kong, China, 
January 2006, pp 113-120, LNCS 3832.

92.Tistarelli,  M.,  Bicego,  M.  and  Grosso,  E.:  Dynamic  face  recognition:  From  human  to 
machine vision. Image and Vision Computing: Special issue on Multimodal Biometrics, M. 
Tistarelli and J. Bigun ed.s, doi:10.1016/j.imavis.2007.05.006.

93.Phillips, J.J., Flynn, P., Scruggs, T., Bowyer, K.W., Chang, J., Hoffman, K., Marques, J., 
Jaesik, M., Worek W.: Overview of the Face Recognition Grand Challenge. In Proceedings 
CVPR05, pp 947-954, 2005.

94.Phillips,  J.J.,  Flynn,  P.,  Scruggs,  T.,  Bowyer,  K.W.,  Worek  W.:  Preliminary  Face 
Recognition  Grand  Challenge  Results.  In  Proceedings  7th  International  Conference  on 
Automatic Face and Gesture Recognition, pp 15-24, 2006.

86          Massimo Tistarelli and Enrico Grosso



Discriminant Non-negative Matrix Factorization

and Projected Gradients for Frontal Face

Verification.

Irene Kotsia, Stefanos Zafeiriou, and Ioannis Pitas

Aristotle University of Thessaloniki, Department of Informatics, Box 451, 54124,
Greece

{ekotsia,dralbert,pitas}@aiia.csd.auth.gr

http://www.aiia.csd.auth.gr

Abstract. A novel Discriminant Non-negative Matrix Factorization (DNMF)
method that uses projected gradients, is presented in this paper. The pro-
posed algorithm guarantees the algorithm’s convergence to a stationary
point, contrary to the methods introduced so far, that only ensure the
non-increasing behavior of the algorithm’s cost function. The proposed
algorithm employs some extra modifications that make the method more
suitable for classification tasks. The usefulness of the proposed technique
to the frontal face verification problem is also demonstrated.

Key words: Non-negative Matrix Factorization, projected gradients, frontal
face verification.

1 Introduction

Over the past few years, the Non-negative Matrix Factorization (NMF) algo-
rithm and its alternatives have been widely used, especially in facial image char-
acterization and representation problems [3]. NMF aims at representing a facial
image as a linear combination of basis images. Like Principal Component Anal-
ysis (PCA), NMF does not allow negative elements in either the basis images or
the representation coefficients used in the linear combination of the basis images,
thus representing the facial image only by additions of weighted basis images.
The nonnegativity constraints introduced correspond better to the intuitive no-
tion of combining facial parts to create a complete facial image.

In order to enhance the sparsity of NMF, many methods have been proposed
for its further extension to supervised alternatives by incorporating discriminant
constraints in the decomposition, the so-called DNMF or Fisher-NMF (FNMF)
methods [3]. The intuitive motivation behind DNMF methods is to extract bases
that correspond to discriminant facial regions and contain more discriminative
information about them. A procedure similar to the one followed in the NMF
decomposition [6] regarding the calculation of the update rules for the weights
and the basis images was also used in the DNMF decomposition [3].



In this paper, a novel DNMF method is proposed that employs discriminant
constraints on the classification features and not on the representation coeffi-
cients. Projected gradient methods are used for the optimization procedure to
ensure that the limit point found will be a stationary point (similar methods
have been applied to NMF [5]). Frontal face verification experiments were con-
ducted and it has been demonstrated that the proposed method outperforms
the other discriminant non-negative methods.

2 Discriminant Non-Negative Matrix Factorization

Algorithms

2.1 Non-Negative Matrix Factorization

An image scanned row-wise is used to form a vector x = [x1 . . . xF ]T for the
NMF algorithm. The basic idea behind NMF is to approximate the image x

by a linear combination of the basis images in Z ∈ ℜF×M
+

, whose coefficients
are the elements of h ∈ ℜM

+
such that x ≈ Zh. Using the conventional least

squares formulation, the approximation error x ≈ Zh is measured in terms of
L(x||Zh) , ||x−Zh||2 =

∑
i(xi − [Zh]i)

2. Another way to measure the error of

the approximation is using the Kullback-Leibler (KL) divergence, KL(x||Zh) ,∑
i(xi ln xi

[Zh]i
+ [Zh]i − xi) [6] which is the most common error measure for all

DNMF methods [3]. A limitation of KL-divergence is that it requires both xi and
[Zh]i to be strictly positive (i.e., neither negative nor zero values are allowed).

In order to apply the NMF algorithm, the matrix X ∈ ℜF×T
+

= [xij ] should
be constructed, where xij is the i-th element of the j-th image vector. In other
words, the j-th column of X is the facial image xj . NMF aims at finding two
matrices Z ∈ ℜF×M

+
= [zi,k] and H ∈ ℜM×T

+
= [hk,j ] such that:

X ≈ ZH. (1)

After the NMF decomposition, the facial image xj can be written as xj ≈ Zhj ,
where hj is the j-th column of H. Thus, the columns of the matrix Z can
be considered as basis images and the vector hj as the corresponding weight
vector. The vector hi can be also considered as the projection of xj in a lower
dimensional space.

The defined cost for the decomposition (1) is the sum of all KL divergences
for all images in the database:

D(X||ZH) =
∑

j

KL(xj ||Zhj) =
∑
i,j

(
xi,j ln(

xi,j∑
k zi,khk,j

) +
∑

k

zi,khk,j − xi,j

)
.

(2)
The NMF factorization is the outcome of the following optimization problem:

min
Z,H

D(X||ZH) subject to (3)

zi,k ≥ 0, hk,j ≥ 0,
∑

i

zi,j = 1, ∀j.
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2.2 Discriminant Non-Negative Matrix Factorization

In order to formulate the DNMF algorithm, let the matrix X that contains all
the facial images be organized as follows. The j-th column of the database X is
the ρ-th image of the r-th image class. Thus, j =

∑r−1

i=1
Ni + ρ, where Ni is the

cardinality of the image class i. The r-th image class could consist of one person’s
facial images, for face recognition and verification problems. The vector hj that
corresponds to the j-th column of the matrix H, is the coefficient vector for the ρ-

th facial image of the r-th class and will be denoted as η
(r)
ρ = [η

(r)
ρ,1 . . . η

(r)

ρ,M ]T . The

mean vector of the vectors η
(r)
ρ for the class r is denoted as µ

(r) = [µ
(r)
1

. . . µ
(r)

M ]T

and the mean of all classes as µ = [µ1 . . . µM ]T . Then, the within-class scatter
matrix for the coefficient vectors hj is defined as:

Sw =

K∑
r=1

Nr∑
ρ=1

(η(r)
ρ − µ

(r))(η(r)
ρ − µ

(r))T (4)

whereas the between-class scatter matrix is defined as:

Sb =

K∑
r=1

Nr(µ
(r) − µ)(µ(r) − µ)T . (5)

The matrix Sw defines the scatter of the sample vector coefficients around their
class mean. The dispersion of samples that belong to the same class around
their corresponding mean should be as small as possible. A convenient measure
for the dispersion of the samples is the trace of Sw. The matrix Sb denotes the
between-class scatter matrix and defines the scatter of the mean vectors of all
classes around the global mean µ. Each class must be as far as possible from the
other classes. Therefore, the trace of Sb should be as large as possible.

To formulate the DNMF method [3], discriminant constraints have been
incorporated in the NMF decomposition inspired by the minimization of the
Fisher’s criterion [3]. The DNMF cost function is given by:

Dd(X||ZH) = D(X||ZH) + γtr[Sw]− δtr[Sb] (6)

where γ and δ are non-negative constants. The update rules that guarantee a
non-increasing behavior of (6) for the weights hk,j and the bases zi,k, under
the constraints of (2), can be found in [3]. Unfortunately, the update rules only
guarantee a non-increasing behavior for (6) and do not ensure that the limit
point will be stationary.

3 Projected Gradient Methods for Discriminant

Non-Negative Matrix Factorization

Let E = X − ZH be the error signal of the decomposition. The modified opti-
mization problem should minimize:

Dp(X||ZH) = ||E||2F + γtr[S̃w]− δtr[S̃b], (7)
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under non-negativity constraints, where ||.||F is the Frobenius norm. The within-
class scatter matrix S̃w and the between-scatter scatter matrix S̃b are defined
using the vectors x̃j = ZT xj and the definitions of the scatter matrices in (4)
and (5).

The minimization of (7) subject to nonnegative constraints yields the new
discriminant nonnegative decomposition. The new optimization problem is the
minimization of (7) subject to non-negative constraints for the weights matrix H

and the bases matrix Z. This optimization problem will be solved using projected
gradients in order to guarantee that the limit point will be stationary. In order
to find the limit point, two functions are defined:

fZ(H) = Dp(X||ZH) and fH(Z) = Dp(X||ZH) (8)

by keeping Z and H fixed, respectively.
The projected gradient method used in this paper, successively optimizes two

subproblems [5]:
min
Z

fH(Z) subject to, zi,k ≥ 0, (9)

and
min
H

fZ(H) subject to, hk,j ≥ 0. (10)

The method requires the calculation of the first and the second order gradients
of the two functions in (8):

∇fZ(H) = ZT (ZH−X)
∇2fZ(H) = ZT Z

∇fH(Z) = (ZH−X)HT + γ∇tr[S̃w]− δ∇tr[S̃b]

∇2fH(Z) = HHT + γ∇2tr[S̃w]− δ∇2tr[S̃b].

(11)

The projected gradient DNMF method is an iterative method that is comprised
of two main phases. These two phases are iteratively repeated until the ending
condition is met or the number of iterations exceeds a given number. In the first
phase, an iterative procedure is followed for the optimization of (9), while in
the second phase, a similar procedure is followed for the optimization of (10). In
the beginning, the bases matrix Z(1) and the weight matrix H(1) are initialized
either randomly or by using structured initialization [7], in such a way that their
entries are nonnegative. The regularization parameters γ and δ that are used to
balance the trade-off between accuracy of the approximation and discriminant
decomposition of the computed solution and their selection is typically problem
dependent.

3.1 Solving the Subproblem (9)

Consider the subproblem of optimizing with respect to Z, while keeping the
matrix H constant. The optimization is an iterative procedure that is repeated
until Z(t) becomes a stationary point of (9). In every iteration, a proper step
size at is required to update the matrix Z(t). When a proper update is found,
the stationarity condition is checked and, if met, the procedure stops.
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Update the matrix Z For a number of iterations t = 1, 2, . . . the following
updates are performed [5]:

Z(t+1) = P
[
Z(t) − at∇fH(Z(t))

]
(12)

where at = βgt and gt is the first non-negative integer such that:

fH(Z(t+1))− fH(Z(t)) ≤ σ
〈
∇fH(Z(t)),Z(t+1) − Z(t)

〉
. (13)

The projection rule P [.] = max[., 0] refers to the elements of the matrix and
guarantees that the update will not contain any negative entries. The operator
〈., .〉 is the inner product between matrices defined as:

〈A,B〉 =
∑

i

∑
j

ai,jbi,j (14)

where [A]i,j = ai,j and [B]i,j = bi,j . The condition (13) ensures the sufficient
decrease of the fH(Z) function values per iteration. Since the function fH is
quadratic in terms of Z, the inequality (13) can be reformulated as:

(1−σ)
〈
∇fH(Z(t)),Z(t+1) − Z(t)

〉
+

1

2

〈
Z(t+1) − Z(t),∇2fH(Z(t+1))

〉
≤ 0 (15)

which is the actual condition checked.
The search of a proper value for at is the most time consuming procedure,

thus, as few iteration steps as possible are desired. Several procedures have been
proposed for the selection and update of the at values [8]. The Algorithm 4 in
[5] has been used in our experiments and β, σ are chosen to be equal to 0.1 and
0.01 (0 < β < 1, 0 < σ < 1), respectively. The choice of σ has been thoroughly
studied in [5, 8]. During experiments it was observed that a smaller value of β

reduces more aggressively the step size, but it may also result in a step size
that is too small. The search for at is repeated until the point Z(t) becomes a
stationary point.

Check of Stationarity In this step it is checked whether or not in the limit
point the first order derivatives are close to zero (stationarity condition). A
commonly used condition to check the stationarity of a point is the following [8]:

||∇P fH(Z(t))||F ≤ ǫZ||∇fH(Z(1))||F (16)

where ∇P fH(Z) is the projected gradient for the constraint optimization prob-
lem defined as:

[∇P fH(Z)]i,k =

{
[∇fH(Z)]i,k if zi,k > 0

min(0, [∇fH(Z)]i,k) zi,k = 0.
(17)

and 0 < ǫZ < 1 is the predefined stopping tolerance. A very low ǫZ (i.e., ǫZ ≈ 0)
leads to a termination after a large number of iterations. On the other hand, a
tolerance close to one will result in a premature iteration termination.

Discriminant Non-negative Matrix Factorization and Projected Gradients for Frontal Face Verification           91



3.2 Solving the Subproblem (10)

A similar procedure should be followed in order to find a stationary point for
the subproblem (10) while keeping fixed the matrix Z and optimizing in respect
of H. A value for at is iteratively sought and the weight matrix is updated
according to:

H(t+1) = P
[
H(t) − at∇fZ(H(t))

]
(18)

until the function fZ(H) value is sufficient decreased and the following inequality
holds 〈a, b〉:

(1− σ)
〈
∇fZ(H(t)),H(t+1) −H(t)

〉
+

1

2

〈
H(t+1) −H(t),∇2fZ(H(t+1))

〉
≤ 0.

(19)
This procedure is repeated until the limit point H(t) is stationary. The station-
arity is checked using a similar criterion to (16), i.e.:

||∇P fZ(H(t))||F ≤ ǫH||∇fZ(H(1))||F (20)

where ǫH is the predefined stopping tolerance for this subproblem.

3.3 Convergence Rule

The procedure followed for the minimization of the two subproblems, in Sections
3.1 and 3.2, is iteratively followed until the global convergence rule is met:

||∇f(H(t))||F + ||∇f(Z(t))||F ≤ ǫ
(
||∇f(H(1))||F + ||∇f(Z(1))||F

)
(21)

which checks the stationarity of the solution pair H(t),Z(t).

4 Experimental Results

The proposed DNMF method will be denoted as Projected Gradient DNMF
(PGDNMF) from now onwards. The experiments were conducted in the XM2VTS
database using the protocol described in [12]. The images were aligned semi-
automatically according to the eyes position of each facial image using the eye
coordinates. The facial images were down-scaled to a resolution of 64× 64 pix-
els. Histogram equalization was used for the normalization of the facial image
luminance.

The XM2VTS database contains 295 subjects, 4 recording sessions and two
shots (repetitions) per recording session. It provides two experimental setups
namely, Configuration I and Configuration II [12]. Each configuration is divided
into three different sets: the training set, the evaluation set and the test set.
The training set is used to create client and impostor models for each person.
The evaluation set is used to learn the verification decision thresholds. In case of
multimodal systems, the evaluation set is also used to train the fusion manager
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[12]. For both configurations the training set has 200 clients, 25 evaluation im-
postors and 70 test impostors. The two configurations differ in the distribution
of client training and client evaluation data. For additional details concerning
the XM2VTS database an interested reader can refer to [12].

The experimental procedure followed was the one also used in [3]. For com-
parison reasons the same methodology using the Configuration I of the XM2VTS
database was used. The performance of the algorithms is quoted by the Equal
Error Rate (EER) which is the scalar figure of merit that is often used to judge
the performance of a verification algorithm. An interested reader may refer to
[12, 3] for more details concerning the XM2VTS protocol and the experimental
procedure followed. In Figure 1, the verification results are shown for the vari-
ous tested approaches, NMF [6], LNMF [11], DNMF [3], Class Specific DNMF
[3], PCA [9], PCA plus LDA [10] and the proposed PGDNMF. EER is ploted
versus the dimensionality of the new lower dimension space. As can be seen, the
proposed PGDNMF algorithm outperforms (giving a best EER ≈ 2.0%) all the
other part-based approaches and PCA. The best performance of LDA has been
1.7% which very close to the best performance of PGDNMF.
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Fig. 1. EER for Configuration I of XM2VTS versus dimensionality.
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5 Conclusions

A novel DNMF method has been proposed based on projected gradients. The
incorporated discriminant constraints focus on the actual features used for clas-
sification and not on the weight vectors of the decomposition. Moreover, we have
applied projected gradients in order to assure that the limit point is stationary.
The proposed technique has been applied in supervised facial feature extrac-
tion for face verification, where it was shown that it outperforms several others
subspace methods.
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Abstract. In this work, the discrimination capabilities of speech cepstra for text 
and speaker related information are investigated. For this purpose, Bhattacharya 
distance metric is used as the measure of discrimination. The scope of the study 
covers static and dynamic cepstra derived using the linear prediction analysis 
(LPCC) as well as mel-frequency analysis (MFCC). The investigations also 
include the assessment of the linear prediction-based mel-frequency cepstral 
coefficients (LP-MFCC) as an alternative speech feature type. It is shown 
experimentally that whilst contaminations in speech unfavourably affect the 
performance of all types of cepstra, the effects are more severe in the case of 
MFCC. Furthermore, it is shown that with a combination of static and dynamic 
features, LP-based mel-frequency cepstra (LP-MFCC) exhibit the best 
discrimination capabilities in almost all experimental cases. 

 1   Introduction 

Cepstra are the most commonly used features in speech related recognition tasks [1-
4]. By definition, cepstrum of a given signal is obtained using homomorphic filtering 
which converts convolved source and filter impulse responses to linear summations 
[5]. An approach to extracting cepstral features from speech is that of first computing 
the speech linear prediction coefficients and then converting these to cepstral 
coefficients. Feature parameters obtained in this way are called linear prediction-
based cepstral coefficients (LPCC) [5]. A second widely used method involves 
applying a mel-scale filter-bank function to the speech spectrum. The resultant feature 
parameters are referred to as mel-scale cepstral coefficients (MFCC) [3]. There are 
other types of cepstra that can be obtained through some variations of, or additional 
processing in, the above approaches. Examples of these are perceptual linear 
prediction coefficients (PLP) and linear filter bank cepstral coefficients (LFCC) [5]. 
Since LPCC and MFCC are the most widely used speech features, it is natural to 
focus the work on these. The indications from our initial study have been that each of 
these two feature types may possess certain superior discriminative characteristics, 
depending on the experimental conditions and the attribute considered. Therefore, in 
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an attempt to capture the benefits of each of these two commonly used classes of 
cepstra in one parametric representation, linear prediction-based, mel-frequency 
cepstral coefficients (LP-MFCC) are also considered in this study as an alternative 
feature type. The approach to extracting this class of speech features is given later in 
this paper. It should be pointed out that, whilst the idea behind LP-MFCC has been 
presented in some other studies [6-7], there is very limited information in the 
literature about the discrimination capabilities of this feature type [6].  
The previous studies on the usefulness of various types of cepstra have been confined 
to individual applications. Examples are speaker recognition [1-2], speech recognition 
[3] and emotion recognition [4]. There have also been investigations into the 
usefulness of combining other features with cepstra for improving the performance, 
but again in a particular application only [8]. An important feature lacking in these 
studies is that of identifying the influence of the underlying experimental conditions 
on the outcomes. For instance, it is not known how variation in gender can affect the 
relative performance of different types of cepstra in text-dependent speaker 
recognition. Additionally, studies carried out to date have not been based on the same 
experimental setup or conditions. As a result, to date, the literature lacks information 
on the relative discrimination capabilities of different types of cepstra, in terms of 
individual classes of information contained in speech.  
In general, the discrimination of any two sets of cepstral data can be achieved by 
assessing the divergence or distance between their distributions. Assuming that the 
distribution of such data is Gaussian, there are various metrics that can be used for 
this purpose. Although the underlying distribution of multidimensional cepstral data 
deviates from the Gaussian assumption, many speech applications such as speaker 
tracking and speaker segmentation use the Gaussian assumption of distribution for 
speech cepstral features. This assumption is reasonable as speech cepstra have uni-
modal distributions resembling Gaussians [5].  Additionally, when comparing the 
distributions of two sets of cepstral data directly using Gaussian-based measures, the 
exact Gaussian assumption of the distributions will not have a significant effect on the 
outcome as this is applied to both datasets.  Examples of Gaussian-based comparative 
measures are Euclidean distance, Mahalanobis distance, and various other statistical 
measures [9]. Some of these measures show insensitivity towards particular data 
statistics, while some fail under certain conditions. For example, if the Euclidean 
distance between the means of two Gaussian distributions is used as a distance 
measure, then the covariance information is totally ignored. On the other hand, the F- 
Ratio which is a useful metric in terms of variance information has the drawback of 
being insensitive to mean statistics of data [5, 10, 11]. Amongst various measures, it 
is reported that Bhattacharya distance metric is well suited to the classification 
purpose [12] which is the main task in this study. As indicated in the study of speaker 
tracking in [9], for certain other purposes, it may be that the use of a different type of 
metric is advantageous. However, the nature of task in the present study together with 
the characteristics of Bhattacharya measure provides a strong justification for the 
deployment of this metric. The suitability of Bhattacharya distance is further 
discussed in Section 2. 
The rest of this paper is organised as follows. Section 2 gives an overview of 
Bhattacharya distance as a discriminative measure. Section 3 details the experimental 
data and procedures together with various configurations used for the purpose of 
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investigations. The experimental results together with the discussions of these are 
presented in Section 4, and overall conclusions are given in Section 5. 

2   Bhattacharya Distance 

Bhattacharya distance for normal distributions is a very convenient measure for 
evaluating the class-separation capability [12]. If the multivariate data from two 
classes of A and B are normally distributed with statistics ( )AANA Σµ ,∈   and 

( )BBNB Σµ ,∈  , where ( )iiN Σµ ,   are mean and covariance parameters for data I, 
then the metric is given as [12] 
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where T is the transpose operation. The first term in this metric measures the distance 
between Aµ   and Bµ   normalised by the average covariance matrix, whilst the 
second term measures the distance due to covariance differences in data classes A and 
B. Hence, the first term gives class separation capability due to mean statistics from 
the two data sets and second term gives the separation capability due to covariance 
structures. Metric M itself gives the overall class separation capability. 
The divergence between Gaussian distributions of the two data sets can act as another 
suitable distance measure [12]. However, a main drawback of using the divergence 
measure is due to its weak association with the Bayes error for the classification 
purposes [12]. The formulation of the divergence measure is based on various 
approximations in obtaining discrimination criterion for the two class problem. Hence 
in this work, Bhattacharya distance is adopted. 

3   Experimental Procedures  

3.1   Speech Data 

For the purpose of experiments, TIMIT database is adopted. The advantage of using 
this database is that it is phonetically rich, and is recorded under clean background 
conditions. This reduces variability due to background environments and ensures that 
Gaussian statistics of cepstra are not pre-contaminated by noise. This database is also 
useful for studying the effects of the addition of noise to speech in a controlled 
manner. The database consists of speech material from 192 females and 438 males, 
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each with 10 utterances. In this work, material from 192 males and 192 females is 
used with ‘sa1’ and ‘sx1’ utterances. 

3.2   Feature Parameter Representation 

The extraction of cepstral parameters in this study is based on first pre-emphasising 
the input speech data using a first-order digital filter and then segmenting it into 20 
ms frames at intervals of 10 ms using a Hamming window. A voice activity detection 
algorithm is then used to discard frames containing silence only. For each frame, 16 
LPCC are obtained via a linear prediction analysis. To extract MFCC, the speech 
spectrum for each frame is weighted by a mel-scale filter bank. This filter bank 
consists of 26 triangular filters for the considered sampling frequency of 16 kHz. The 
discrete cosine transformation of the log magnitude outputs of these filters gives 16 
MFCC for that speech frame. The extraction of LP-MFCC is based on first computing 
16 LP coefficients for each frame. The above-stated perceptual processing is then 
deployed to obtain 16 mel-frequency coefficients from the LP spectrum. For each 
type of cepstra, a polynomial fit method is used to obtain 16 delta coefficients [5]. 

3.3   Experimental Configurations 

Tests are carried out separately using various configurations as follows. 
1. In this configuration LPCC, MFCC and LP-MFCC are assessed for their text-based 

discrimination capabilities under clean conditions. For each speaker, the 
Bhattacharya distance between Gaussian distributions of cepstra obtained using 
‘sa1’ and ‘sx1’ utterances is computed. The tests are carried out separately for each 
gender, using static coefficients with and without delta coefficients. The mean of 
the Bhattacharya distance is estimated with 95 % confidence interval in each case. 

2. Here, LPCC, MFCC and LP-MFCC are assessed for their speaker separation 
capabilities under clean conditions. The Bhattacharya distance is applied to the 
Gaussian distributions of cepstra obtained from pairs of speakers speaking the 
‘sa1’ utterance. The tests are carried out separately within each gender group as 
well as across the genders, using static coefficients with and without delta 
coefficients. The mean of Bhattacharya distance in each case is estimated with 95 
% confidence interval.  

3. In this configuration, the tests are the same as in 1, but here the speech data is 
contaminated with Gaussian white noise. To examine the effects of contamination 
level, a range of signal-to-noise ratios (SNR) are used. These are 20 dB, 15 dB and 
10 dB. 

4. The tests are the same as in 2 but the speech data is contaminated with various 
levels of Gaussian white noise, producing different signal to noise ratios as detailed 
in 3. 
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4   Results and Discussions 

The required keys for the interpretation of all the results presented below are as 
follows. 
“M:” - within male speakers, “F:” - within female speakers, “M/F:” - between Male 
and female speakers. Vertical lines at the top of each bar represent the 95 % 
confidence interval values. 

4.1   Text Separation Capabilities of Cepstra for Clean Speech 

According to the results in Figure 1, the static MFCC and LPCC have almost the 
same capabilities for the separation of textual information. The results also show the 
advantages offered by using delta coefficients. Figure 1 further indicates that the 
performance of MFCC+delta is closely followed by that of LPCC+delta. This result is 
consistent with the pervious results obtained in speech recognition experiments [3]. It 
is interesting to note that LP-MFCC are noticeably better than LPCC and MFCC. This 
difference in performance appears to become significant when delta parameters are 
appended to the static features. Additionally, it is seen that, with or without using 
delta coefficients, the textual separation capabilities in the case of female speakers are 
always below those for male speakers. 
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Fig. 1. Text separation capabilities of cepstra: experimental results based on configuration 1. 
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4.2   Speaker Separation Capabilities of Cepstra for Clean Speech 

It can be seen that, with clean speech and the same gender speakers, LPCC offer only 
slightly better speaker separation capabilities than MFCC. However, a more 
noticeable difference in performance in favour of LPCC is observed for the 
combination of static and dynamic features. In the case of cross-gender tests, 
however, MFCC exhibit better discrimination capabilities than LPCC. This appears to 
be the case for both static features, as well as combined static-dynamic features. In 
terms of static features only, the capabilities offered by LP-MFCC appear to be 
between those of LPCC and MFCC, for both within gender and cross-gender tests. 
However, it should be noted that the performance of all three feature types improves 
considerably by appending delta parameters to static coefficients. In this case, the best 
performance is offered by LP-MFCC. Another interesting aspect of the results in 
Figure 2 is that, for every feature type, the discrimination achievable for male 
speakers is better than that for female speakers. 
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Fig. 2. Speaker separation capabilities of cepstra for clean speech: results of the experiments 
based on configuration 2. 

4.3   Text Separation Capabilities of Cepstra for Noisy Speech 

As seen in Figure 3, the textual separation capabilities for both genders deteriorate 
with decreasing SNR. It is also noted that the adverse effects of the additive noise are 
more considerable in the case of MFCC features. This imbalance in effects appears to 
even reverse the relative performance of LPCC and MFCC in favour of the former 
when a combination of static and dynamic features is used. As a result, for both 
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genders and all levels of contamination, LPCC features exhibit better discrimination 
capabilities than MFCC. As observed in Figure 3, although the LP-MFCC 
performance is also affected by noise, the effectiveness of this feature type is 
consistently better than that of LPCC and MFCC. 
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Fig. 3. Text separation capabilities of cepstra under Noisy Conditions: results of the 
experiments based on configuration 3. 

4.4   Speaker Separation Capabilities of Cepstra for Noisy Speech 

The results in Figure 4 show the effects of additive noise on speaker separation 
capabilities of LPCC, MFCC and LP-MFCC. It can be observed that these results are 
consistent with those in Figure 3. That is, as discussed above, the additive noise has 
more noticeable adverse effects on the results for MFCC features to the extent that 
better performance is obtained with LPCC in cross-gender tests. This relative 
performance, as observed, is regardless of using static features or combined static-
dynamic features. It is also noted that, the decrease in SNR reduces the performance 
of the two categories of features at different rates. Therefore, the gap in the relative 
performance continuously increases (with noise level) in favour of LPC features. The 
results also show that LP-MFCC features exhibit a better level of robustness against 
noise than MFCC. It is observed that in cross-gender tests in the presence of noise, 
LP-MFCC perform better than the other two feature types. In single-gender 
experiments based on static features only, comparable performance is observed for 
LPCC and LP-MFCC.  
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In experiments based on static+delta features, LP-MFCC continues to offer better 
overall effectiveness for almost all noise levels. The only exception is the experiments 
with male speakers where comparable performance is obtained with LPCC. 
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Fig. 4. Speaker separation capabilities under Noisy Conditions: results of the experiments 
based on configuration 4. 

5   Conclusions 

The discrimination capabilities of cepstra in terms of text and speaker identity have 
been investigated. By making the study independent of any particular application, 
attempts have been made to avoid the influence of application-specific conditions and 
parameters on the outcomes. For the purpose of this study, two commonly used types 
of cepstra (LPCC and MFCC) together with LP-based mel-frequency cepstra (LP-
MFCC) have been investigated. The evaluations of discrimination capabilities have 
been conducted using the Bhattacharya distance. Based on the experimental results, it 
is concluded that the information discrimination capabilities in all categories of 
cepstra show dependence on the speaker gender and also on the test conditions.  
In terms of speaker discrimination, LPCC appear to exhibit marginally better 
performance when the speakers are of the same gender. In the case of cross-gender 
speaker discrimination, the experimental results have revealed that the MFCC features 
provide better performance than the LPCC features. The experimental results have 
also shown that, as expected, the speech contamination due to white noise affects the 
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performance of all types of cepstra. It is, however, observed that the effect is more 
significant in the case of MFCC.   
The experiments conducted suggest that some useful discriminative characteristics of 
LPCC and MFCC are captured in LP-MFCC. This is evident by the fact that, in every 
case, LP-MFCC are found to either offer the best performance or to be almost as 
effective as the best performer.    
In general, the use of delta coefficients in addition to static parameters has been found 
to considerably improve the separation capabilities of cepstra. In this case, the use of 
LP-MFCC appears to be advantageous as it provides the best performance in almost 
all cases. Although the study has been confined to cepstra, the approach adopted can 
also be used for assessing the capabilities of other types of speech features. Moreover, 
it provides the possibility of evaluating the relative suitability of different speech 
feature candidates for a specific task prior to building the whole application. 
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Abstract. This paper proposes a novel method for speaker identifica-
tion based on both speech utterances and their transcribed text. The
transcribed text of each speaker’s utterance is processed by the proba-
bilistic latent semantic indexing (PLSI) that offers a powerful means to
model each speaker’s vocabulary employing a number of hidden topics,
which are closely related to his/her identity, function, or expertise. Mel-
frequency cepstral coefficients (MFCCs) are extracted from each speech
frame and their dynamic range is quantized to a number of predefined
bins in order to compute MFCC local histograms for each speech utter-
ance, that is time-aligned with the transcribed text. Two identity scores
are independently computed by the PLSI applied first to the text and the
nearest neighbor classifier applied next to the local MFCC histograms.
It is demonstrated that a convex combination of the two scores is more
accurate than the individual scores on speaker identification experiments
conducted on broadcast news of the RT-03 MDE Training Data Text and
Annotations corpus distributed by the Linguistic Data Consortium.

Key words: multimodal speaker identification, text, speech, probabilis-
tic latent semantic indexing, Mel-frequency cepstral coefficients, nearest
neighbor classifier, convex combination

1 Introduction

Speaker identification systems resort mainly to speech processing. Undoubtedly,
speech is probably the most natural modality to identify a speaker [1]. Histor-
ically in speaker recognition technology R&D, effort has been devoted to char-
acterizing the statistics of a speaker’s amplitude spectrum. Although, dynamic
information (e.g., difference spectra) has been taken into consideration as well as
static information, the focus has been on spectral rather than temporal charac-
terization. The usage of certain words and phrases [2] as well as intonation, stress,
and timing [3], constitute longer term speech patterns, which define “familiar-
speaker” differences, a promising but radical departure from mainstream speaker
recognition technology.

In this paper, we explore text that is rarely combined with speech for bio-
metric person identification. More specifically, text refers to the time-aligned



transcribed speech that appears as rich annotation of speakers’ utterances. The
annotation process could be an automatic, a semi-automatic, or a manual task
as is frequently the case. In the proposed algorithm, we assume that we know
the start time and end time of each word in a speaker’s utterance as well as its
speech to text transcription. Although there are a few past works where text was
exploited for speaker identification, e.g. the idiolectal differences as quantified by
N -gram language models [2], to the best of authors’ knowledge no multimodal
approach that exploits speech and text has been proposed so far.

The motivation for building multimodal biometric systems is that systems
based on a single-modality, e.g. speech, are far from being error-free, especially
under noisy operating conditions. The use of complementary modalities, such
as visual speech, speaker’s face, yields a more reliable identification accuracy.
However, the additional modalities may also be unstable due to dependence on
recording conditions, such as changes in pose and lighting conditions. Text and
language models, if available, do not suffer from such shortcomings.

The transcribed text of each speaker’s utterance is processed by the proba-
bilistic latent semantic indexing (PLSI)[4] that offers a powerful means to model
each speaker’s vocabulary employing a number of hidden topics, which are closely
related to his/her identity, function, or expertise. Mel-frequency cepstral coeffi-
cients (MFCCs) are extracted from each speech frame and their dynamic range
is quantized to a number of predefined bins in order to compute MFCC lo-
cal histograms for each speech utterance, that is time-aligned with the tran-
scribed text. Two identity scores are independently computed by the PLSI ap-
plied first to the text and the nearest neighbor classifier applied next to the local
MFCC histograms. It is demonstrated that a late fusion of the two scores by a
convex combination is more accurate than the individual scores on closed-set
speaker identification experiments conducted on broadcast news of the RT-03
MDE Training Data Text and Annotations corpus distributed by the Linguistic
Data Consortium [6].

The outline of the paper is as follows. In Section 2, a novel method to com-
bine audio and text data in a single representation array is described. Speaker
identification algorithms based on either text or speech are described in Sec-
tion 3. Experimental results are demonstrated in Section 4, and conclusions are
drawn in Section 5.

2 Biometric Data Representation

In this Section, we propose a novel representation of speaker biometric data that
will be used as an input to the identification algorithms to be described in the
next section. As far as text data are concerned, two sets are identified, namely
the set of speaker identities and the domain vocabulary. The latter is the union
of all vocabularies used by the speakers. A closed set of speaker identities S of
cardinality n is assumed, i.e.

S = {s1, s2, . . . , sn} . (1)
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Let W be the domain vocabulary of cardinality m:

W = {w1, w2, . . . , wm} . (2)

A two dimensional matrix K whose rows refer to spoken words in W and its
columns refer to the speaker identities in S is created. Its (i, j)-th element, ki,j ,
is equal to the number of times the word wi is uttered by the speaker sj :

K =

⎡
⎢⎢⎢⎣

k1,1 k1,2 . . . k1,n

k2,1 k2,2 . . . k2,n

...
...

. . .
...

km,1 km,2 . . . km,n

⎤
⎥⎥⎥⎦ . (3)

It is obvious that the “word-by-speaker” matrix K plays the same role with the
“term-by-document” matrix in PLSI. The only difference is that the columns
are associated to speakers and not to documents. Such a representation can be
modeled in terms to latent variables, which refer to topics. The models can easily
be derived by applying PLSI to K. To minimize the vocabulary size, one may
apply stemming or some sort of word clustering. Function words (e.g. articles,
propositions) are frequently rejected as well.

Next, time-aligned audio information is associated with each element of the
“word-by-speaker” matrix. This is done by extracting the MFCCs [5] for each
frame within the speech utterance of each spoken word. Since, the same word
might have been spoken by the same speaker more than once, we should aggre-
gate the MFCC information from multiple instances of the same word. This is
done as follows.

1. For each frame within each word utterance, extract 13 MFCCs. That is, 13
MFCC sets of variable length are obtained depending on the duration of
each word utterance.

2. Create the histogram of each MFCC by splitting its dynamic range into b
bins. Since we do not know a priori the dynamic range of each MFCC, we
need to determine the minimum and maximum value for each MFCC.

3. Finally, add the MFCC histograms for all word utterances spoken by each
speaker.

Accordingly, we obtain a 13×b matrix, where b is the number of histogram bins.
Let the maximum and minimum value of each MFCC be maxc and minc,respectively,
c = 1, 2, . . . , 13. The size of each bin δbc is given by

δbc =
maxc−minc

b
, c = 1, 2, . . . , 13. (4)

Let

Ai,j =

⎡
⎢⎢⎢⎣

α1,1;i,j α1,2;i,j . . . α1,b;i,j

α2,1;i,j α2,2;i,j . . . α2,b;i,j

...
...

. . .
...

α13,1;i,j α13,2;i,j . . . α13,b;i,j

⎤
⎥⎥⎥⎦ (5)
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be the 13 × b matrix whose element αc,t;i,j denotes how many times the c-th
MFCC is fallen into the t-th bin of the histogram for the i-th word spoken by
the j-th speaker. It is proposed each element of the “word-by-speaker” matrix
to index the pair (ki,j ,Ai,j). If ki,j = 0, then Ai,j = 0. Consequently, Eq. (3) is
rewritten as

K =

⎡
⎢⎢⎢⎣

(k1,1,A1,1) (k1,2,A1,2) . . . (k1,n,A1,n)
(k2,1,A2,1) (k2,2,A2,2) . . . (k2,n,A2,n)

...
...

. . .
...

(km,1,Am,1) (km,2,Am,2) . . . (km,n,Am,n)

⎤
⎥⎥⎥⎦ . (6)

The main advantage of the proposed multimodal biometric representation is
that it can easily be updated when new data arrive. When a new word or a new
speaker is added (e.g. during training), one has to add a new row or column in
K, respectively. Another main characteristic of the data representation is that
contains only integers. This has a positive impact in data storage, since in most
cases, an unsigned integer needs 32 bits, whereas a double number needs 64bits
[6].

3 Multimodal Speaker Identification

Having defined the biometric data representation, let us assume that the training
data form the composite matrix K as in Eq. (6). Let the test data contain
instances of speech and text information disjoint from a speaker sx ∈ S whose
identity is to be determined. The test data are represented by the following
composite vector kx, i.e.

kx =

⎡
⎢⎢⎢⎣

(k1,x,A1,x)
(k2,x,A2,x)

...
(km,x,Am,x)

⎤
⎥⎥⎥⎦ . (7)

The composite matrix K and the composite vector kx must have the same
number of rows, thus the domain vocabulary should be the same. By denoting
the vocabulary that is used by the test speaker as Wx, we could use the union
of both training and test vocabulary:

Wall = W ∪Wx . (8)

Accordingly, new rows might be inserted to both K and kx and be rearranged
so that each row is associated to the same word in the domain vocabulary. The
next step is to combine the training and test data in one matrix as follows:

Kall =
[
K | kx

]
. (9)

Having gathered all the data in the unified structure, Kall, first PLSI is applied
to its ki,j entries in order to reveal a distribution of topics related to the textual
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content uttered by each speaker in S. In the following, the topics are defined by
the latent discrete random variable z that admits q values in the set

Z = {z1, z2, . . . , zq} (10)

as in [4]. Let us denote by P (s, z) the joint probability that speaker s speaks
about topic z. Obviously,

P (s, z) = P (s|z) P (z), (11)

where P (s|z) is the conditional probability of a speaker given a topic and P (z) is
the probability of topic. By applying the PLSI algorithm, one can estimate the
constituents of Eq. (11). The expectation step of the Expectation-Maximization
algorithm (EM) in PLSI yields

P (z|w, s) =
P (z) P (w|z) P (s|z)∑
z′P (z′) P (w|z′) P (s|z′) . (12)

The maximization step is described by the following set of equations:

P (w|z) =

∑
s

kw,s P (z|w, s)
∑
w′,s

kw′,s P (z|w′, s)
(13)

P (s|z) =

∑
w

kw,s P (z|w, s)
∑
w,s′

kw,s′ P (z|w, s′)
(14)

P (z) =
1
R

∑
w,s

kw,s P (z|w, s) (15)

where R ≡ ∑
w,s

kw,s. The number of iterations of the EM algorithm can be preset

by the user or can be determined by monitoring a convergence criterion, such as
to observe insignificant changes of the model probabilities of PLSI. A random
initialization of the model probabilities is frequently applied. The number of
topics is also predetermined by the user.

Let the joint probability speaker sj ∈ S from the training set speaks about
topic zt be

Pj,t = P (sj , zt), 1 ≤ j ≤ n, 1 ≤ t ≤ q. (16)

Similarly, let Px,t = P (sx, zt) be the same joint probability for the test speaker
sx. Then, we can define a distance between the speakers sx and sj based on text
information as

dPLSI(x, j) =
1
q

q∑
t=1

|Pj,t − Px,t| j = 1, 2, . . . , n (17)

or

dPLSI(x, j) =
1
q

q∑
t=1

Pj,t log
Pj,t

Px,t
j = 1, 2, . . . , n. (18)
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Eq. (17) defines an L1-norm, whereas Eq. (18) is the KullbackLeibler divergence
of the joint probabilities of speakers and topics. By applying either distance, we
can obtain a vector containing all distances between the test speaker sx and all
speakers sj ∈ S:

DPLSI(x) = [dPLSI(x, 1) dPLSI(x, 2) . . . dPLSI(x, n)]T (19)

Let us now consider the definition of distances between speakers when local
histograms of MFCCs are employed. First, we create the set of word indices Lj

for each column of K (i.e., the training set):

Lj = {i | ki,j > 0} , j = 1, 2, . . . , n. (20)

Similarly, let Lx = {i | ki,x > 0}. A distance function between the local MFCC
histograms stored in Ai,j and Ai,x can be defined as

dMFCC(j, x) =
1

|Lj ∪ Lx|
∑

i∈(Lj∪Lx)

(
1

13b

13∑
c1=1

b∑
c2=1

|αc1,c2;i,j − αc1,c2;i,x|
)

(21)

where |Lj ∪ Lx| is the number of common words used by speakers sj and sx, b
denotes the chosen number of MFCC local histogram bins, and αc1,c2;i,j refers to
the c2-th bin in the local histogram of the c1-th MFCC at the i-th word spoken by
the j-th speaker column. A vector DMFCC(x) containing the distances between
the test speaker sx and all training speakers can be defined:

DMFCC(x) = [dMFCC(1, x) dMFCC(2, x) . . . dMFCC(n, x)]T . (22)

The elements of the distance vector in Eq. (22) can be normalized by dividing
with the maximum value admitted by the distances. A convex combination of
the distance vectors can be used to combine Eq. (19) and Eq. (22):

D(x) = γ DPLSI(x) + (1− γ) DMFCC(x) (23)

where the parameter γ ∈ [0, 1] weighs our confidence for the text-derived dis-
tance. As γ → 0, the identification depends more on the information extracted
from speech, whereas for γ → 1 emphasis is given to the information extracted
from text.

The algorithm ends by finding the minimum element value in D(x), whose
index refers to the speaker that best matches sx and accordingly it is assigned
to sx, i.e.:

sx = arg min
j

[γ dPLSI(j, x) + (1− γ) dMFCC(j, x)] . (24)

4 Experimental Results

To demonstrate the proposed multimodal speaker identification algorithm, ex-
periments are conducted on broadcast news (BN) collected within the DARPA
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Efficient, Affordable, Reusable Speech-to-Text (EARS) Program in Metadata
Extraction (MDE). That is, a subset of the so called RT-03 MDE Training Data
Text and Annotations corpus [7] is used. BN enable to easily assess the algo-
rithm performance, because each speaker has a specific set of topics to talk
about. The BN speech data were drawn from the 1997 English Broadcast News
Speech (HUB4) corpus. HUB4 stem from four distinct sources, namely the Amer-
ican Broadcasting Company, the National Broadcasting Company, Public Radio
International and the Cable News Network. Overall, the transcripts and anno-
tations cover approximately 20 hours of BN. In the experiments conducted, the
total duration of the speech recordings exceeds 2 hours.

Two sets of experiments are conducted. Both sets contain three experiments
with a varying number of speakers. Speech and text modalities are treated
equally. That is, γ = 0.5 in Eq. (24). Fig. 1 shows the percentage of cor-
rectly identified speakers within the R best matches for R = 1, 2, . . . , 20, i.e., the
so called cumulative match score versus rank curve after having performed 100
iterations and chosen 4 latent topics in PLSI as well as 10 bins for each MFCC
histogram. As we can see, the algorithm produces near perfect identification for
20 speakers. Concerning the group of the 37 speakers, the results are satisfac-
tory after the 4th rank. The more difficult case, when identification among 90
speakers is sought, reveals a poor, but acceptable performance, especially after
the 7th rank.
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Fig. 1. Cumulative match score versus rank curve of the proposed algorithm using 4
topics and 100 iterations in PLSI model and 10 bins for every MFCC histogram.

For comparison purposes, the percentage of correctly identified speakers
within the R best matches using only PLSI for the same number of iterations
and topics is plotted in Figure 2. The multimodal identification offers self-evident
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gains for best match identification in the case of small and medium sized speaker
sets, while slight improvements of 3.32% are measured for the large speaker set.
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Fig. 2. Cumulative match score versus rank curve of PLSI using 4 topics and 100
iterations.

In the second set of experiments, the proposed identification algorithm is
fine tuned by increasing the number of iterations to 250, the number of topics
to 12, and the number of histogram bins to 50. Although, such an increase
has a negative impact on the speed of the algorithm, the results are improved
considerably in some cases. From the comparison of Figures 1 and 3 it is seen
that the identification rate for 20 speakers is slightly increased for the best match.
For the medium-sized group of 37 speakers, the identification rate for the best
match is climbed at nearly 70% from 50% in the previous set. For the large group
of 90 speakers, the identification rate for the best match remains the same.

By repeating the identification using only PLSI with 12 topics and 250 itera-
tions, the percentage of correctly identified speakers within the R best matches
shown in Figure 4 is obtained. The comparison of Figures 3 and 4 validates
that the identification rate at best match using both text and speech increases
considerably for small and medium sized speaker sets, while marginal gains are
obtained for large speaker sets. Moreover, the increased number of latent topics
and iterations in PLSI have helped PLSI to improve its identification rate.

5 Conclusions

In this paper, first promising speaker identification rates have been reported
by combining in a late fusion scheme text-based and speech-based distances in
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Fig. 3. Cumulative match score versus rank curve of the proposed algorithm using 12
topics and 250 iterations in PLSI model and 50 bins for every MFCC histogram.
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Fig. 4. Cumulative match score versus rank curve of PLSI only using 12 topics and
250 iterations.

experiments conducted on broadcast news of the RT-03 MDE Training Data
Text and Annotations corpus. Motivated by the promising results, we plan to
integrate MFCC histograms and document word histograms in PLSI, since both
features are of the same nature and to study their early fusion.
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2101 on Biometrics for Identity Documents and Smart Cards.
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Abstract. The paper presents a fully automatic palmprint verification
system which uses 2D phase congruency to extract line features from a
palmprint image and subsequently performs linear discriminant analy-
sis on the computed line features to represent them in a more compact
manner. The system was trained and tested on a database of 200 people
(2000 hand images) and achieved a false acceptance rate (FAR) of 0.26%
and a false rejection rate (FRR) of 1.39% in the best performing verifi-
cation experiment. In a comparison, where in addition to the proposed
system, three popular palmprint recognition techniques were tested for
their verification accuracy, the proposed system performed the best.

Key words: Palmprint verification, 2D phase congruency, Linear dis-
criminant analysis

1 Introduction

Biometrics is a scientific discipline that involves methods of automatically rec-
ognizing (verifying or identifying) people by their physical and/or behavioral
characteristics. Many biometric systems have already been presented in the liter-
ature, among them, systems which exploit biometric traits such as fingerprints,
face, voice, iris, retina, hand-geometry, signature or palmprints are the most
common [1].

Each of the listed biometric characteristics has its own strengths and weak-
nesses and is consequently more or less suited for a particular application do-
main. Face- and voice-based recognition systems, for example, are considered
to be unintrusive, they do, however, still have problems achieving high recog-
nition accuracy, especially when biometric samples (i.e., face images or speaker
recordings) are captured in uncontrolled environments. Iris and retinal recogni-
tion, on the other hand, exhibit high recognition accuracy, but require intrusive
acquisition systems [2]. Opposed to these recognition systems, palmprint-based
recognition is considered both user-friendly as well as fairly accurate and thus
provides an attractive alternative to other biometric systems.



Existing (unimodal) palmprint recognition systems can according to [3] (based
on the employed feature extraction technique) be classified into one of three
groups: texture-based (e.g., [4]), line-based (e.g., [5, 6]) and appearance-based
(e.g., [7, 8]). Though all feature types are relevant for palmprint-based biometric
recognition, this paper focuses on line-based features.

Most of the palmprint recognition systems that make use of line features to
verify the identity of a user employ gradient-based methods to extract charac-
teristic lines from a palmprint image (e.g., [7, 8]). While these methods work fine
on images of an appropriate quality (e.g., acquired in controlled illumination
condition, free of distortions caused by the pressure applied to the surface of
the scanner, etc.), they have problems when features have to be extracted from
palmprint images of a poorer quality. In these situations a more robust approach
is preferable. To this end, we have developed a palmprint verification system that
uses line features extracted with the phase congruency model and is therefore
relatively insensitive to image distortions caused by the acquisition procedure
(note that images acquired with a desktop scanner almost always contain regions
distorted by pressure - see Fig. 1).

Fig. 1. Distortions of a palmprint image acquired with a desktop scanner

The rest of the paper is organized as follows: Section 2 gives a short descrip-
tion of the proposed palmprint verification system; Section 3 describes a series
of verification experiments and presents their results; Section 4 concludes the
paper with some final remarks and directions for future work.

2 System Description

The block diagram of the proposed palmprint recognition system is shown in Fig.
2. It is comprised of the following five modules: an acquisition module which uses
a desktop scanner to capture an image of the palmar surface of the hand; a pre-
processing module that extracts the region of interest (ROI), i.e., the palmprint
region, from the acquired image and normalizes the extracted ROI in respect
to size, rotation and illumination; a feature-extraction module which computes
a set of phase congruency (PC) features from the normalized palmprint image
and subsequently performs the linear discriminant analysis (LDA) on the feature
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set to enhance it’s discriminatory power; a matching module that compares the
computed feature set with a template (i.e., the mathematical representation of
the feature sets extracted during the enrollment session) and outputs a matching
score; and a decision module that uses the matching score to decide whether the
person presented to the system is who he/she claims to be. A detailed description
of each of the listed modules is given in the remainder of this section.

Fig. 2. The block diagram of the proposed palmprint recognition system

2.1 Image acquisition

The image-acquisition module of the proposed palmprint recognition system
records grey-scale images of the palmar surface of the hand with the help of an
optical desktop scanner rated at a resolution of 180 dots per inch (256 grey lev-
els). When a person is presented to the system, he/she simply positions his/her
hand on the scanner with the fingers spread naturally [1]. The system then ac-
quires an image of the hand and passes it on to the preprocessing module.

2.2 Image preprocessing

After the acquisition stage, the acquired hand image is subjected to the prepro-
cessing procedure which employs the following steps to extract and normalize
the palmprint ROI from the hand image:

• Binarization: In the first step the hand region is extracted from the acquired
grey-scale hand image (Fig. 3a) using an image thresholding procedure. Since
a desktop scanner is employed in the acquisition stage the background of the
image always appears as a black area in the image and the same (global)
threshold can be used for binarization of all hand images (Fig. 3b).

• Contour extraction: In the second step the contour of the hand is extracted
from the binarized hand image and used as the foundation for the palmprint
localization procedure (an example of the extracted contour is shown in Fig.
3).
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Fig. 3. The preprocessing procedure: a) The hand image acquired by the desktop
scanner, b) The binary image of the hand region, c) The image of the contour of the
hand region, d) Extraction of the palmprint ROI, e) The normalized palmprint image

• ROI localization: To locate the palmprint ROI in the hand image, two refer-
ence points are determined in the third step of the preprocessing procedure.
The first, denoted as T1 in Fig. 3d, is located at the local minimum of the
hand contour between the little and the ring finger, while the second, de-
noted as T2 in Fig. 3d, is set at the local minimum of the contour between
the index and the middle finger. Based on the line connecting the reference
locations T1 and T2 two additional points, i.e., P1 and P2, are determined on
the hand contour as shown in Fig 3d. Finally, the palmprint ROI is located as
the square region whose upper two corners correspond to the middle points
of the line segments P1-T1 and T2-P2 [1, 9].

• Normalization: In the last step the final palmprint ROI is obtained by ro-
tating the cropped palmprint region to a predefined orientation and resizing
it to a fixed size of 64 × 64 pixels. The geometrically normalized sub-image
is ultimately subjected to an illumination normalization procedure which
removes the mean of the pixel values from the grey-scale sub-image and sub-
sequently scales all pixels with their standard deviation. An example of the
normalized palmprint region is shown in Fig. 3e.

2.3 Feature extraction

The feature vector used in the matching procedure of the proposed system is
extracted from the normalized palmprint image in two consecutive steps: in the
first step, a set of 512 phase congruency features is computed from the input
image and in the second step LDA is applied on this feature set to represent the
phase congruency features in a discriminative and compact manner.

Phase congruency features. There have been a number of palmprint recog-
nition systems presented in the literature that make use of line-based features,
e.g., [5, 6]. Typically, these systems use line detectors which scan the palmprint
image for points of high intensity gradients to extract the line features. However,
varying illumination conditions during the image acquisition stage (when images
are captured with a camera-based sensor) or deformations of the palmprint re-
gion caused by pressure applied to the surface of the scanner (when images are
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captured with an optical scanner) often result in the detection of spurious lines.
To avoid the listed difficulties, our systems employs the phase congruency model
for line feature extraction.

The model searches for points in the palmprint sub-image where the 2D log-
Gabor filter responses (of the sub-image) over several scales and orientations are
maximally in phase [10, 11].

Let G = {G(fh, θg) : h = 1, 2, ..., p; g = 1, 2, ..., r} denote the set of 2D log-
Gabor filters with p scales and r orientations and let G(fh, θg) = Ghg be defined
as:

Ghg = exp{
−[ln(f/fh)]2

2[ln(k/fh)]2
}exp{

−(θ − θg)
2

2σ2

θ

}, (1)

where f and θ denote the polar coordinates of the log-Gabor filter in the fre-
quency domain, fh denotes the filters center frequency (in our experiments it was
set to fh = 0.33 · (2.1)1−h), k defines the bandwidth of the filter in the radial
direction (the ratio k/fh is commonly set to a constant value, for example, 0.55
like it was done in our case), θg = (g − 1) · π/r represents the orientation of the
filter and σθ controls the angular bandwidth of the 2D log-Gabor filter (we used
a value of σθ = 1.2 · (π/r)).PSfrag replaements

a) b) ) d) e) f)
Fig. 4. a) The normalized palmprint image; Phase congruency image for b) p = 3 and
r = 4, c) p = 3 and r = 6, d) p = 3 and r = 8, e) p = 5 and r = 6, f) p = 5 and r = 8

Furthermore, let I(x), where x stands for the pixel location in the spatial
domain, denote the grey-scale distribution of the normalized palmprint image
(e.g., Fig. 3e). The magnitude Ahg(x) and phase φhg(x) responses of the image
I(x) at a specific scale h and orientation g of the log-Gabor filter can then be
computed as:

Ahg(x) =
√

Re2[I(x) ∗ Gs
hg] + Im2[I(x, y) ∗ Gs

hg], (2)

φhg(x) = arctan(Im[I(x) ∗ Gs
hg]/Re[I(x) ∗ Gs

hg]), (3)

where * denotes the convolution operator, Gs
hg stands for the log-Gabor filter in

the spatial domain at the scale h and the orientation g and Re[X] and Im[X]
represent the real and imaginary parts of the convolution output.

Finally, the two-dimensional phase congruency features can according to [10]
be computed using the following expression:

PC2D(x) =

∑
g

∑
h Wg(x)⌊Ahg(x)∆Φhg(x) − Tg⌋∑

g

∑
h Ahg(x) + ε

, (4)
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where Tg represents the estimated noise energy at orientation g, Wg(x) denotes
a weighting function that weights for the frequency spread, ε is a small constant
which prevents divisions by zero, the symbols ⌊ ⌋ denote the following operation:

⌊X − T ⌋ =

{
X − T , if X > T

0 , otherwise
, (5)

and ∆Φhg(x) is a phase deviation measure defined as:

∆Φhg(x) = cos(φhg(x) − φg(x)) − | sin(φhg(x) − φg(x))|. (6)

In equation (6) φhg(x) denotes the phase angle at the location x of the log-
Gabor filter phase response at scale h and orientation g, while φg(x) represents
the mean phase angle at the orientation g.

As we can see from the above discussion, phase congruency features are com-
puted over multiple scales and orientation (using all filters from G) making the
feature extraction procedure robust to noise, illumination variations and image
contrast. In addition to its robustness, the presented model also successfully
explains the human perception of line (or edge) features [10].

Once a hand image is acquired, the palmprint sub-image extracted, properly
normalized and transformed using the described phase congruency model, the
final feature vector x is constructed by dividing the phase congruency image into
a number non-overlapping blocks of size 4 × 4 pixels and then computing the
mean value and standard deviation of the pixels in each of the 256 blocks (recall
that we used palmprint images of size 64 × 64 pixels), i.e.,

x = (µ1, σ1, µ2, σ2, ..., µ256, σ256)
T . (7)

However, as we can see from Fig. 4, the line features extracted with the phase
congruency model vary in their appearance when log-Gabor filters with different
numbers of scales and orientations are used. The effects of these parameters on
the verification performance of the proposed system will be evaluated in Section
3.2.

Linear discriminant analysis. Let us consider a set of n d-dimensional train-
ing phase congruency feature vectors xi arranged in a d×n column data matrix
X, i.e., X = [x1,x2, ...,xn] and let us assume that each of the feature vectors
belongs to one of C classes (i.e., subjects - clients of the system). Based on the
training data contained in the matrix X, LDA first identifies a subspace (i.e.,
a subspace projection matrix W) by maximizing a class separability criterion
in the form of the ratio of the between-class to the within-class scatter matrix
and then projects the phase congruency feature vectors into this subspace. The
class separability criterion (sometimes called Fisher’s discriminant criterion) is
defined as follows [7]:

J(W) =
|WT SBW|

|WT SW W|
, (8)
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where SB and SW denote the between-class and within-class scatter matrices
defined as:

SB =

C∑
i=1

ni(µi − µ)(µi − µ)T , (9)

SW =

C∑
i=1

∑
xj∈Ci

(xj − µi)(xj − µi)
T , (10)

and the symbols µ, µi, ni and Ci represent the global mean of all training
feature vectors, the mean vector of the training feature vectors from the i-th
class, the number of feature vectors in the i-th class and the label of the i-th
class respectively.

It can be shown that the LDA transformation matrix W consists of the
eigenvectors corresponding to the first m ≤ C − 1 largest eigenvalues of the
following eigenproblem:

S−1

W SBwi = λiwi, i = 1, 2, ...,m (11)

Using the calculated transformation matrix W = [w1,w2, ...,wm] an arbitrary
phase congruency feature vector x can be projected into the LDA subspace with
the help of the following expression:

y = WT x. (12)

However, in the field of palmprint recognition the number of training samples
(i.e., training phase congruency feature vectors) per class is usually significantly
smaller than the number of elements contained in each of the samples. This fact
makes the matrix SW singular (its’ rank is at most n−C) and the computation of
the transformation matrix W using equation (11) impossible. To overcome this
problem, we first projected the matrices SB and SW into the principal component
subspace to ensure that the matrix SW is nonsingular and then performed LDA
in this subspace. A detailed description of the employed approach can be found
in [7].

2.4 Matching and decision

At the matching stage the live feature vector y of a given input palmprint image
computed with the help of the procedure described in the previous section is
compared to the template yi associated with the claimed identity. The following
similarity measure is used to produce the matching score:

d(y,yi) =
|yyT

i |√
yyT yiy

T
i

. (13)

If the value of the normalized correlation coefficient defined by (13) is higher
than the decision threshold the live feature vector and consequently the input
palmprint image are recognized as genuine, otherwise they are recognized as
belonging to an impostor.
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3 Experiments

3.1 Database and experimental setup

The proposed palmprint verification system was tested on hand-images of 200
subjects. During the acquisition stage each of the subjects was asked to position
his/her hand on the desktop scanner 10 consecutive times, resulting in a database
of 2000 images.

For testing purposes the subjects were randomly split into three groups,
namely, the client group (120 subjects), the evaluation impostor group (30 sub-
jects) and the test impostor group (50 subjects). Images belonging to subjects
from the client group were further divided into sets of training images (4 per
subject), evaluation images (3 per subject) and test images (3 per subject). Im-
ages from the client training set were used to construct client-templates (i.e.,
mean feature vectors), images from the impostor as well as the client evaluation
set were used to compute the decision threshold and to optimize the system
parameters (i.e., number of scales and orientations of the 2D log-Gabor filters)
while the remaining test sets were employed exclusively for the final performance
evaluation. During this last stage each of the 3 client test images was compared
to the corresponding class in the database (a total of 3×120 = 360 experiments),
whereas all 10 impostor test images were compared to each of the classes in the
database (a total of 10 × 50 × 120 = 60, 000 experiments).

Three error rates were used in our experiments to rate the accuracy of the
proposed palmprint verification system: the false acceptance rate (FAR) which
measures the frequency of falsely accepted impostors, the false rejection rate
(FRR) which measures the frequency of falsely rejected clients and the equal
error rate (ERR) that is defined as the error rate at which the FAR and FRR
are equal. In addition to providing an accuracy measure for the proposed system,
the ERR (obtained on the evaluation sets) was used for determining the decision
threshold.

3.2 Parameter tuning

Our first set of experiments assessed the performance of the proposed palmprint
verification system with respect to the number of scales and orientations of the
2D log-Gabor filters used to compute the phase congruency features. The system
was tested for 5 different combinations of the values of p and r (see Section 2.3).
In all cases the number of features was set to its maximal value, i.e., m = 119.
The results of the experiments are presented in Fig. 5 and Table 1 which show
the ROC curves and the values of the FAR and FRR at the ERR operating point
respectively.

As we can see, varying the number of filter orientations had only a small effect
on the verification performance of the proposed system. Larger differences were
detected when the number of scales was changed. Furthermore we can notice
that the error rates at the equal error operating point for images processed with
log-Gabor filters at 3 scales and different numbers of orientations are virtually

A Palmprint Verification System Based on Phase Congruency Features           121



0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

p=3, r=4

p=3, r=6

p=3, r=8

p=5, r=6

p=5, r=8

FAR (%)

F
R

R
(%

)

Fig. 5. The ROC curves of the performed experiments

Table 1. The FRRs and FARs of the experiments at the equal error operating point

No. of scales No. of orient. FAR(%) FRR(%)

p = 3 r = 4 0.26 0.28

p = 3 r = 6 0.26 0.28

p = 3 r = 8 0.25 0.28

p = 5 r = 6 0.50 0.83

p = 5 r = 8 0.28 0.56

the same. However, by looking at Fig 5 we can see that the combination of 3
scales and 8 orientations performed the best (considering all possible operating
points).

3.3 Performance evaluation

The goal of the second set of verification experiments was to assess the perfor-
mance of the proposed system on an independent set of test images. Addition-
aly, three popular palmprint-feature extraction techniques were implemented,
trained and compared to our approach. Specifically the following methods were
implemented for comparison: the eigenpalm approach [8], the fisherpalm appo-
rach [7] and a line-feature [5] based approach (denoted as LFBA in Table 2)
in combination with LDA. Note, however, that the original LFBA, i.e., as pre-
sented in [11], does not use LDA to extract the final palmprint features. LDA
was added to allow for a fair comparison with the proposed approach which also
includes a LDA step.

The results of the experiments in terms of the FRR and FAR obtained with
the threshold that ensured equal error rates on the evaluation set are presented
in Table 2. Two findings should be emphasized based on the these results: first,
the FRRs of all methods increased in the final testing stage, most likely due to an
unrepresentative training set which did not account for all possible variations in
the appearance of the line features of the client images; and second, the proposed
line features resulted in the best verification performance of all tested methods.
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Table 2. Comparison of the FRRs and FARs for different feature extraction techniques

Feature extraction procedure FAR(%) FRR(%)

Eigenpalm 2.94 3.61

Fisherpalm 0.30 1.94

LFBA 0.39 2.22

Proposed approach 0.26 1.39

4 Conclusion and future work

We have presented a palmprint recognition system that used phase congruency
and linear discriminant analysis to extract discriminative palmprint features.
The system was tested on a database of 2000 hand images and achieved a false
acceptance rate of 0.26% and a false rejection rate of 1.39% using the decision
threshold that ensured equal error rates on an independent evaluation set. Based
on these encouraging results, our future work will be focused on the integration
of phase congruency features into a multi-modal (i.e., intra-modal) palmprint
recognition system.
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Abstract. In this paper we describe a number of experiments relating to PCA-

based palmprint and face recognition. The experiments were designed to 

determine the influence of different training sets used for the construction of the 

eigenpalm and eigenface spaces on the recognition efficiency of biometric 

systems. The results of the recognition experiments, obtained using three 

palmprint databases (PolyU, FER1, FER2) and one face database 

(XM2VTSDB), suggest that it is possible to design a biometric recognition 

system that is robust enough to successfully recognize palmprints (or faces) 

even in cases when the eigenspaces are constructed from completely 

independent sets of palmprints or face images. Furthermore, the experiments 

show that for PCA-based face-recognition systems with an eigenspace that is 

constructed by using palmprint-image databases, and PCA-based palmprint-

recognition systems with an eigenspace that is constructed using a face-image 

database, the recognition rates are unexpectedly improved compared to the 

classic approach. 

Keywords: Biometrics, Eigenface, Eigenpalmprint, Face recognition, 

Palmprint recognition, Principal Component Analysis 

1 Introduction 

The hand and the face provide the source for a number of physiological biometric 

features that are used in unimodal and multimodal biometric systems for user 

authentication or recognition [1]–[4]. Principal component analysis (PCA) [5], also 

known as the Karhunen-Loeve transform, is commonly used for both palmprint [1], 

[6]–[8] and face recognition [9]–[11]. PCA is one of the so-called appearance-based 

methods, which operate directly on an image-based representation and extract features 

in the subspace derived from the training images. The subspace constructed using a 

PCA is defined by the principal components of the distribution of the training set 

consisting of the images of the person's palmprints (or face).  This subspace is called 

the eigenspace. 

The key point is that these images are selected from the images of all the people 

that will be enrolled in the system. In other words, in a biometric-based identification 

or verification system a PCA is used to transform the data from an original, high-



dimensional space into a feature space with significantly fewer dimensions. A PCA 

constructs the projection axes (which define the feature space with lower 

dimensionality) based on the training samples of the users taken from the original 

space. After that, one or more samples from the training set are projected onto these 

axes to obtain the feature vectors that represent the users’ template(s), to be stored in 

a database. These templates are used in the matching process with the users’ test 

templates (during testing of the system). The stored templates can also be treated as 

enrolled users’ templates and they are used for matching with the users’ live templates 

during the authentication phase. 

Since the exact distribution of the palmprints (or the face images) cannot be 

obtained from the training samples, the projection axes are calculated based on an 

approximation with the limited set of training samples. It is clear that the orientations 

of the axes depend on how good is the approximation of the distribution. The more 

training samples we have (assuming that the samples are randomly selected) the better 

is the approximation, and the projection axes are then closer to their ideal positions. In 

this case ideal means the positions of the axes obtained from the exact distribution.  

We based our experiments on the assumption that for a target biometric-based 

recognition system the distribution of the samples can be equally or even better 

approximated with the large number of samples that are not all obtained from the 

users of the target system than it can be with the limited set of samples only available 

during the training phase, taken from the users that will be enrolled in the system. Our 

intension here was to determine whether it is possible to avoid the problem of 

recalculating or updating the eigenspace and the stored templates for each new user 

that is going to be enrolled in the system. 

We then extended our experiments in an unusual way, i.e., we used the set of face 

images for the construction of the eigenspace that is then used in the PCA-based 

palmprint-recognition system, and, vice versa, the set of palmprint images were used 

to calculate the eigenspace that is then used in the PCA-based face-recognition 

system.  

2 Experiments and Results 

The following sets of experiments were performed: 

• Testing of the palmprint-recognition system with a dependent eigenspace, i.e., the 

system where the eigenspace was constructed from the training set of palmprint 

images of the users that are used for the enrolment; 

• Testing of the face-recognition system with a dependent eigenspace; 

• Testing of the palmprint-recognition system with an independent eigenspace, i.e., 

the system where the eigenspace was constructed from an independent set of 

palmprint images that do not belong to the users of the system; 

• Testing of the palmprint-recognition system that is based on the eigenspace 

obtained from the training set of the face images; 

• Testing of the face-recognition system that is based on the eigenspace obtained 

from the training set of the palmprint images. 
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In order to conduct the above sets of experiments, two types of biometric-based 

recognition systems were built: a system with a dependent eigenspace and a system 

with an independent eigenspace. Both types are related to palmprint- and face-based 

recognition. Fig. 1 shows the block diagram of the system with a dependent 

eigenspace; Fig. 2 shows the block diagram of the system with an independent 

eigenspace. 

 

 

Fig. 1. Block diagram of the system with a dependent eigenspace 

 

Fig. 2. Block diagram of the system with an independent eigenspace 

For both types of system we used the 1-Nearest Neighbour rule as the classification 

method, with the Euclidean distance as a measure of the dissimilarity. 
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2.1 Databases 

There are four basic databases that are used in our experiments: FER1, FER2, 

XM2VTSDB [12] and PolyU [13]. For the purpose of the experiments we collected 

two independent palmprint databases (FER1 and FER2) with images taken using a 

desktop scanner. The structure of the databases is as follows: FER1 has a total of 545 

palmprint images taken from 109 people with 5 images per person and FER2 has a 

total of 752 images collected from 94 people with 8 images from each. The databases 

were created on different occasions and it was ensured that none of the people who 

gave their palmprints for one of the databases did the same for the other one. The 

images were scanned at 256 grey levels, with a resolution of 180 dpi for the FER1 

database and 150 dpi for the FER2 database. 

The XM2VTSDB database contains 1180 face images taken from 295 people, with 

4 images from each person. 

The PolyU database contains palmprint images from 386 different palms, captured 

with a specialized device using a camera. Because of the number of images it 

contains, the PolyU database is suitable for our experiments to test the systems with 

an independent eigenspace. For this purpose we randomly selected images from the 

PolyU database to form three databases to be structurally equal (the same number of 

people and images per person) to FER1, FER2 and XM2VTSDB databases. These 

databases are referred to as PolyU1, PolyU2 and PolyU3, respectively. 

Table 1. shows the databases used in the experiments. 

Table 1. Databases used in the experiments 

Database Number of users Total number of images 

FER1 

(palmprint, 150dpi/256 grey levels) 

 

109 

 

545 (5 images per user) 

FER2 

(palmprint, 180dpi/256 grey levels) 

 

94 

 

752 (8 images per user) 

PolyU  

(palmprint, CCD based capturing 

device) 

 

386 

 

7752  

XM2VTSDB 

(face) 

295 1180 (4 images per user) 

PolyU1 (derived from PolyU) 109 545 (5 images per user) 

PolyU2 (derived from PolyU) 94 752 (8 images per user) 

PolyU3 (derived from PolyU) 295 1180 (4 images per user) 

2.2 Preprocessing 

From the palmprint images we extracted a square region of interest (ROI) from the 

centre of the palm. The ROI is defined on the basis of two stabile points on the 

contour of the hand: the first is located in the valley between the little finger and the 

ring finger, and the second is located between the index finger and the middle finger. 

The preprocessing phase for the scanned images from the FER1 and FER2 databases 

and the camera images of the PolyU database can be summarized in the following 

steps: (i) global thresholding; (ii) border following; (iii) locating the region of interest 
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(ROI); (iv) extracting the ROI and compensating for its rotation; (v) applying the 

Gaussian mask; (vi) resizing the ROI to a size of 40 by 40 pixels; and (vii)  
performing a histogram equalization. Fig. 3 illustrates the phases of preprocessing for 

a palmar hand image from the FER1 database. 

 

 
           a)                                       b)                                       c) 

Fig. 3. Illustration of the preprocessing of a palmar hand image from the FER1 database: a) 

input image, b) localization of the ROI, and c) ROI (40x40 pixels) before and after the 

histogram equalization 

The face images from the XM2VTSDB database were normalized using the 

normalization method described in [8]. Using this method the elliptical region of the 

face is detected and the background is removed. To obtain images compatible with 

the palm ROI images, the centre of the normalized image, with a size of 40 by 40 

pixels, is extracted and a histogram equalization is performed (Fig. 4).  

 

 
           a)                                                       b)                         c) 

Fig. 4. Illustration of the preprocessing phases for face images: a) input image, b) normalized 

image, and c) cropped ROI (40x40 pixels) before and after the histogram equalization 

2.3 Palmprint- and face-recognition systems with a dependent eigenspace 

The experiments were performed according to the scenario described in Fig. 1. The 

results obtained in these experiments were used as a reference for comparing with the 

other systems.  
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The number of images per person used for the training and enrolment varied, 

depending on the structure of the database. In the case of the FER1 and PolyU1 

databases three of five images from each person were used for the training and 

enrolment, and the remaining two images were used for the recognition. This means 

that the total number of images used for the construction of the eigenspace was 109 x 

3 = 327, where 109 is the number of people. In the case of the FER2 and PolyU2 

databases, four images per person were used for the training and enrolment, and the 

remaining four were used for the testing. The eigenspace was built from a set of 94 x 

4 = 376 images, where 94 is the number of people. In the last case, for the databases 

XM2VTSDB and PolyU3, two images per person were used for the enrolment and 

training, and the remaining two were used for the testing. A total of 295 x 2 = 590 

images were used to build the eigenspace, where 295 is the number of people. 

During the enrolment phase, all the training images that were used to build the 

eigenspace were projected onto it to form a set of users’ templates and then stored in 

the system database. 

Recognition rates were calculated for the various lengths of the feature vectors, i.e., 

for the number of PCA components. In each experiment the training and testing 

images were randomly picked from the set of available samples. The recognition rates 

were averaged over 10 experiments, except for the XM2VTSDB and the 

PolyU3databases where, because of the small set of samples, only six experiments 

were performed. The results are shown in Table 2.   

Table 2. Recognition rates of the systems with a dependent eigenspace 

Recognition rates (%) 

Number of PCA components 

Database 

 

25 50 100 150 200 250 

FER1  94.13 96.19 96.61 96.88 96.84 96.84 

FER2  89.87 92.29 93.32 93.51 93.56 93.59 

PolyU1 92.94 94.54 94.50 94.40 94.27 94.17 

PolyU2  93.48 94.97 95.27 95.16 95.16 95.11 

P
a
lm

p
ri

n
t 

PolyU3 84.66 87.77 86.86 86.44 85.68 85.57 

 Face: 

XM2VTSDB 68.98 75.80 78.31 78.68 79.09 79.22 

 

The best palmprint-recognition rates vary from 93.59% to 96.88% for the different 

databases and for the different lengths of the feature vectors. The best result for the 

face recognition was obtained for 250 components of a feature vector (79.22%). 

2.4 Palmprint-recognition systems with an independent eigenspace 

The experiments with an independent eigenspace were performed by following the 

scenario described in Fig. 2. In each experiment one palmprint database was used for 

the construction of the eigenspace (the training database) and another one for the 

enrolment and recognition (the testing database). The two databases were chosen to 

be structurally equal, i.e., with the same number of images per person and the same 
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number of people. This means that in the case when the PolyU1 database was used for 

the construction of the eigenspace, the FER1 database was used for the enrolment and 

testing, and vice versa, when the FER1 database was used for the construction of the 

eigenspace, the PolyU1 database was used for the enrolment and testing. Since in the 

experiments with the dependent eigenspace not all the images from the database could 

be used for the construction of the eigenspace (some of the images were separated for 

the testing set) we did the same in these experiments. We first performed the tests 

with the eigenspace constructed from part of the database, like it was with the 

dependent eigenspace (for the FER1 and PolyU1 databases, 327 instead of 545 

images), and then we performed the same set of experiments, but this time using the 

eigenspace constructed from the complete databases (all 545 images in the case of the 

FER1 and PolyU1 databases).  

The results of the palmprint-recognition systems with an independent eigenspace 

are summarized in Table 3. The results of the experiments where the complete 

database was used for the construction of the eigenspaces are marked with (*) (Table 

3.).  

The selection of the enrolment and testing samples, as well as the way in which the 

recognition rates were calculated, was the same as described for the experiments with 

a dependent eigenspace. In this way the obtained results were suitable for a 

comparison with the results from Table 2.  

Table 3.  Recognition rates of the palmprint-recognition systems with an independent 

eigenspace 

Recognition rates (%) 

Number of PCA components 

Database for 

eigenspace 

Enrolment 

and testing 

database 
25 50 100 150 200 250 

PolyU1 FER1 89.77 93.21 95.14 95.96 96.06 96.06 

PolyU1 (*) FER1 92.02 95.64 96.74 97.02 96.97 97.11 

FER1  PolyU1 94.13 95.23 95.55 95.83 95.78 95.78 

FER1 (*) PolyU1 94.26 95.60 96.15 95.55 95.78 95.50 

PolyU2  FER2 85.56 90.29 92.85 93.19 93.19 93.35 

PolyU2 (*) FER2 85.77 90.43 92.87 93.30 93.51 93.78 

FER2 PolyU2 93.61 95.27 95.74 95.90 95.85 95.61 

FER2 (*) PolyU2  93.27 95.24 95.77 95.82 95.66 95.53 

(*) – eigenspace constructed from the complete database  

The results show that the use of a larger number of images (the complete database) 

for the construction of the eigenspace improved the recognition rates for all the 

databases, except in the case when the PolyU2 database was used for the enrolment 

and testing and the FER2 database was used for the construction of the eigenspace. In 

this case the results deteriorated slightly. The improvement is particularly noticeable 

when the FER1 database was used for the enrolment and testing.  

When comparing the results to those systems with a dependent eigenspace (Table 

2.) we can see that for all the databases, the overall best recognition rates were better 

for the systems with an independent eigenspace (!). In the case when the PolyU1 and 

PolyU2 databases were used for the enrolment and testing the system with an 
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independent eigenspace outperformed the system with a dependent eigenspace, when 

a small number of PCA components (25) was used, which is not the case for the 

FER1 and FER2 databases. We should draw attention to the case of the PolyU1 

database, where for the same number of PCA components (50) the recognition rate of 

the system with an independent eigenspace (95.60%) was more than 1% better than 

the best result of the system with a dependent eigenspace (94.54%). In the same case 

the best result of the independent eigenspace system was 96.15%, which was 

achieved for 100 PCA components. 

In the worst case for the system with an independent eigenspace, which happened 

when the FER1 database was used for the enrolment and testing, the difference 

between the best recognition rates was less than 1% (96.88% compared to 96.06%), in 

favour of the system with a dependent eigenspace. The overall best recognition rate 

(97.11%) was achieved for the same database in the system with an independent 

eigenspace, where the whole set of images from the PolyU1 database was used for the 

construction of the eigenspace. The above results support our assumption outlined in 

the Introduction. 

2.5 Palmprint recognition using a face eigenspace and face recognition using a 

palm eigenspace 

We extended, in a slightly unusual way, the experiments with the independent 

eigenspace in such a manner as to use the eigenspace constructed from the face 

images in the palmprint-recognition system, and vice versa, the eigenspace 

constructed from palmprint images in the face-recognition system. For this purpose 

we used the XM2VTSDB face database and the structurally equal PolyU3 palmprint 

database (see Table 1.).  

We first performed the palmprint-recognition experiments using only two face 

images per person from the database XM2VTSDB for the construction of the 

eigenspace, as was the case in the system with a dependent eigenspace, and then using 

all the face images from the database XM2VTSDB.  

After that, in a similar way, we performed the face-recognition experiments using 

only two palmprint images per person from the database PolyU3, and then using the 

complete database PolyU3 for the construction of the eigenspaces. 

The results of the palmprint- and face-recognition are shown in Table 4. The 

recognition rates are averaged over six experiments. The experiments where all the 

images of the database were used for the construction of the eigenspace are marked 

with (*). 

For the palmprint-recognition systems the best recognition rate was improved from 

87.77%, in the system with a dependent eigenspace (for PolyU3 database, Table 2.), 

to 89.38%, in the system with an eigenspace constructed from the face images (Table 

4.) (!). In the latter the best recognition rate was achieved when using a larger number 

of PCA components, i.e., 150, in comparison to the dependent system, where the best 

recognition rate was for 50 PCA components.  

Use of a larger set of palmprint images for the construction of the eigenspace 

improved the face-recognition results compared to the case when the XM2VTSDB 

face database was used for the enrolment and testing. The best result for the face 
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recognition improved from 79.22%, in the system with a dependent eigenspace (see 

Table 2.), to 80.14%, in the system that used the eigenspace constructed from the 

palmprint images of the PolyU3 database, and to 81.10% when the complete PolyU3 

database (*) was used. In both face-recognition systems the best results were achieved 

using the same number of PCA components (250).  

Table 4. Recognition rates of the palmprint- and face-recognition systems 

 Recognition rates (%) 

Number of PCA components Database for 

eigenspace 

Enrolment and 

testing database 25 50 100 150 200 250 

XM2VTSDB  PolyU3 80.68 87.29 88.98 89.38 89.12 88.92 

XM2VTSDB (*) PolyU3 80.90 87.09 88.64 88.70 88.59 88.36 

PolyU3  XM2VTSDB 59.35 70.81 77.51 79.35 79.83 80.14 

PolyU3 (*) XM2VTSDB 59.57 71.07 78.84 80.02 80.56 81.10 

(*) – eigenspace constructed from the complete database  

3 Conclusions 

In this paper we describe a number of experiments with PCA-based palmprint and 

face recognition. The experiments were designed to determine the influence of the 

different training sets used for the construction of the eigenpalm and eigenface spaces 

on the recognition accuracy of biometric-based recognition systems. The experiments 

can be divided into the following sets: 

i) in the first set of experiments we performed a test of the PCA-based 

palmprint-recognition systems using a classic approach, where the 

eigenspaces were constructed from the training sets of palmprint images of 

the users that are used for the enrolment. The same approach was used for a 

PCA-based face-recognition system.  

ii) in the second set of experiments, in order to test the robustness of the 

systems, the eigenspaces were constructed from an independent set of 

palmprint images from the users that were not enrolled in the system.  

iii) in the third set of (unusual) experiments, for the PCA-based palmprint 

recognition we used the eigenspaces calculated from the face images, and for 

the PCA-based face recognition we used the eigenspaces obtained from the 

palmprint images.  

A summary of the results is as follows: 

i) comparing the results of the palmprint recognition obtained with the PCA-

based systems with a dependent eigenspace (Table 2.) with the results 

obtained with the PCA-based systems with an independent eigenspace (Table 

3.) it is clear that for all the databases the overall best recognition rates are 

better for the systems with an independent eigenspace (!); 

ii) for PCA-based face-recognition systems with an eigenspace constructed 

using palmprint-image databases, the recognition rates were unexpectedly 
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improved (compared to the classic approach) from 79.22% (Table 2.) to 

80.14% and 81.10% (Table 4.) for the PolyU3- and PolyU3(*)-based 

eigenspaces, respectively. 

The results of the experiments obtained using the three basic palmprint databases 

(PolyU, FER1, FER2) and the three derived palmprint databases (PolyU1, PolyU2 

and Polyu3), and the single face database (XM2VTSDB) (discussed in detail in 

Section 3) led to the interesting main conclusion that it is possible to design a 

biometric-based recognition system that is robust enough to successfully recognize 

palmprints (or faces) even in the case when the eigenspaces are constructed from 

completely independent sets of palmprint or face images. From this it follows that 

there is no need to construct a new eigenspace or apply methods for an incremental 

eigenspace update [14], [15] when new users are enrolled in the system. Furthermore, 

it will be possible to install a biometric-based PCA-authentication system with 

predefined projection axes that are independent of users’ database for a specific 

application. Of course, we are aware that the above conclusions are a little rash and 

that they will have to be verified by further experiments, and so we are planning to 

test our findings on larger palmprint and face databases. 
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Abstract. This paper describes an empirical study to investigate the
performance of a wide range of classifiers deployed in applications to
classify biometric data. The study specifically reports results based on
two different modalities, the handwritten signature and fingerprint recog-
nition. We demonstrate quantitatively how performance is related to
classifier type, and also provide a finer-grained analysis to relate perfor-
mance to specific non-biometric factors in population demographics. The
paper discusses the implications for individual modalities, for multiclas-
sifier but single modality systems, and for full multibiometric solutions.

Keywords: Classifiers, signature, fingerprints.

1 Introduction

Optimising the processing of biometric identity data, whether within modali-
ties or in multimodal form, is a fundamental challenge in system design and
deployment. There are many potential options available in relation to the pro-
cessing engines which might be adopted, and any selection must be made on
the basis both of application requirements and with regard to a knowledge of
the degree of match between the underlying population data distributions and
system operating characteristics.

The availability of multiple information sources for biometric data processing
can suggest various different strategies by means of which to achieve enhanced
performance. These include, for example, selecting an optimal processing tech-
nique from among many options, combining processors to create a multiple pro-
cessor system to work on a single modality source and, ultimately, combining
multiple biometric modalities to overcome the shortcomings of any one individ-
ual modality. In each case, however, there are obvious questions to be asked
about the processing engines implemented, and the performance of which they
are inherently capable.

This paper reports on an empirical study which addresses these fundamental
questions. Specifically, we investigate the application of a wide range of differ-
ent possible techniques for the classification of biometric data. We will present
performance metrics which show quantitatively how the choice of classifier will



determine the performance which can subsequently be achieved by a system
operating within a specific modality. We then demonstrate how a lower-level
analysis can deliver more targeted selection strategies in situations where out-
come might be guided by the availability of specific information which can in-
form the decision-making process (the availability of demographic/non-biometric
data, for example). Our investigation will also contribute to the development of
approaches to the implementation of multi-classifier solutions to identification
processing based on a single modality, providing performance indicators across
a range of classifiers which might be adopted in such a multiple classifier config-
uration.

Finally, because we will present experimental data from two (fundamentally
different) modalities, our study will be valuable in pointing towards some issues
of relevance in multimodal processing configurations in future studies. We have
chosen, on the one hand, fingerprint processing to illustrate the use of a physio-
logical biometric of considerable current popularity and wide applicability and,
on the other hand, the handwritten signature, a behavioural biometric which is
currently less widely adopted, in order to give a broad base to our study and to
allow the most general conclusions to be drawn.

Our study will therefore provide both some useful benchmarking for system
implementation, and a logical starting point for further development of practical
systems for effective and efficient biometric data processing.

2 Methods And Methodology

We report some experiments based on two biometric modalities, respectively
fingerprint images and handwritten signature samples. The databases used for
experimentation are described in detail in Section 3. Since the focus of our study
is on the performance of different classifier types, we identify a pool of specific
classification algorithms giving a broad representation of different approaches
and methodologies.

In our experiments, each database is divided in two sets, one of which (con-
taining approximately 90% of the samples) is used to train the classifier and
the other of which (10%) is used to validate the method. The 10-cross-validation
method [13] is used to evaluate classifier performance. In this evaluation method,
the training set is divided into ten folds, each with approximately the same num-
ber of samples. Thus, a classifier is trained with nine folds and tested with the
remaining unused fold. Validation is performed every time the test fold is run.

The analysis of the resulting classifier performance used the statistical t-
test [15] with 95% degree of confidence. This test uses t-Student distribution to
compare two independent sets. The use of this test allows us to say whether a
classifier is statistically more accurate than another just by observing whether
the p value is smaller than the threshold established.

The pool of classifiers selected, comprising eight specific classifiers, is first
briefly described.
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Multi-Layer Perceptron (MLP) [12]: MLP is a Perceptron neural net-
work with multiple layers [18]. The output layer receives stimuli from the in-
termediate layer and generates a classification output. The intermediate layer
extracts the features, their weights being a codification of the features presented
in the input samples, and the intermediate layer allows the network to build its
own representation of the problem. Here, the MLP is trained using the standard
backpropagation algorithm to determine the weight values.

Radial Basis Function Neural Network (RBF) [5]: This adopts an
activation function with radial basis, and can be seen as a feed forward network
with three layers. The input layer uses sensory units connecting the network with
its environment. The second layer executes a non-linear transformation from the
input space through the output space performing the radial basis function.

Fuzzy Multi-Layer Perceptron (FMLP) [6]: This classifier incorporates
fuzzy set theory into a multi-layer Perceptron framework, and results from the
direct ”fuzzyfication” in the network level of the MLP, in the learning level, or
in both. The desired output is differently calculated when compared with the
MLP, the nodes which are related with the desired output being modified during
the training phase, resulting in a ”fuzzy output”.

Support Vector Machines (SVM) [16]: This approach embodies a func-
tionality very different from that of more traditional classification methods and,
rather than aiming to minimize the empirical risk, aims to minimize the struc-
tural risk. In other words, the SVM tries to increase the performance when
trained with known data based on the probability of a wrong classification of a
new sample. It is based on an induction method which minimizes the upper limit
of the generalization error related to uniform convergence, dividing the problem
space using hyperplanes or surfaces, splitting the training samples into positive
and negative groups and selecting the surface which keeps more samples.

K-Nearest Neighbours (KNN) [4]: This embodies one of the most sim-
ple learning methods. The training set is seen as composed of n-dimensional
vectors and each element represents an n-dimensional space point. The classifier
estimates the k nearest neighbours in the whole dataset based on an appropriate
distance metric (Euclidian distance in the simplest case). The classifier checks
the class labels of each selected neighbour and chooses the class that appears
most in the label set.

Decision Trees (DT) [17]: This classifier uses a generalized ”divide and
conquer” strategy, splitting a complex problem into a succession of smaller sub-
problems, and forming a hierarchy of connected internal and external nodes. An
internal node is a decision point determining, according to a logical test, the
next node reached. If this is an external node, the test sample is assigned to the
class associated with that node.

Optimized IREP (Incremental Reduced Error Pruning) (JRip) [10]:
The Decision Tree usually uses pruning techniques to decrease the error rates
of a dataset with noise, one approach to which is the Reduced Error Pruning
method. Specifically, we use Incremental Reduced Error Pruning (IREP). The
IREP tries to divide to conquer. This algorithm uses a set of rules which, one
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by one, are tested to check whether a rule matches, all samples related to that
rule then being deleted. This process is repeated until there are no more samples
or the algorithm returns an unacceptable error. Our algorithm uses a delayed
pruning approach to avoid unnecessary pruning, resulting in a JRip procedure.

Naive Bayesian Learning (NBL) [9]: This algorithm relates to a simple
probabilistic classifier based on the application of Bayes theorem with the as-
sumption of strong independence. The principle is to estimate the conditional
probability of each class label with respect to the test sample. In this method,
it is assumed that each attribute is independent of the others.

3 Experimental Study

In order to determine the performance of the classifiers described, two databases
of biometric samples were chosen, containing respectively, samples of hand-
written signatures and fingerprint images. Section 3.1 describes the signature
database and the results of an empirical investigation of classification of this
data, while Section 3.2 describes a similar investigation with respect to the fin-
gerprint samples.

3.1 Signature Database

The database contained signature samples collected as part of a BTG/University
of Kent study [11] from 359 volunteers (129 male, 230 female) from a cross-
section of the general public. The capture environment was a typical retail outlet,
providing a real-world scenario in which to acquire credible data. There are 7428
signature samples in total, where the number of samples from each individual
varies between 2 and 79, according to the distribution shown in Table 1.

Gender 2-10 samples 11-30 samples 31-50 samples 51-79 samples

Female 54 148 23 5

Male 42 66 22 9
Table 1. Distribution of sample set sizes

The data was collected using an A4-sized graphics tablet with a density of
500 lines per inch. For our study 18 representative features were extracted from
each sample. These features were:

– Execution Time: The time required to execute the signature.
– Pen Lift: The number of times the pen was removed from the tablet during

the execution process.
– Signature Width: The width of the image in mm.
– Signature Height: The height of the image in mm.
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– Height to Width Ratio: The division of the signature height by the signature
width.

– Average Horizontal Pen Velocity in X: The pen velocity in the x plane across
the surface of the tablet.

– Average Horizontal Pen Velocity in Y: The pen velocity in the y plane.
– Vertical Midpoint Pen Crossings: The number of times the pen passes though

the centre of the signature.
– M00: Number of points comprising the image.
– M10: Sum of horizontal coordinate values.
– M01: Sum of vertical coordinate values.
– M20: Horizontal centralness.
– M02: Vertical centralness.
– M11: Diagonality - indication of the quadrant with respect to centroid where

image has greatest mass.
– M12: Horizontal Divergence - indication of the relative extent of the left of

the image compared to the right.
– M21: Vertical Divergence - indication of the relative extent of the bottom of

the image compared to the top.
– M30: Horizontal imbalance - location of the centre of gravity of the image

with respect to half horizontal extent.
– M03: Vertical imbalance - location of the centre of gravity of the image with

respect to half vertical extent.

Because of the nature of the data collection exercise itself, the number of sam-
ples collected differs considerably across participants. We impose a lower limit
of 10 samples per person for inclusion in our experimentation, this constraint
resulting in a population of 273 signers and 6956 signatures for experimentation.
Table 2 shows the performance of the best individual classifiers with respect to
the signature database, where the classifier configurations used were chosen tak-
ing into account the smallest mean overall error rate. As can be seen, the error
delivered by the FuzzyMLP classifier is the smallest of the algorithms tested,
although a very wide variation in achievable performance is observed. Arrang-
ing performance indices in decreasing order also reveals a general relationship
between error rate performance and classifier complexity.

Table 3 presents a more detailed analysis of the performance results, record-
ing separately the false positive and false negative error rates, and sub-dividing
the test population into four different broad age groups. This shows that, in
general, the false negative error rate exceeds the false positive rate. However, it
is especially interesting to note (the sometimes quite marked) performance dif-
ferences between the different age groups, especially if the youngest and oldest
groupings are compared.

These results are very interesting, both because they again reveal significant
diversity in relation to the performance characteristics of different classifier ap-
proaches, but also because they point to a changing performance profile when
considered on an age-related basis. We observe error rates rising in the elderly
population group as compared with the younger signers, a factor which is ap-
parent both for false positive and false negative errors, although the increase is
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Method Error Mean ± Standard Deviation

FMLP 8.47 ± 2.92

MLP 9.88 ± 2.81

RBF 12.51 ± 2.97

SVM 12.78 ± 4.21

JRip 15.72 ± 3.12

NBL 18.74 ± 2.45

DT 17.27 ± 3.52

KNN 20.71 ± 3.18
Table 2. Error Mean ± Standard Deviation of the Signature Database

18-25y 26-40y 41-60y over 60y

Method fp fn fp fn fp fn fp fn

FMLP 0.51 1.79 0.27 1.55 0.28 1.11 0.99 1.97

MLP 0.73 1.48 0.41 1.07 0.53 1.09 1.76 2.81

RBF 0.93 2.11 0.45 1.69 0.85 1.43 2.07 2.98

SVM 0.92 2.81 0.51 1.60 0.37 1.94 1.84 2.79

JRip 0.97 3.69 0.34 2.18 0.41 2.48 1.17 4.48

NBL 1.83 3.94 0.87 2.12 0.92 2.51 2.86 5.07

DT 1.67 2.85 1.02 1.59 0.83 2.25 2.78 4.28

KNN 2.91 3.85 1.57 2.16 1.14 2.27 2.28 4.53

Table 3. False Positive (fp) and False Negative (fn) of the Signature Database

generally more marked in the former case. It is also seen that the less power-
ful classification algorithms smooth out these age-related differences, although
against a background of generally poorer error rate performance.

3.2 Fingerprint Database

The database used for our study of fingerprint data was that compiled for the
Fingerprint Verification Competition 2002 [14]. This in fact comprises four dif-
ferent (sub)-databases (designated DB1, DB2, DB3 and DB4), three of them
containing images of ”live” prints acquired with different sensors, and the fourth
containing synthetically generated fingerprint images.

Sensor Type Image Size Resolution

DB1 Optical (TouchView II - Identix) 388x374 (142 Kpixels) 500 dpi

DB2 Optical (FX2000 - Biometrika) 296x560 (162 Kpixels) 569 dpi

DB3 Capacitive (100 SC - Precise Biometrics) 300x300 (88 Kpixels) 500 dpi

DB4 Synthetic (SFinGe v2.51) 288x384 (108 Kpixels) about 500 dpi
Table 4. Devices used in the Fingerprint acquisition
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The evaluation of the real datasets was performed in three groups of 30 people
each. There were three sessions where prints from four fingers per person were
collected, and the images included variations in the collection conditions, such
as varying types of distortion, rotation, dry and moist fingers. For each dataset,
a subset of 110 separate fingers, with eight impressions per finger, was included
(880 samples at all). Each dataset is divided in two sets, set A (800 samples)
and set B (80 samples). The individuals donating the prints are different in each
dataset. Table 4 records the sensor technologies and other relevant information
for each database.

Method DB1 DB2 DB3 DB4

FMLP 16.09 ± 3.61 9.46± 2.94 13.71 ± 3.61 9.90± 2.59

MLP 20.66 ± 3.64 10.02± 2.25 16.94 ± 3.29 10.98 ± 3.59

RBF 17.78 ± 3.48 10.19± 3.64 16.09 ± 4.53 14.8± 2.67

SVM 24.94 ± 4.89 17.03± 2.81 21.97 ± 6.00 17.69 ± 3.67

JRip 23.02 ± 5.47 15.79± 3.91 13.81 ± 4.67 16.89 ± 3.99

NBL 21.27 ± 3.71 16.21± 2.77 14.83 ± 3.16 17.44 ± 2.99

DT 21.36 ± 4.61 16.00± 3.67 14.34 ± 5.02 17.69 ± 3.69

KNN 30.16 ± 6.59 23.12± 2.78 26.74 ± 5.88 23.79 ± 2.87
Table 5. Error Mean ± Standard Deviation of the Fingerprint Database

The minutiae were extracted using the NFIS2 (NIST Fingerprint Image Soft-
ware 2) [1]. Each minutia is represented by eight indicators, as follows:

– Minutia Identifier
– X-pixel Coordinate
– Y-pixel Coordinate
– Direction
– Reliability Measure
– Minutia Type
– Feature Type
– Integer Identifier of the feature type

As each finger presents a different number of detectable minutiae, while the
classifiers adopted need a common number of entries, it is necessary to fix the
number of minutia. During the construction of the dataset, where a sample
contains fewer minutiae than the chosen number, random non-real data was
added to compensate. On the other hand, where a sample contains too great a
number of minutiae, the excess minutiae were randomly discarded.

Table 5 shows the error rates obtained with the fingerprint data (cf. Table 2).
As was the case with the signature-based experiment, the mean error delivered
by the FuzzyMLP classifier is smaller than all other classifiers, but in this case
the pattern of classification performance across the whole tested range differs
from the previous experiment. We note, however, that the KNN classifier again

140          Márjory Abreu and Michael Fairhurst



DB1 DB2 DB3 DB4

Method fp fn fp fn fp fn fp fn

FMLP 4.18 11.91 2.97 6.49 2.72 10.99 1.86 8.04

MLP 2.73 17.93 3.55 6.47 4.55 12.39 1.21 9.77

RBF 3.86 13.92 3.94 6.25 1.21 14.88 5.25 9.55

SVM 6.07 18.87 3.77 13.26 2.30 19.67 3.97 13.72

JRip 7.03 15.99 6.13 9.66 1.89 11.92 4.30 12.59

NBL 2.63 18.64 5.44 10.77 4.20 10.63 4.96 12.48

DT 2.93 18.43 6.29 9.71 3.60 10.74 2.76 14.93

KNN 8.46 21.7 7.13 15.99 5.02 21.72 6.72 17.07

Table 6. False Positive (fp) and False Negative (fn) of the Fingerprint Database

performs the poorest. This behaviour demonstrates that this data is somewhat
more challenging than the signature case, largely because of the problem of
missing minutiae in the samples, but also reveals common trends in classifier
performance across modalities.

Table 6 shows error rates broken down into false positive and false negative
rates. The false positive rate is greater than the false negative, and performing
the t-test between the two classifiers with the smaller error means gives the
figures shown in Table 7. This shows that the FuzzyMLP is statistically more
accurate than the classifiers returning the second largest correct mean.

Database Classifiers Tested p Value

DB1 FMLP x RBF 0.000451

DB2 FMLP x MLP 0.066

DB3 FMLP x JRip 0.433

DB4 FMLP x MLP 0.00779
Table 7. T-test to Fingerprint Database

The available literature reports a number of studies [2] [3] [7] [8] using this
database, with a particular focus on DB3 because of its particularly poor image
quality. Our study shows some particularly interesting characteristics in relation
to these studies, enhancing current insights into this important classification task
domain.

4 Discussion and Conclusions

In this paper we have reported on an empirical study of classifier performance
in typical biometric data classification tasks. Although some caution needs to
be exercised in interpreting such results, especially in generalizing specific in-
dicators, this study provides some pointers to useful practical conclusions, as
follows:
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– We have provided some empirical data which demonstrates the wide vari-
ability in identification performance in relation to classifier selection for a
given modality. This is seen to be the case both when the principal index
of performance is absolute overall error rate and, perhaps most significantly,
also when the balance between False Acceptance and False Rejection is con-
sidered.

– Although caution is advisable when pointing to any individual classifier as
representing a ”best” choice, our experiments do reveal some general trends
concerning the relative merits of different classification approaches which,
while not absolute, may be useful pointers to selection strategies.

– A finer-grained analysis of performance within a specific modality can also
generate useful practical insights into the relation between lower-level fac-
tors and performance returned using different classification approaches. In
relation to the signature modality, for example, even our basic analysis of dif-
ferent age profiles within a population reveals important information about
changing patterns of vulnerability with respect to system performance in-
dicators across the age spectrum. This could be very significant in system
optimisation in a number of application scenarios.

– Multiclassifier solutions to single modality configurations are under-represented
in the literature, and yet the multiclassifier methodology is widespread and
often very effective in many application domains. Our empirical study pro-
vides relevant information to inform further investigation of this approach
to enhancing identification performance.

– Despite the fact that multiclassifier systems can combine the benefits of many
classifiers, they do not necessarily provide entirely ”intelligent” solutions. It
may be advantageous for the classifiers to be more interactive taking account
of their individual strengths and weaknesses. Multiagent systems offer such
a possibility, and our results provide a starting point for designing a novel
solution based on such an operating principle.

– Multibiometric solutions are now widely recognised to offer advantages not
only in enhancing overall system performance, but also, significantly, in of-
fering greater flexibility and user choice in system configuration. This study
provides some initial insights into how to match classifiers and modality-
specific data in determining an optimal configuration. Moreover, although
there is now an extensive literature on modality combination, adopting the
signature as one of the target modalities is a relatively little used option, and
our benchmark performance characterisation can provide a starting point for
a productive study of optimal modality selection.

This study therefore both provides some quantitative data to characterise
some common approaches to classifier implementation for application to practi-
cal scenarios in biometrics, and sets out some possibilities for developing more
sophisticated and effective strategies for developing enhanced practical systems
in the future.

142          Márjory Abreu and Michael Fairhurst



Acknowledgment

The authors gratefully acknowledge the finantial support given to Mrs Abreu
from CAPES (Brazilian Funding Agency) under grant BEX 4903-06-4.

References

1. Nist Fingerprint Image 2. User’s guide to.
2. M. M. A. Allah. Artificial neural networks based fingerprint authentication with

clusters algorithm. Informatica (Slovenia), 29(3):303–308, 2005.
3. M. M. A. Allah. A novel line pattern algorithm for embedded fingerprint authen-

tication system. ICGST International Journal on Graphics, Vision and Image
Processing, 05:29–35, March 2005.

4. S. Arya, D. M. Mount, N. S. Netanyahu, R. Silverman, and A. Y. Wu. An optimal
algorithm for approximate nearest neighbor searching fixed dimensions. J. ACM,
45(6):891–923, 1998.

5. M. D. Buhmann. Radial Basis Functions. Cambridge University Press, New York,
NY, USA, 2003.

6. A. M. P. Canuto. Combining Neural Networks and Fuzzy Logic for Aplications in
Character Recognition. PhD thesis, Department of Electronics, University of Kent,
Canteburry, UK, Maio 2001.

7. Y. Chen, S. C. Dass, and A. K. Jain. Fingerprint quality indices for predicting
authentication performance. In AVBPA, pages 160–170, 2005.

8. S. Chikkerur, A. N. Cartwright, and V. Govindaraju. Fingerprint enhancement
using stft analysis. Pattern Recognition Letter, 40(1):198–211, 2007.

9. C. Elkan. Boosting and naive bayesian learning. Technical report, 1997.
10. J. Fürnkranz and G. Widmer. Incremental reduced error pruning. In ICML, pages

70–77, 1994.
11. R. M. Guest. The repeatability of signatures. In IWFHR ’04: Proceedings

of the Ninth International Workshop on Frontiers in Handwriting Recognition
(IWFHR’04), pages 492–497, Washington, DC, USA, 2004. IEEE Computer Soci-
ety.

12. Simon Haykin. Neural Networks: A Comprehensive Foundation. Prentice Hall
PTR, Upper Saddle River, NJ, USA, 1998.

13. Friedrich Leisch, Lakhmi C. Jain, and Kurt Hornik. Cross-validation with ac-
tive pattern selection for neural-network classifiers. IEEE Transactions on Neural
Networks, 9(1):35–41, 1998.

14. D. Maio, D. Maltoni, R. Cappelli, J. L. Wayman, and A. K. Jain. Fvc2002: Second
fingerprint verification competition. In ICPR ’02: Proceedings of the 16 th Inter-
national Conference on Pattern Recognition (ICPR ’02), volume 3, page 30811,
Washington, DC, USA, 2002. IEEE Computer Society.

15. T. M. Mitchell. Machine Learning. McGraw-Hill, New York, 1997.
16. C. Nello and S.-T. John. An Introduction to Support Vector Machines and Other

Kernel-based Learning Methods. Cambridge University Press, March 2000.
17. J. R. Quinlan. C4.5: programs for machine learning. Morgan Kaufmann Publishers

Inc., San Francisco, CA, USA, 1993.
18. F. Rosenblatt. The perception: a probabilistic model for information storage and

organization in the brain. pages 89–114, 1988.

An Empirical Comparison Of Individual Machine Learning Techniques In Signature And Fingerprint Classification          143



Promoting diversity in Gaussian mixture

ensembles: an application to signature

verification

Jonas Richiardi1, Andrzej Drygajlo1, and Laetitia Todesco1

Institute of Electrical Engineering
Swiss Federal Institute of Technology Lausanne

Switzerland
{jonas.richiardi,andrzej.drygajlo}@epfl.ch,

http://scgwww.epfl.ch/

Abstract. Classifiers based on Gaussian mixture models are good per-
formers in many pattern recognition tasks. Unlike decision trees, they
can be described as stable classifier: a small change in the sampling of
the training set will produce not a large change in the parameters of
the trained classifier. Given that ensembling techniques often rely on
instability of the base classifiers to produce diverse ensembles, thereby
reaching better performance than individual classifiers, how can we form
ensembles of Gaussian mixture models? This paper proposes methods to
optimise coverage in ensembles of Gaussian mixture classifiers by promot-
ing diversity amongst these stable base classifiers. We show that changes
in the signal processing chain and modelling parameters can lead to sig-
nificant complementarity between classifiers, even if trained on the same
source signal. We illustrate the approach by applying it to a signature
verification problem, and show that very good results are obtained, as
verified in the large-scale international evaluation campaign BMEC 2007.

1 Introduction

Successul ensembling methods such as bagging [3] and boosting [5] rely on the
fact that the ensemble member classifiers are unstable, that is, a small change in
the sampling of the training set will produce a large change in the trained clas-
sifier. Unstable classifiers include decision trees and neural networks [3], while
others such as näıve Bayes are considered stable [8]. In reality, there is a con-
tinuum of stability, in the sense that the amount of output change incurred
by different classifiers with respect to changes in the training set is not simply
binary (“stable” or “unstable”) [2].

Training several unstable classifiers with different sampling of the training
set is one way to produce an ensemble that is diverse. The hope is that the
training procedure produces classifiers whose output is complementary: they
yield erroneous outputs for different samples. By combining these classifiers, the
total variance can be reduced, typically leading to reductions in expected error
rates.



In many applications dealing with real-life signals, a classifier that systemat-
ically yields good results is the Gaussian mixture model (see e.g. [13]). Example
applications are speaker verification [16] or face recognition [21]. Leaving out
effects of critically small training sample sizes with respect to the model com-
plexity, Gaussian mixture models can be considered as stable classifiers. Given
that multiple-classifier systems can outperform single-classifier systems on a large
number of tasks and datasets [12], it would seem beneficial to build ensembles
of Gaussian mixture classifiers. However, as pointed out above, diversity is an
important factor for successful ensembling. How, then, can we increase diversity
in ensembles of stable classifiers?

Recent work has shown that adding components to stable classifiers before
ensembling could improve results over standard techniques such as bagging for
these classifiers classifiers. For example, in the Random Oracle technique applied
to näıve Bayes classifiers [19], the training set is split at random between the
two classifiers, and at test time the base classifier is also selected at random.
Another technique based on a hybrid of näıve Bayes and decision trees, called
Levelled Näıve Bayesian Trees [22], is to grow a decision tree whose leaves are
näıve Bayes classifiers. The hope there is that the näıve Bayes classifiers will
inherit the instability of the decision tree growing procedure, and make them
more amenable to boosting.

In this paper, to optimise the coverage of the ensemble, we propose instead
to act at different levels of the pattern recognition processing chain of individual
classifiers in order to increase diversity in ensembles of Gaussian mixture classi-
fiers, and note that this does not prevent the application of other destabilising
techniques. We should also note that, while it seems “diversity” is a desirable
property of classifier ensembles in order to reduce error rate, there is no con-
sensus on how to measure it and how it relates to ensemble performance [11],
although theoretical work in this area is progressing [14].

The rest of this paper is laid out as follows: In Section 2 we present in more
details techniques that can be used to increase diversity in ensembles of stable
classifier. In Section 3, we show the detailed application of these principles to
a multiple-classifier signature verification system based on Gaussian mixture
models. In Section 4 we provide experimental results on a signature verification
database, and Section 5 concludes the article.

2 Increasing diversity in ensembles of stable classifiers

A pattern recognition systems consists of a front-end responsible for extracting
features, a training procedure to learn the parameters of the classifier, and a
testing algorithm to obtain soft or hard output from the classifier. We will now
examine these levels in more details and how they can be modified to influence
the output of a classifier, which in turn can promote diversity in an ensemble.
In the application field of biometrics, some of these techniques fall under the
general heading of “multibiometrics” [20].
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2.1 Changes to the front-end

The front-end to pattern recognition systems uses a signal processing chain that
starts with real-world analogue signals. A schematic view is shown on Figure 1.

signal acquisition pre-processing feature extraction post-processing training

Fig. 1. Front-end for pattern recognition.

Changes in any of the processing steps will affect all other steps further
downstream, and lead to various amounts of classifier diversity. Even within
the same modality (say, infrared images), changing the sensor at the signal

acquisition stage can lead to significant differences between classifiers. In this
regard, multimodal pattern recognition can be seen as a way to obtain diverse
ensembles.

The pre-processing performed on the data can have a large influence on
the feature extraction process. Filtering, denoising, imputing missing data and
other linear and non-linear transformations of the digitised signal can lead to
significant differences further down the processing chain.

The representation of the signal as vectors of features typically involves a
non-linear transformation of the pre-processed signal. For example, the use of
Fourier transforms and related transforms such as the DCT at the feature

extraction stage change signal representation and may permit the extraction
of features that lead to classifiers complementary to those trained on other signal
representations. This technique is used in many applications such as language
recognition, where different parameterisations of speech are often combined [15],
or fingerprint recognition, where minutiae can be combined with skin pores [10].
Even within the same signal representation, it is possible to use random feature
subspace methods [7] to purposefully obtain diverse classifiers.

Finally, the post-processing stage, which typically consists of some form
of statistical normalisation of the feature vectors (mean removal being typical
in speech applications [6]), can also introduce important changes to the trained
parameters of the classifier by applying linear or non-linear transformations to
the original feature space.

2.2 Changes in the sampling of the training set

By our definition of stability, varying the sampling of the training set, a common
strategy for achieving diversity in ensembles, will not be effective for increasing
diversity in ensemble of stable classifiers (although see [19] for a more sophisti-
cated approach). Thus, we propose to concentrate efforts on other parts of the
pattern recognition system.
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2.3 Change in model complexity

Classifiers implemented as statistical models (Gaussian mixture models, genera-
tive Bayesian networks) form a family in which the number of parameters has a
great influence on classification results. For example, modifying the covariance
matrix structure (say, from diagonal to full) can substantially alter the output
of the classifier. Likewise, by modifying the number of hidden variables in a
Bayesian network corresponding to the number of components in a mixture of
Gaussians, and thereby changing the number of parameters in the model, it is
possible to decorrelate stable models that are trained from feature vectors where
everything else in the front-end (acquisition, pre-processing, feature extraction,
post-processing, samplig of the training set) is identical.

2.4 Change in scoring procedure

The same model can be used to compute a score in different ways. Depending
on the model type, this is a way to promote diversity. In this regard, the recent
technique presented in [23], whereby a hidden Markov model is used to produce
likelihood output and a Viterbi-related output which are then combined, can
be seen as a way to exploit complementarity in classifier output. However, for
GMMs, it is likely that gains obtained from combining all-components scoring
with top-components-scoring1 would be small.

3 Application: a Gaussian mixture ensemble for signature

verification

In this section, we present an application of the techniques exposed in Section 2 to
the problem of signature verification, where the Gaussian mixture model is one of
the best-performing classifiers [17]. The goal is to train a diverse set of signature
verification classifiers, so that they can be effectively combined. The Gaussian
mixture ensemble we present consists of L =6 different Gaussian mixture model
classifiers. In fact, since biometric verification problem can be cast as a series
of 2-class problems, each of the U users is modelled by one of the U Gaussian
mixture ensembles.

We do not use a measure of diversity based on the label (hard, binary) outputs
of the classifiers [11], but rather the normalised mutual information between the
scores (soft, continuous) outputs of the classifiers. We assume that having lower
mutual information between pairs of classifiers is equivalent to having a higher
diversity in the ensemble2. We use the following definition for normalised mutual
information:

1 This is a common technique in speaker recognition [1], where high model orders and
large datasets warrant the summing of some of the Gaussian components in the
likelihood computation

2 Using conditional mutual information would allow us to take into account the effect
of already having included certain classifiers in the ensemble.
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Ī(Sc1; Sc2)
4
=

I(Sc1; Sc2)√
H(Sc1)H(Sc2)

, (1)

where I(Sc1; Sc2) is the mutual information between the scores output of two
classifiers, and H(Scl) is the entropy of the scores output of the lth classifier.

3.1 Preprocessing

On some low-power signature acquisition platforms such as personal digital assis-
tants, data acquisition may produce missing values intermittently. Missing data
is also a frequent occurence in slow and fast strokes. In this case, an effective
approach is to interpolate the missing data. By using different interoplation al-
gorithms, or none at all, it is possible to introduce variability in the signal which
will be reflected further down the processing chain. Figure 2 shows the result
of two different interpolation methods on the same data. Looking at a single
classifier, it is not obvious which interpolation method is the best in terms of
accuracy.
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(a) Linear interpolation on pen-down
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Fig. 2. Signature preprocessing for recovery of missing data on BMEC 2007

A second pre-processing technique that could lead to diversity is rotation
normalisation. Indeed, in some situations, such as handheld device-based ac-
quisition, it is likely that the orientation of the signature with respect to the
horizontal axis of the acquisition surface can be very variable. We estimate the
principal axis of the signature by eigendecomposition: The eigenvector associ-
ated with the largest eigenvalue indicates the axis of greatest variance. Again,
from looking at the accuracy of a single classifier it is not obvious whether this
really is of help, but it can be used to force diversity in an ensemble.

The preprocessing used by the local and global classifiers in our ensemble is
detailed in Table 1.
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3.2 Feature Extraction

In the parametric paradigm, local, segmental, or global parameters are computed
from the pre-processed signals and used as features.

Local features are extracted at the same rate as the incoming signal: that is,
each input sample data vector corresponds to a local feature vector.

Segmental features are extracted once the signature has been cut into seg-
ments. A segment typically consists of a sequence of points for which some defi-
nition of coherence holds.

Global features summarise some property of the complete observed signature;
for instance the total signing time, pen-up to pen-down ratio, etc.

Changing the signal representation and combining the resulting classifiers is a
common technique in pattern recognition, and has been applied also to signature
verification [4]. Our Gaussian mixture ensemble consists of 5 classifiers trained
on local features, and 1 classifier trained on global features (see Table 1).

3.3 Modelling

Diversity can be enforced in ensembles of Gaussian mixture models by changing
the number of parameters used for the constituant classifiers, for instance by
changing the type of covariance matrix (diagonal, full, spherical...), or by choos-
ing a different number of Gaussian components in the mixture. A further way
of increasing diversity is by using a MAP adapation scheme instead of direct
training.

3.4 Diversity in the ensemble

The 5 GMM classifiers based on local features, denoted GL1...5, and the GMM
classifier based on global features, denoted GG, use the specific combinations of
preprocessing, feature extraction, and model orders shown in Table 1. In the ta-
ble, LI referes to linear interpolation, while B-S refers to B-spline interpolation.
Rotation indicates whether rotation normalisation is performed or not. The fea-
ture sets are as follows: feature set 1 comprises {xt, yt, ∆, ∆∆}, where xt and yt

are the sampled horizontal and vertical position of the pen. The ∆ and ∆∆ fea-
tures are numerically approximated first, respectively second derivatives of the
base features. Feature set 2 is {xt, yt, θt, vt, ∆, ∆∆}, where θt is the writing an-
gle and vt is the instantaneous writing speed. Feature set 3 is {xt, yt, zt, ∆, ∆∆},
where zt is a binary variable representing pressure. Feature set 4 comprises 11
global features, described in [18]. Lastly, different number of components are
used in the mixture, denoted user model order.

In terms of classifier output, these changes result in a diverse ensemble of
GMMs, with complementarity clearly showing on Figure 3. As could be expected,
the different parameterisation of the signal (local or global) result in the largest
diversity, but it can also be observed that changing the model order or the
preprocessing can also lead to important changes in classifier output. To put the
results in perspective, the normalised mutual information between a vector x
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Name GL1 GL2 GL3 GL4 GL5 GG

Interpolation LI B-S LI LI B-S LI

Rotation y n y n y n

feature set 1 1 1 2 3 4

user model order 24 36 2

world model order 4
Table 1. Details of classifier in the ensemble.

consisting of 1000 samples drawn at random from a uniform distribution between
0 and 1 and the vector-valued sin(x), a near-linear relationship, is 0.75. The
normalised mutual information between two vectors of dimension 1000 randomly
drawn from a uniform distribution between 0 and 1 is 0.02. Thus, it can be seen
that significant reductions in dependence between classifiers can be achieved by
applying the approach proposed here: for example classifiers GL1 and GL3 have
a normalised mutual information of 0.41, while the only difference between them
is the model order (and the random initialisation of the EM algorithm).
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Fig. 3. Mutual information between classifiers in the ensemble. Note that the diagonal
(equivalent to the entropy of each classifier) has been set to 0 for enhanced contrast.

4 Verification experiments and results

4.1 Database

The BMEC2007 development database contains 50 users, each with two sessions,
and is part of the larger BioSecure DS3 dataset. For each user, the first session
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contains 5 genuine signatures and 10 skilled forgeries3. The second session con-
tains 15 genuine signatures and 10 skilled forgeries. Signatures are acquired on a
low-power mobile platform (Ipaq PDA). This means that some data is missing,
and interpolation approaches outlined in Section 3.1 have to be applied. Further-
more, the orientation of the signatures is haphazard. The acquisition platform
only captures binary pressure (on/off) and x,y signals. No pen orientation infor-
mation is available. The low quality of the data explains why error rates are in
general high on this database compared to other signature databases.

4.2 Protocol

For each user, We train their set of classifiers (GL1...5 and GG) on the 5 genuine
signatures of the first session. We then run these classifiers on the remaining held-
out test data. Thus, for each user we obtain 15 genuine and 20 skilled forgery
scores, resulting in a total of 750 genuine signature scores and 1000 skilled forgery
scores.

The ensemble classifier (in the present case a simple mean rule, but similar
results are obtained using logistic regression) is then trained and tested with this
score data using 5-fold cross-validation.

4.3 Results

Glancing at Figure 4, it appears that the local classifiers in the ensemble offer
approximately the same performance, while the global classifier trails behind. By
ensembling local classifiers via the mean rule, it is already possible to substan-
tially lower the error rate, indicating that our coverage optimisation approach
based on changes in preprocessing, feature subsets, and modelling complexity is
effective. Further adding a global classifier, itself with different features and mod-
elling complexity, yields improved performance. This could be expected given
that global information is complementary with local information, and that time
information (signature length) is incorporated in the global feature set. While
not reported here, we have performed experiments on other signature databases
with similar results. It is interesting to note that, while classifiers GL3 and GL4

have virtually identical performances, their mutual information is low (0.3); this
is to be accounted for mainly by the rotation normalisation and the inclusion of
tangent angles in one feature set. None of them stands out in isolation, but they
can be usefully combined because of their diversity. It is certainly possible to
reduce the complexity of this ensemble by removing a few local classifiers, while
still preserving an adequate accuracy.

This ensemble performed well in the BMEC 2007 competition, comprising a
database 430 users, and has taken first place for random forgeries (about 4.0%
EER), second place for skilled forgeries (about 13.6% EER), and first place for
synthetic forgeries (about 10.7% EER).

3 These forgeries fall between levels 6 and 8 in [9, Table 3], as the forger has no visual
contact with the victim, but is allowed to see several times the dynamics of signing.
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Fig. 4. Verification results (skilled forgeries) for base classifiers (GG1...5 and GG) and
Gaussian mixture ensemble with only local classifiers (mean GG) and local and global
classifiers (mean GL + GG).

5 Conclusions

In biometric verification applications, Gaussian mixture models are generally
top performers. Other classifiers commonly used in pattern recognition, such as
decision trees or random forests, are not often used as base classifiers. We have
shown that despite their being categorised as stable, Gaussian mixture models
can serve as base classifiers in ensembles if coverage is optimised adequately. To
this end, the signal processing chain and other components of the pattern recog-
nition pipeline has to be modified to introduce variability. While the resulting
classifiers have roughly the same accuracy, they are complementary and can be
usefully combined in an ensemble.
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Abstract. The determination of hashes based on biometric data is a recent topic 
in biometrics as it allows to handle biometric templates in a privacy manner. 
Applications could be the generation of biometric templates for authentication 
or of cryptographic keys based on biometric traits. Depending on the 
application, there are different requirements with regard to possible errors. On 
one side, authentication performance based on biometric hashes as feature 
representation can be measured by common biometric error rates such as 
FNMR, FMR and EER. Thus, generated hashes for each single person have to 
be only similar in a certain degree, but not necessarily identical. On the other 
side, biometric hashes for cryptographic issues have to be identical and unique 
for each individual, although measured data from same person differs from one 
acquisition to next, or data from different people may be similar. Therefore, we 
suggest three measures to estimate the reproducibility performance of biometric 
hash algorithms for cryptographic applications. To prove the concept of the 
measures, we provide an experimental evaluation of an online handwriting 
based hash generation algorithm using a database of 84 users and different 
evaluation scenarios. 

Keywords: Biometrics, biometric hashing, collision, handwriting, measures, 
reproducibility, semantic fusion, verification 

1 INTRODUCTION 

In current biometric research, the generation of hash values based on biometric input 
is a recent topic. One goal of biometric hashing is the determination of a stable hash 
value based on a biometric trait of one person from its fuzzy input data in order to 
assure either authenticity and integrity, or confidentiality and privacy of biometric 
information. Another aim can be the generation of unique individual values for 
cryptographic purposes ([1]), since the biometric information of a person is available 



anytime and anywhere, without the need to remember secret information or to present 
a special token.  

In the following, a small selection from the variety of publications related to 
biometric hashing is presented, without neglecting others. In [2] the authors present a 
method to calculate a cryptographic key based on a spoken password. Therefore, a 12-
dimensional vector of cepstral coefficients is used as well as an acoustics model, 
which is speaker dependent. Based on these components, segmentation is carried out 
in order to create different types of features as basis of a so called feature descriptor 
which can be used as hash value. The biometric hashing method described by 
Vielhauer et al. in [3] is based on online handwriting biometrics and determines a 
feature vector of statistical parameters. These parameters are transformed into a hash 
value space using an interval mapping function, which results in a hash vector as 
feature vector representation. This method is described in more detail in section 2, 
since it was used as reference algorithm for the evaluation in this paper. Further 
methods for biometric hash generation can be found also for other biometric 
modalities, e.g. for face [4], fingerprint [5] or DNA [6]. 

This paper is structured as follows: The next section discusses relations between 
cryptographic and biometric hash functions and introduces the Biometric Hash 
algorithm, which is used as reference algorithm for our experimental evaluation. In 
the third section, new measurements are described to estimate the reproducibility 
performance of a biometric hash function motivated from [7]. The fourth section 
explains a fusion strategy of combining biometric hashes based on different 
handwritten contents. The evaluation database, methodology and the results with 
regard to biometric error rates and hash reproducibility are described in the fifth 
section. The last section concludes this paper and gives an overview of future work in 
this field of biometric research. 

2 BIOMETRIC HASHING 

Since the idea of a biometric hashing function is based on the principles of 
cryptographic hashing, the first part of this section discusses differences and 
similarities of cryptographic and biometric hash functions. In the second part, the 
reference algorithm used in our experimental evaluation is reintroduced shortly. 

2.1 Cryptographic hash functions vs. biometric hash functions 

A cryptographic hash function (h: A → B) has to fulfill different requirements ([8]): It 
has to be a so-called one-way function that provides the property of irreversibility, 
which describes the computational impossibility to determine any input data a from a 
hash value h(a). Further, the reproducibility property of a hash function has to ensure 
that if any input data a and a’ are equal, then also the output data h(a) and h(a’) are 
equal. Contrariwise, in case a and a’ are not equal, the corresponding hashes h(a) and 
h(a’) have to be unequal. This requirement is called collision resistance. A fourth 
requirement of cryptographic hashes is the bit sensitivity. It states that small changes 
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in the input data a (e.g. by alternating one bit) should lead to a big change in the 
output data h(a). 

Biometric hash functions should be also one-way functions to avoid obtaining the 
private user-related or relatable biometric input data from hashes. However, since 
biometric data is varying each time of acquisition even for the same user and trait 
(intra-class variability), and data of different people may be similar (inter-class 
similarity), reproducibility and collision resistance have to be redefined for biometric 
hashing: On one side, reproducibility for the purpose of biometric hashing means the 
identical hash reproduction for the same person and trait, although the input data 
varies within given bounds. On the other side, the collision resistance of biometric 
hash functions describes the ability to distinguish between (similar) data from 
different persons to generate different individual and unique hashes. Consequently, 
due to the intra-class variability and inter-class similarity, the bit sensitivity property 
of cryptographic hashes cannot be mapped into the biometric hash methodology. 

2.2 Biometric Hash algorithm for online handwriting biometrics 

This subsection describes our Biometric Hash reference algorithm (see [3], [9]) based 
on online handwriting. Since we developed the new measures to quantify the degree 
of changes in an optimization process of the Biometric Hash algorithm, we use it as 
reference algorithm for our exemplarily evaluation based on these new measures. 
Figure 1 shows on the left side the enrollment process of the Biometric Hash 
algorithm. The first input data is a set of n raw data samples (D1, …, Dn) derived from 
the handwriting acquisition sensor, e.g. tablet PC or PDA. 

Raw data (D1,…,Dn)
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Fig. 1. Enrollment and hash generation processes of the Biometric Hash algorithm [ViSM2002] 

The aim of the enrollment process is to generate a so-called interval matrix IM for 
each user based on its raw data and several parameters. Generally, each raw data 
sample Di (i=1,…,n) consists of a temporarily dependent sequence of physical values 
supported by the device, such as pen tip coordinates x(t) and y(t), pressure p(t) and 
pen orientation angles Altitude (Φ(t)) and Azimuth (Θ(t)). During the enrollment 
process, for each of the raw data samples Di derived from a person, a statistical 
feature vector is determined with a dimensionality of k (k=69 in the current 
implementation). IM stores for each feature the length of an interval and an offset, 
where both values are calculated based on the intra-class-variability of the person, by 
using his/her statistical feature vectors. To parameterize the hash generation, the 
tolerance vector TV is used. The TV supports an element wise parameterization of the 
statistical features during the generation of hash values by the so-called interval 
mapping function. Thus, the dimensionality of TV is also k. The TV can be determined 
for each user individually or globally by a group of persons, either based on the 
registered users or a disjoint user set. The third input data is the tolerance factor TF as 
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global hash generation parameter, which is a scalar value. Using the TF, it is possible 
to scale the mapping intervals for all feature components globally by one factor, thus 
affecting both reproducibility and collision resistance, where increasing values of TF 
lead to the tendency of increasing reproducibility at cost of increasing collision 
probabilities. The user’s identity ID is the fourth input for the enrollment process, 
which is linked to the reference data. Note that in our context, reference data is the 
output of the Biometric Hash algorithm’s enrollment mode in form of the interval 
matrix IMID that provides information for the mapping of the individual statistical 
features to the corresponding hash values, but neither the original biometric input nor 
the actual feature vectors. The right side of Figure 1 shows the hash generation 
process of the Biometric Hash algorithm. Here, the input data consists of only one 
single raw data sample DID and the interval matrix IMID of a claimed identity ID. The 
raw data DID is used to determine a k-dimensional statistical feature vector. Based on 
this vector and the IMID the interval mapping function calculates a biometric hash 
vector bID, where interval lengths and offsets provided by IMID are used to map each 
of the k statistical features to a corresponding hash value. The biometric hash vector 
can be used either for cryptographic applications (e.g. key generation) or for 
biometric verification. In the latter case, the biometric hash vector bID generated from 
the currently presented authentication sample DID is compared against the reference 
hash vector bref ID of the claimed identity ID, which in this case needs to be stored as 
additional information during the enrollment process. The classification can then be 
performed for example by some distance measurement and comparison to a given 
threshold T. On the other hand, for verification based on crypthographic hashes (e.g. 
message authentication codes, MAC) the reference hash and the hash generated for the 
currently presented data have to be identical, if and only if the hashes generated based 
on identical data. 

In this paper we study the performance of the Biometric Hash algorithm with 
regard to both, verification mode and hash generation mode, based on different 
setups, i.e. four different semantics and pair wise multi-semantic fusion. 

3 NEW PERFORMANCE MEASURES FOR BIOMETRIC 
HASHING 

Based on the biometric data obtained, a hash generation method aims to generate 
identical hashes from data of the same person and/or different hashes from data of 
different users, respectively. In order to provide a measure for the degree of the 
reproducibility and/or false generation of such hashes, we suggest the Hamming 
Distance ([10]) as already shown in [9] and [7]. In context of the comparison of two 
biometric hashes b and b’, the Hamming Distance measure determines the number of 
positions, where the two hashes are different and returns a value between 0 and the 
number of elements. In equation (1), bi and b’i are the corresponding elements of 
vectors b and b’ at index i. The component-wise comparison of bi and b’i yields 0, if 
the two elements are equal and 1 otherwise. Then the Hamming Distance between the 
hashes b and b’ is the sum of the results of all single comparisons.  
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Derived from the properties of cryptographic hashes, error rates to estimate the 
performance of biometric hash algorithms should be considered in the reproduction 
and the collision in addition to FRR, FAR and EER. 

In our Hamming Distance based histogram analysis, we compare all generated 
biometric hashes of each person to each other hash of the same person to calculate the 
reproducibility rate (RR). Therefore, a Hamming Distance hd of 0 is logged as a 
match, while any hd > 0 is logged as a non-match. Then, the Reproducibility Rate is 
the quotient of the number of matches by the number of comparisons. The collision 
rate (CR) is determined by the comparison of each single person’s biometric hashes 
with the hashes of all other users. For the CR, a Hamming Distance of 0 is logged as a 
collision and all distances higher than 0 are logged as non-collision. The CR is 
calculated by the division of the number of collisions by the number of comparisons. 
In the ideal case, each comparison between hashes of the same person and semantic 
should be result in hd=0, while the comparison between hashes of any two different 
persons should yield hd>0. In order to refer to reproducibility requirement, the point 
of interest in the histogram is a Hamming Distance value of 0. This means for RR, 
only the identical reproductions of hashes of the corresponding person are considered, 
while for the CR only identical generations of hashes of non identical persons are 
examined. However, for the optimization process of a biometric algorithm, the entire 
Hamming Distance based HD distribution should be taken in consideration. 

In order to have an indicator of the trade-off relation between RR and CR, an 
additional measure is introduced here: the collision reproducibility ratio (CRR). It is 
the result of the division of CR by RR. Since one aim of biometric hashing is to 
reproduce hashes of each person with a high degree, while hashes of different persons 
should be different, the CRR should be very small. 

4 Multi-semantic hash fusion approach 

In this section we present a new biometric fusion strategy based on the pair wise 
combination of the biometric hash vectors of two semantic classes. In the context of 
biometric handwriting, semantics are alternative written contents in addition to the 
signature. Semantics can be based on the additional factors of individuality, creativity 
and/or secret knowledge, e.g. by using pass phrases, numbers or sketches. In [9], 
Vielhauer shows that the usage of such alternative contents may lead to similar results 
as the usage of the signature in context of online handwriting based authentication 
performance. Based on the number of biometric components involved in the fusion 
process, Ross et al. differentiate in [11] between the following five scenarios for 
automatic biometric fusion: multi-sensor, multi-algorithmic, multi-instance, multi-
sample and multi-modal systems. Since the fusion proposed in this paper is executed 
on the feature extraction level in the hash domain based on different semantics, it is 
called multi-semantic hash fusion. It can be assigned to the multi-instance stage of the 
scheme suggested in [11]. 
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The first step is the data acquisition of two semantics, which form the input for the 
second step, the hash generation. In this process step, the statistical feature vector is 
calculated from raw data of each semantic. Then, biometric hash vectors are derived 
from the semantics’ statistical values, as described in the previous section. Although, 
the tolerance factor TF used for hash generation is identical for both semantics 
(TF=3), it is also feasible to tune the TF separately in dependency on corresponding 
semantic to optimize the fusion result. The global tolerance vector TV is determined 
on globally based on disjoint user sets of the corresponding semantics. Thus, for both, 
statistical feature vectors and biometric hash vectors, the dimensionality is k. The 
fusion of the two hashes is the last process step, which is carried out as concatenation 
of both hashes and leads to a hash vector’s dimensionality of 2*k.  

5 EVALUATION 

This section firstly describes the test data used in our evaluation. Following, our 
methodologies are presented, which are used to determine the results of biometric 
handwriting verification as well as biometric hash generation. Finally, the results for 
both, verification and hashing are presented and discussed.  

5.1 Evaluation database 

The entire test set is based on 84 users, each of them having donated 10 handwriting 
samples for four different semantics (total of 3,440 samples). In our test setup, we use 
four semantics: The PIN is given as a sequence of the five digits ‘77993’. Using this 
semantic, the individual style of writing plays a more important role than the content, 
since all test subject write the same numbers. The semantic Place represents the 
individual answer to the question “Where are you from?”, written by each test person. 
This answer includes individual knowledge in a certain degree which, however, is not 
absolutely secret. We use the semantic Pseudonym as anonymous substitution of the 
individual signature, due to the fact that most of the test subjects refrained from 
donating their original signature due to privacy concerns. The Pseudonym is a name 
freely chosen by the writer, which had be trained several times before the acquisition. 
The freely chosen Symbol holds individual creative characteristics and additionally 
provides a knowledge based component in form of the sketched object. 

In order to determine a global tolerance vector TV as hash generation parameter 
and to carry out the biometric error rate analysis and the Hamming Distance 
histogram analysis, a training set (hereafter set T) of 15 users and an evaluation set 
(hereafter set E) of 69 users are extracted from the entire set of 86 persons. Both sets 
are entirely disjoint with respect to the subjects and structured as follows: From the 10 
handwriting samples D=D1,…,D10 of each person and each semantic, the first 5 
samples D1,…,D5 are taken to create 5 sets, using a leave-one-out strategy. This 
means a combination of 5 choose 4, i.e. 5 different sets are created, containing 4 
handwriting samples each. Each of the 5 sets is used to create a user dependent 
interval matrix (IMID) and consequently, we yield reference data Ri=(ID, IMi,ID) with 
i=1,…,5. Based on these interval matrices and the remaining samples D6,…,D10, 5 
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biometric hashes are created for each user of set T and set E respectively. The 
determination of the tolerance vector TV is conducted globally, based on all users of 
set T, whereas the biometric error rate analysis and a Hamming Distance based 
histogram analysis are carried out on disjoint set E. 

5.2 Evaluation methodology 

In this paper, we use the equal error rate (EER) to show the verification performance 
of the reference algorithm in comparison to the reproducibility performance of 
biometric hashes based on dynamic handwriting. For the latter evaluation, we analyze 
the Biometric Hash algorithm (see section 2.2) by using the new measurements 
Reproducibility Rate (RR), Collision Rate (CR) and Collision Reproducibility Ratio 
(CRR) to compare the reference and current hashes as described in section 3. 

Note that for the evaluation of the multi-semantic fusion, we assume that there is 
no temporal dependence between semantic 1 and semantic 2 (i.e. EER, RR, CR or 
CRR of fusion of semantic 1 and semantic 2 is equal to EER, RR, CR or CRR of 
fusion of semantic 2 and semantic 1). Thus, the outcome of the fusion is symmetric 
with respect to the sequence semantics taken into account, and results to the triangular 
layout of Table 1 and Table 2. 

In our previous work, we optimized the tolerance factors TF for verification as well 
as for hash generation in a certain degree. We observed, that for verification the best 
integer TF is 1, while for hash generation TF=3 was relatively good. Thus, we use in 
this initial study these both values for the corresponding evaluations. The hash 
generation for both applications is also based on a global TV determined on a disjoint 
set of users per semantic. However, it is also possible to use alternative 
parameterizations for TF and TV to optimize both, verification and hash generation 
performance. 

5.3 Results 

This subsection describes the results of the verification and the hash reproducibility. 
The corresponding tests are carried out on the single semantics as well as on their pair 
wise fusion. In tables 1 and 2 the best single results are printed in bold, while the best 
fusion results for EER, RR, CR and CRR are marked with a gray background. 

Biometric error rate analysis 
Table 1 shows the results of the biometric error rate analysis. While the second 

column (single) presents the EERs of the individual semantics, the last three columns 
are showing the pair wise fusion results. The fusion is carried out on the matching 
score level and is based on a simple mean rule. This strategy weights the scores of the 
two fusion components involved with the same value (0.5) and summates the results 
to a final fused score. For the verification, the best single-modal result with respect to 
the EER is determined for the Symbol with EER=3.199%. The worst EER of 4.969% 
is based on semantic Pseudonym. Another observation from Table 1 is that all pair 
wise fusion combinations improve the results determined by the corresponding 
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semantics. Here the lowest EER of 1.143% is calculated based on the combination of 
Place and Symbol. 

Table 1. Equal error rates in % per semantic class and their pair wise fusion (TF=1) 

  Multi-semantic fusion 
 single Symbol Pseudonym Place 
Semantic EER EER EER EER 
PIN 4.763 1.719 2.249 1.982 
Place 3.541 1.143 1.632  
Pseudonym 4.969 1.382   
Symbol 3.199 -   

Hamming Distance based histogram analysis 
The results of the Hamming Distance based histogram analysis for single semantics as 
well as for their pair wise fusion are presented in Table 2. In the rows of Table 1 
labeled with RR the reproducibility rate of genuine hashes by the corresponding 
genuine users is shown in dependency of the semantic class. The rows labeled with 
CR are showing the collision rate, while the CRR rows present the collision 
reproducibility ratio. 

Table 2. Reproducibility and collision rate in % and collision reproducibility ratio for single 
semantics and pair wise semantic hash fusion (TF=3) 

single Semantic 2 Semantic 1 Measurement 
results Symbol Pseudonym Place 

RR 76.580 60.000 55.304 55.536 
CR 5,818 0.346 0.685 1.207 PIN 

CRR 0.076 0.006 0.012 0.217 
RR 72.116 57.217 52.696  
CR 5.115 0.319 0.484  Place 

CRR 0.070 0.006 0.009  
RR 70.551 56.290   
CR 4.923 0.223   Pseudonym 

CRR 0.070 0.004   
RR 77.101    
CR 2.392 -   Symbol 

CRR 0.031    
 

As shown in the third column of Table 2, the best reproducibility rate of genuine 
hashes is calculated for Symbol with a RR of 77.101%. A similar result is calculated 
based on the PIN with RR=76.580%. However, since PIN is the given sequence of the 
digits ‘77993’ written by all persons, the collision rate (CR=5.818%) is the highest. 
Thus, also the collision reproducibility ratio for PIN (CRR=0.076) is higher than the 
CRRs for the other semantics. From the point of view to choose the semantic having 
the best ratio between RR and CR, the semantic Symbol should be taken in 
consideration (CRR=0.031).  

Since the multi-semantic hash fusion is carried out as simple concatenation (see 
section 4) of two hashes based on different semantics, the reproducibility of the new 
fused hash depends only on the individual reproducibility of the two hashes involved. 
Based on this fact, it is obvious that the RR of the fused hashes cannot be higher than 
the worst individual reproducibility rate of the two hashes used for the fusion. Table 2 
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shows also the results of the pair wise multi-semantic hash fusion. The intersections 
of rows and columns of the different semantics are showing the corresponding fusion 
results for reproducibility rate (RR), collision rate (CR) and collision reproducibility 
ratio (CRR). As assumed, a general observation is, that the fusion results for the 
reproducibility rate are worse than the results obtained based on the single semantics 
(see second column of Table 2). For example, the best fusion result is based on the 
concatenation of the hashes for PIN and Symbol where the RR is equal to 60%, while 
the single results amount 76.58% for PIN and 77.101% for Symbol, respectively. This 
corresponds to a relative degradation of approx. 22% in comparison to the best single 
result determined for the Symbol. On the other hand, the collision rates are 
significantly lower than those of the single semantics involved. Here the relative 
decline lies between 77% and 90%. The best CR of 0.223% was determined for the 
fusion of semantics Pseudonym and Symbol, while the corresponding RR amounts 
56.29%. The greatest improvement of the fusion we see in the decrease of the CRR. In 
case of the best fused RR of 60% the CRR is reduced to one fifth (0.006) of the CRR 
of the best single result calculated for symbol (0.031). Thus, the fusion may provide 
the opportunity to reach a higher RR at an acceptable CR. 

The results of biometric error rate as well as Hamming Distance based histogram 
analysis show that there is a dependency between EER and/or RR and CR, and the 
written content. Based on these results it can be stated, that the choice of a semantic 
depends on the requirements of the verification and/or hashing application. It can be 
decided on best equal error rate performance or on best reproducibility, best collision 
resistance as well as on the best ratio between them. 

6 CONCLUSIONS 

In this paper, we suggest the analysis of the biometric hash reproducibility and 
collision rates based on the Hamming Distance, in addition to the typical verification 
error rates. The reproducibility rate (RR) shows, how is the performance of a hash 
generation algorithm with respect to generate stable has values for the same persons 
and the same written content. The collision rate (CR) is a measure for the probability 
of generation of biometric hashes by non-authentic users. Further, the collision 
reproducibility ratio (CRR), as third introduced measure, indicates the tradeoff 
relation between CR and RR. In order to find a suitable working point for a biometric 
hash generation algorithm for practical applications, one solution can be to minimize 
the CRR. Further, we have suggested a novel concept in the domain of multi-
biometrics: Multi-semantic fusion of biometric hashes generated using different 
writing contents. 

In the experimental evaluation, we have practically shown the feasibility of the 
new measurements based on online handwriting biometrics. On one side, the 
evaluation of the multi-semantic hash fusion has shown that the concatenation of two 
hashes using different semantics leads to a significantly worse reproducibility rate 
than the individual semantics. Here the best fusion result is calculated for the 
combination of PIN and Symbol (RR=60%), while the individual RRs for PIN and 
Symbol amount 76.580% and 77.101%, respectively. On the other side, a significant 
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improvement of the collision rate can be observed. The best CR of 0.223% is 
determined based on the semantics Pseudonym and Symbol. This leads to the best 
collision reproducibility ratio of the entire evaluation (CRR=0.004) and this 
significantly improved trade-off between RR and CR provides potential for optimized 
parameterization towards better RR at acceptable CR level. 

To do so, the parameterization can be adjusted to any user registered in the 
database by optimizing user specific tolerance vectors, which are used to calculate the 
mapping interval of the Biometric Hash algorithm. In order to improve the RR even 
more, other methods have to be studied, e.g. alternative mapping functions or error 
correction mechanisms. In this case, one has also to keep track of the expansion of CR 
as counterpart of RR. Finally, although in this paper we have focused on biometric 
hashes for handwriting, it appears quite possible to apply the methodology to hashes 
generated based on other biometric modalities in the future. 
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Abstract. To implement a biometric authentication scheme, the tem-
plates of a group of people are stored in the database (DB) under the
names of these people. Some person presents a name, and the scheme
compares the template of this person and the template associated with
the claimed person to accept or reject their identity [1]. The templates of
people stored in the DB should be protected against attacks for discovery
the biometrics and attacks for successful passing through the verification
test. The authentication algorithm developed by Juels and Wattenberg
[2] is a possible solution to the problem. However, implementations of
this algorithm for practical data require generalized versions of the algo-
rithm and their analysis. We introduce a mathematical model for DNA
measurements and present such a generalization. Some numerical results
illustrate the correction of errors for the DNA measurements of a le-
gitimate user and protection of templates against attacks for successful
passing the verification stage by an attacker.

1 An additive block coding scheme

An additive block coding scheme proposed in [2] can be presented
as follows (see Figure 1). Let C be a set consisting of M different binary
vectors of length n (a binary code of length n for M messages). The
entries of the set C are called key codewords. One of the key codewords
x ∈ C is chosen at random with probability 1/M. This codeword is added
modulo 2 to the binary vector b generated by a biometrical source, and
the vector y = x ⊕ b is stored in the DB under the name of the person
whose biometrics is expressed by the vector b. Furthermore, the value of a
one–way hash function Hash at the vector x (a one-to-one function whose
value can be easily computed, while the inversion is a difficult problem)
is also stored in the DB. Having received another binary vector b′ and
the claimed name, the verifier finds the key codeword x̂ ∈ C located at
the minimum Hamming distance from the vector z = y ⊕ b′. The basis
for the algorithm is the observation

y = x⊕ b

b′ = b⊕ e

}

⇒ x⊕ e = z.



In particular, if the number of positions where the vectors b and b′ differ
does not exceed b(dC − 1)/2c, where dC is the minimum distance of the
code C, then the key codeword used at the enrollment stage will be found.
Then Hash(x̂) is equal to Hash(x) and the identity claim is accepted.
Otherwise, the claim is rejected.

-

- - - -

6

6

6

? ?

-

C

x ∈ C
y = x⊕ b Hash(x̂)

Y/N

b ∈ {0, 1}n

b′ = b⊕ e

e ∈ {0, 1}n

Hash(x)

Bio

Veri-
fier

=?

Err

Hash

Fig. 1. Verification of a person using an additive block coding scheme with a binary
code.

Notice that the verification scheme in Figure 1 can be represented as
transmission of the key codeword x over two parallel channels, because

y = x⊕ b

b′ = b⊕ e

}

⇒

{

x⊕ b = y

x⊕ e = z.

Thus, we say that the verifier receives a pair of vectors (x ⊕ b,x ⊕ e)
(see Figure 2), while the attacker receives only the first component and
the JW decoder analyzes only the second component of that pair. The
transformations x → y and x → z can be interpreted as transmissions
of the key codeword over the biometric and the observation channels,
respectively. We will assume that particular binary vectors b and e are
chosen as the biometric and the observation noise vectors according to
the probability distributions (PDs)

(

Pr
bio

{

B = b
}

, b ∈ {0, 1}n
)

,
(

Pr
err

{

E = e
}

, e ∈ {0, 1}n
)

.

Let xbio, xerr, and xbio,err denote results of the decoding when the
vectors y, z, and the pair of vectors (y, z) are available. One can easily
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Err
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Fig. 2. Representation of the additive block coding as a scheme where a key codeword
x is received under the biometric noise b and the observation noise e.

check that the maximum probabilities of correct decoding are attained by
the maximum a posteriori probability decoding rules, i.e., the optimum
estimates of the key codeword satisfy the equalities

Pr
bio

{

B = xbio ⊕ y
}

= max
x∈C

Pr
bio

{

B = x⊕ y
}

,

Pr
err

{

E = xerr ⊕ z
}

= max
x∈C

Pr
err

{

E = x⊕ z
}

,

and

Pr
bio

{

B = xbio,err ⊕ y
}

Pr
err

{

E = xbio,err ⊕ z
}

=

max
x∈C

[

Pr
bio

{

B = x⊕ y
}

Pr
err

{

E = x⊕ z
}]

.

Then the probabilities that the decoded codewords coincide with the
transmitted key codewords can be expressed as

Λbio =
1

M

∑

y

max
x∈C

Pr
bio

{

B = x⊕ y
}

,

Λerr =
1

M

∑

z

max
x∈C

Pr
err

{

E = x⊕ z
}

,

Λbio,err =
1

M

∑

y,z

max
x∈C

[

Pr
bio

{

B = x⊕ y
}

Pr
err

{

E = x⊕ z
}]

.
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2 Structure of the DNA data and mathematical model

The most common DNA variations are Short Tandem Repeats (STR):
arrays of 5 to 50 copies (repeats) of the same pattern (the motif) of 2 to 6
pairs. As the number of repeats of the motif highly varies among individ-
uals, it can be effectively used for identification of individuals. The human
genome contains several 100,000 STR loci, i.e., physical positions in the
DNA sequence where an STR is present. An individual variant of an STR
is called allele. Alleles are denoted by the number of repeats of the motif.
The genotype of a locus comprises both the maternal and the paternal
allele. However, without additional information, one cannot determine
which allele resides on the paternal or the maternal chromosome. If the
measured numbers are equal to each other, then the genotype is called
homozygous. Otherwise, it is called heterozygous. The STR measurement
errors are usually classified into three groups: (1) allelic drop–out, when
an allele of a heterozygous genotype is missing, e.g. genotype (7,9) is
measured as (7,7); (2) allelic drop–in, when in a homozygous genotype,
an additional allele is erroneously included, e.g. genotype (10,10) is mea-
sured as (10,12); (3) allelic shift, when an allele is measured with a wrong
repeat number, e.g. genotype (10,12) is measured as (10,13).

The points above can be formalized as follows. Suppose that there are
n sources. Let the t-th source generate a pair of integers according to the
PD

Pr
DNA

{

(At,1, At,2) = (at,1, at,2)
}

= πt(at,1)πt(at,2),

where at,1, at,2 ∈ {ct, . . . , ct +kt−1} and ct, kt are given positive integers.
Thus, we assume that At,1 and At,2 are independent random variables
that contain information about the number of repeats of the t-th motif in
the maternal and the paternal allele. We also assume that (At,1, At,2), t =
1, . . . , n, are mutually independent pairs of random variables, i.e.,

Pr
DNA

{

(A1, A2) = (a1,a2)
}

=

n
∏

t=1

Pr
DNA

{

(At,1, At,2) = (at,1, at,2)
}

,

where A` = (A1,`, . . . , An,`) and a` = (a1,`, . . . , an,`), ` = 1, 2.
Let us fix a t ∈ {1, . . . , n} and denote

Pt
4
=

{

s = (i, j) : i, j ∈ {ct, . . . , ct + kt − 1}, j ≥ i
}

.

Then the PD of a pair of random variables

St
4
=

(

min{At,1, At,2},max{At,1, At,2}
)

,
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which represents the outcome of the t-th measurement, can expressed as

Pr
DNA

{

St = (i, j)
}

= ωt(i, j),

where ωt(i, j)
4
= π2

t (i), if j = i, and ωt(i, j)
4
= 2πt(i)πt(j), if j 6= i. Denote

ωt
4
= (ωt(i, j), (i, j) ∈ Pt ) and

G(ωt)
4
= − log max

(i,j)∈Pt

ωt(i, j),

H(ωt)
4
= −

∑

(i,j)∈Pt

ωt(i, j) log ωt(i, j),

p(ωt)
4
=

ct+kt−1
∑

i=ct

ωt(i, i),

h(ωt)
4
= −(1− p(ωt)) log(1− p(ωt))− p(ωt) log p(ωt).

One can easily see that the best guess of the output of the t-th source is
a pair (i∗t , j

∗
t ) such that ωt(i

∗
t , j

∗
t ) ≥ ωt(i, j) for all (i, j) ∈ Pt. Therefore,

2−G(ωt) is the probability that the guess is correct. The value of p(ωt) is
the probability that the genotype is homozygous, H(ωt) is the entropy of
the PD ωt, and h(ωt) is the entropy of the PD (1− p(ωt), p(ωt)).

Let us assume that qt
4
= | Pt | = kt(kt +1)/2 values ωt(i, j), (i, j) ∈ Pt,

are different and introduce two transformations of a pair of measurements
(i, j) ∈ Pt. (a) Let i = j imply β(i, j) = 0 and let i 6= j imply β(i, j) = 1.
(b) Given an integer q ≥ qt, let βq(i, j) = b if and only if there are b − 1
pairs (i′, j′) ∈ Pt such that ωt(i

′, j′) > ωt(i, j). In particular, βq(i
∗
t , j

∗
t ) =

0.
We will denote the vector of measurements available to the scheme at

the enrollment stage by s = ((i1, j1), . . . , (in, jn)). The transformations of
this vector will be denoted by β(s) = (β(i1, j1), . . . , β(in, jn)) and βq(s) =
(βq(i1, j1), . . . , βq(in, jn)). Similar notations will be used for the vector
s′ = ((i′1, j

′
1), . . . , (i

′
n, j′n)) available to the scheme at the verification stage.

Example (the quantities below describe the TH01 allele in Table 1).
Let ct = 6, kt = 4, and (π(6), . . . , π(9)) = (0.23, 0.19, 0.09, 0.49). Then

[

πt(i)πt(j)
]

i,j=6,...,9
=

j = 6 j = 7 j = 8 j = 9

i = 6 .0529 .0437 .0207 .1127
i = 7 .0437 .0361 .0171 .0931
i = 8 .0207 .0171 .0081 .0441
i = 9 .1127 .0931 .0441 .2401
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To construct the PD ωt, we transform this matrix to the right triangular
matrix below. The entries above the diagonal are doubled, and the entries
below the diagonal are replaced with the zeroes. The sum of all entries
of the i-th row is equal to the probability that min{At,1, At,2} = i and
the sum of all entries of the j-th column is equal to the probability that
max{At,1, At,2} = j (these sums are denoted by ωt,min(i) and ωt,max(j)),

[

ωt(i, j)
]

i,j=6,...,9

j≥i

=

j = 6 j = 7 j = 8 j = 9 ωt,min(i)

i = 6 .0529 .0874 .0414 .2254 .4071
i = 7 .0361 .0342 .1862 .2565
i = 8 .0081 .0882 .0963
i = 9 .2401 .2401

ωt,max(j) .0529 .1235 .0837 .7399

Reading the entries of this matrix in the decreasing order of their values
brings the following table,

i, j 9, 9 6, 9 7, 9 8, 9 6, 7 6, 6 6, 8 7, 7 7, 8 8, 8

β(i, j) 1 0 0 0 0 1 0 1 0 1

βq(i, j) 0 1 2 3 4 5 6 7 8 9

ωt(i, j) .2401 .2254 .1862 .0882 .0874 .0529 .0414 .0361 .0342 .0081

G(ωt) − log .2401 = 2.07

p(ωt) .2401 + .0529 + .0361 + .0081 = .3372

Some parameters of the PDs that were under considerations in the
BioKey–STR project [3] are given in Table 1. We conclude that results of
the DNA measurements can be represented by a binary vector of length
dlog(q1 . . . qn)e = 129 bits. However the PD over these vectors is non–
uniform and (roughly speaking) only 109 bits carry information about
the measurements. If an attacker is supposed to guess this vector, then
the best guess is the vector of pairs s∗ = ((i∗1, j

∗
1 ), . . . , (i∗n, j∗n)). By the

construction of the βq transformation, βq(s
∗) is the all-zero vector. The

probability that the guess is correct is equal to 2−76.8. If the vector of n
pairs of integers is transformed to a binary vector of length n containing
ones at positions where the genotype is homozygous, then the expected
weight of the vector can be computed as p(ω1) + . . . + p(ωn) = 7.01,
because the weight is the sum of n independent binary random variables
where the t-th variable takes value 1 with probability p(ωt). The difference
between the entropies H(ωt)−h(ωt) characterizes the loss of data for the
β transformation of presented measurements.
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Table 1. Some characteristics of the PDs ω1, . . . , ωn that describe the DNA measure-
ments for n = 28.

t Name log qt H(ωt) G(ωt) p(ωt) h(ωt)

1 D8S1179 4.39 4.08 3.01 0.20 0.73
2 D3S1358 3.91 3.71 2.87 0.22 0.76
3 VWA 4.39 4.13 3.12 0.19 0.71
4 D7S820 4.39 4.07 3.25 0.19 0.71
5 ACTBP2 7.71 7.43 6.13 0.06 0.32
6 D7S820 4.81 4.24 3.31 0.19 0.69
7 FGA 5.49 4.92 3.54 0.15 0.61
8 D21S11 4.81 4.13 3.01 0.20 0.73
9 D18S51 5.78 5.28 4.43 0.13 0.55

10 D19S433 4.39 3.59 2.33 0.26 0.82
11 D13S317 4.81 4.15 2.56 0.22 0.75
12 TH01 3.32 2.85 2.07 0.34 0.92
13 D2S138 6.04 5.60 4.23 0.12 0.52
14 D16S539 4.81 3.78 2.25 0.25 0.81
15 D5S818 3.91 3.11 1.81 0.31 0.89
16 TPOX 3.91 2.91 1.79 0.37 0.95
17 CF1PO 3.91 3.16 2.16 0.28 0.86
18 D8S1179 5.49 4.49 3.15 0.19 0.69
19 VWA-1 4.39 4.13 3.12 0.19 0.71
20 PentaD 5.17 4.32 3.13 0.19 0.70
21 PentaE 6.91 5.87 4.02 0.11 0.51
22 DYS390 4.39 3.24 2.06 0.30 0.88
23 DYS429 3.91 2.97 1.78 0.33 0.91
24 DYS437 2.58 2.26 1.58 0.40 0.97
25 DYS391 3.32 1.90 1.11 0.47 1.00
26 DYS385 5.17 3.61 1.72 0.34 0.93
27 DYS389I 2.58 2.01 1.18 0.50 1.00
28 DYS389II 3.91 3.14 2.04 0.31 0.89

P

128.6 109.1 76.8 7.01 21.5
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3 Verification of a person using the DNA measurements

Additive block coding schemes are oriented to the correction of certain
types of measurement errors with simultaneous hiding biometric data
from an attacker. If only the allelic drop–out/in errors are possible, then
correction of errors means the transformation of the binary vector β(s′)
to the binary vector β(s), where s and s′ are biometric vectors presented
to the scheme at the enrollment and the verification stages, respectively.
This procedure can be organized using an additive block coding scheme
with a binary code of length n. However, the β transformation brings
an essential loss of input data, and the verifier cannot make a reliable
acceptance decision.

Notice that the βq transformation is lossless. We propose the use of an
additive block coding scheme with a q-ary code Cq, where q is chosen in
such a way that q1, . . . , qn ≤ q. All the vectors in Figures 1, 2 become q-
ary vectors, and ⊕ has to be understood as the component-wise addition
modulo q. To distinguish between these vectors and binary vectors, we
attach the index q and introduce the following translation to parallel
channels:

yq = xq ⊕ bq

b′q = bq ⊕ eq

}

⇒

{

xq ⊕ bq = yq

xq 	 eq = zq

where zq = yq	b′q and 	 denotes the component-wise difference modulo
q. Our data processing algorithm is presented below.

Preprocessing. Assign a binary code C for M messages and a q-ary
code Cq for Mq messages. Both codes have length n.

Enrollment (input data are specified by the vector s).

(0) Construct the vectors β(s) and βq(s).
(1) Choose a binary key codeword x ∈ C. Store Hash(x) and y = x⊕β(s)

in the DB.
(2) Choose a q-ary key codeword xq ∈ Cq. Store Hash(xq) and yq =

xq ⊕ βq(s) in the DB.

Verification (input data are specified by the vector s′ and content of
the DB).

(0) Construct the vectors β(s′) and βq(s
′).

(1) Consider (y, β(s′) ⊕ y) as the pair of received words and decode the
binary key codeword as x̂. If Hash(x̂) 6= Hash(x), then output “No”
and terminate.

(2) Consider (yq, βq(s
′) ⊕ yq) as the pair of received words and decode

the q-ary key codeword as x̂q. If Hash(x̂q) 6= Hash(xq), then output
“No”. Otherwise, output “Yes”.
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The formal description of biometric sources for the 1-st and the 2-nd
steps are as follows: for all b ∈ {0, 1}n and bq ∈ {0, . . . , q − 1}n,

Pr
bio

{

B = b
}

=

n
∏

t=1

Pr
DNA

{

β(St) = bt

}

,

Pr
bio,q

{

Bq = bq

}

=

n
∏

t=1

Pr
DNA

{

βq(St) = bt,q

}

.

Suppose that the noise of observations is specified is such a way that, for
all e ∈ {0, 1}n and eq ∈ {0, . . . , q − 1}n,

Pr
err

{

E = e
}

=
n

∏

t=1

{

1− ε, if et = 0,
ε, if et = 1,

Pr
err,q

{

E = eq

}

=

n
∏

t=1

{

1− εq, if et,q = 0,
εq/(q − 1), if et,q ∈ {1, . . . , q − 1},

where ε and εq are given.
Let us estimate the decoding error probability at the output of the

JW decoders. One can easily see that if the decoder tries to find a key
codeword at distance at most b(dC−1)/2c from the received vector y and
outputs an error when it is not possible, then the probability of correct
decoding is expressed as

Λ̂err(ε) =

b(dC−1)/2c
∑

ν=0

(

n

ν

)

(1− ε)n−νεν .

The decoding at the 2-nd step can be organized as a procedure that
depends on the results of the 1-st step. Namely, the decoder can replace
symbols of the vector yq located at positions where the vector ê = y⊕ x̂

contains 1’s with erasures and decode the resulting vector ŷq. One can
easily see that an estimate of the probability of correct decoding can be
expressed as

Λ̂∗
err(ε, εq) =

b(dC−1)/2c
∑

ν=0

(

n

ν

)

(1− ε)n−νενΛ̂err,q(εq|wt(ê)),

where

Λ̂err,q(εq|wt(ê))
4
=

b(dCq−wt(ê)−1)/2c
∑

τ=0

(

n− wt(ê)

τ

)

(1− εq)
n−wt(ê)−τ ετ

q

172          Vladimir B. Balakirsky, Anahit R. Ghazaryan, A. J. Han Vinck



Table 2. Estimates of the decoding error probability for n = 28 and dCq
= 5.

1 − Λ̂err(ε) 1− Λ̂∗
err(ε, εq = .001)

ε dC = 5 dC = 7 dC = 9 dC = 5 dC = 7 dC = 9

.001 3.2e-06 2.0e-08 9.6e-11 1.6e-05 1.3e-05 1.3e-05

.002 2.5e-05 3.2e-07 3.0e-09 4.7e-05 2.3e-05 2.2e-05

.003 8.4e-05 1.6e-06 2.3e-08 1.1e-04 3.4e-05 3.3e-05

.004 1.9e-04 4.9e-06 9.3e-08 2.3e-04 4.9e-05 4.4e-05

.005 3.7e-04 1.2e-05 2.8e-07 4.2e-04 6.8e-05 5.7e-05

is the estimate of the probability of correct conditional decoding at the
2-nd step. Some numerical results are given in Table 2.

Considerations presented in [4] show that the performance of the ver-
ifier, who analyzes transmitted key codeword both under the biomet-
ric and the observation noise, corresponds to the performance of the
JW decoder for the channel having crossover probability ε′ = 2ε/3, i.e.,
Λ̂bio,err(p, ε) = Λ̂err(2ε/3). The value of parameter ε that can be of inter-
est for practical systems is ε = 0.005, and the corresponding values of the
decoding error probabilities are given in Table 2 in bold font.

We can also prove the following upper bound on the probability of
correct decoding by the attacker,

Λ̂bio(p) ≤
2n

M
·

qn

Mq
max

s

Pr
DNA

{

S = s
}

.

In particular, if C is the code for M = 214 messages having the mini-
mum disance 8 and C8 is the Reed–Solomon code over GF (28) for M8 =
(28)24 messages having the minimum distance 5, then Λ̂bio(p) is equal to
2−142−8(28−24)2−76.8 = 2−30.8.

A more detailed discussion of the implementation issues will be pre-
sented in another paper.
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Abstract. Security and privacy issues are considered as two of the ma-
jor concerns related to the use of biometric data for authentication pur-
poses. In this paper we propose two different approaches for the protec-
tion of on-line signature biometric templates. In the first one, crypto-
graphic techniques are employed to protect signature features, making
impossible to derive the original biometrics from the stored templates.
In the second one, data hiding techniques are used to design a security
scalable authentication system, embedding some dynamic signature fea-
tures into a static representation of the signature itself. Extensive exper-
imental results are provided to testify the effectiveness of the presented
protection methods.

1 Introduction

The most emerging technology for people authentication is biometrics. Being
based on strictly personal traits, much more difficult to be forgotten, stolen, or
forged than traditional data employed for authentication, like passwords or ID
cards, biometric-based recognition systems typically guarantee improved com-
fort and security for their users. Unfortunately, the use of biometric data in-
volves various risks not affecting other approaches: significant privacy concerns
arise since biometrics can be used, in a fraudulent scenario, to treat the user
anonymity which must be guaranteed in many real life situations [1]. Moreover,
in a scenario where biometrics can be used to grant physical or logical access,
security issues regarding the whole biometric system become of paramount im-
portance. Therefore, when designing a biometric-based recognition system, the
issues deriving from security and privacy concerns have necessarily to be care-
fully considered, trying to provide countermeasures to the possible attacks that
can be perpetrated at the vulnerable points of the system, detailed in [2].

In this paper we focus on the signature templates security, presenting two
different methods for the protection of the considered biometric data. In Sec-
tion 1.1 some approaches already proposed for the protection of biometrics are
discussed. Our methods are presented in Section 2, where a user-adaptive fuzzy
commitment scheme is designed with application to on-line signature based au-
thentication, and Section 3, where a different perspective is taken, employing
data hiding techniques to design a security scalable authentication system. An
extensive discussion on the performances of the proposed systems is given in
Section 4, while the conclusions are finally drawn in Section 5.



1.1 Biometric Template security: state of the art

Different solutions have been investigated to secure biometric templates. Among
them, data hiding techniques can be implemented to protect or authenticate bio-
metric data, according to two different possible scenarios: one where the informa-
tion to hide is of primary concern, in which case we speak about steganography,
and the other where the host data is of primary concern and the mark is used
to validate the host data itself, in which case we talk about watermarking. The
use of data hiding techniques for biometrics protection has already been pro-
posed in [3, 4], among the others. Although cryptography and data hiding can
be properly used to generate secure template, the most promising approaches
for biometric template protection consist in the implementation of what has
been called cancelable biometrics. Originally introduced in [2], it can be roughly
described as the application of an intentional and repeatable modification to
the original biometric template, able to guarantee the properties or renewability
and security for the generated templates. A classification of the proposed pro-
tection methods have been presented in [5], comprising two macro-categories,
referred to as Biometric Cryptosystem and Feature Transformation approach.
Biometric cryptosystems typically employ binary keys in order to secure the
biometric templates. This category can be furthered divided in key binding sys-
tems, where the helper data are obtained by binding a key with the biometric
template [6], and key generating systems, where both the helper data and the
cryptographic key are directly generated from the biometric template [7, 8]. In
a feature transformation approach, a transformation function is applied to the
biometric template, and the desired cancelable biometrics are given by the trans-
formed versions of the original data. It is possible to distinguish between salting
approaches, where the employed transformation functions are invertible [9], and
non-invertible transform approaches, where a one-way function is applied to the
templates [10]. Considering on-line signature protection, the first proposed (key
generation) approaches have been in [11] and [12]. In [13] an adaptation of the
fuzzy vault [8] is proposed. Also the fuzzy commitment [7] (whose most estab-
lished implementation is known as Helper Data System [14]) has been employed
to provide security to the features extracted from an on-line signature [15]. A
comprehensive survey on signature template protection can be found in [16].

2 Signature-based user adaptive fuzzy commitment

In this Section a key binding scheme for the protection of the on-line signature
templates protection is presented. Basically, it is based on Juels’ proposal of fuzzy
commitment using error correcting codes [7]. The proposed approach is twofold,
allowing the system both to manage cancelable biometrics and to handle the
intra-class variability exhibited by biometric signatures.

2.1 Enrollment stage

The proposed enrollment scheme is presented in Figure 1. During the enrollment
phase a number I of signatures are recorded for each subject s. The 95 features
detailed in [17] are then extracted from each signature, and collected in the
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Fig. 1. Signature-based fuzzy commitment: enrollment scheme. The acquired data are
analyzed, quantized and summed to error correcting codes.

vectors f s
i , i = 1, · · · , I. The intra-class µs and the inter-class µ vector mean

are then estimated as µs = 1/I
∑I

i=1 f s
i , where µ = 1/S

∑S
s=1 µs, being S the

number of enrolled subjects. From the I signatures acquired from the user s, a
binary vector bs, representative of the considered P features, is then obtained
applying, to the intra-class mean vector µs, the vector µ as a threshold. A
selection of the relevant features is then performed: only subjects’ most reliable
features are selected, thus counteracting the potential instability, for the single
user, of the feature vector components. In the process of defining a reliable feature
selection, for each user s, the enrolled features vectors f s

i , with i = 1, . . . , I,
are binarized by comparisons with the inter-class mean µ and collected as row
vectors in a binary matrix Bs, with I (signature samples) rows and P (features)
columns. Then, the reliability Ls

1[p] of the p-th feature is defined as follows:

Ls
1[p] = 1−

∑I
i=1(B

s[i, p]⊕ bs[p])
I

, p = 1, . . . , P, (1)

where ⊕ represents the XOR operation. According to this measure, components
with a high reliability possess a high discrimination capability. In order to further
discriminate among the available features, we introduce a second level of feature
screening, according to the following reliability measure:

Ls
2[p] =

| µ[p]− µs[p] |
σs[p]

, p = 1, . . . , P, (2)

with σs[p] =
√

1
I−1

∑I
i=1

[
f s
i [p]− µs[p]

]2 being the standard deviation of the p-
th feature of subject s. A higher discriminating power is thus trusted to features
with a larger difference between µs[p] and µ[p], relative to the standard deviation
σs[p]. After the application of the reliability metrics to bs, we end up with the
binary feature vector rs containing the P ′ most reliable components of bs. The
indexes of the most reliable feature for the user s are collected in RFs.

In order to achieve both template protection and renewability, our scheme
uses error correcting codes (BCH codes) [18]. In this paper, we propose an au-
thentication method that provides also adaptability to the user signature vari-
ability: this is achieved by choosing the BCH code and its ECC in such a way
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Fig. 2. Security-scalable signature-based authentication system using data hiding. Pro-
posed enrollment scheme.

that, for users characterized by a high intra-class variability, codes with higher
error correction capabilities are selected. Therefore, in the enrollment stage,
an intra-class analysis is performed as follows: once the P ′ reliable features
are selected, the matrix Rs, having I rows and P ′ columns, is obtained from
Bs dropping the non-reliable features. Then, the Hamming distances Ds

i , with
i = 1, . . . , I, between any rows of Rs and the representative vector rs are evalu-
ated. The average Avgs of the Ds

i values, Avgs = 1/I
∑I

i=1 Ds
i , is then used to

characterize the intra-class variability of the user s. Specifically, the BCH code
whose ECC is equal to the nearest integer of [Avgs + ∆ECC], where ∆ECC is a
system parameter common to all the enrolled users, is chosen.

Finally, the binary vector rs is zero padded in order to reach the same length n
of the selected BCH codewords, resulting in the vector xs. The fuzzy commitment
FCs is then generated using a codeword cs obtained from the encoding of a
random message ms: FCs = FC(xs, cs) = xs ⊕ cs. A hashed version h(ms) of
ms, created using the SHA-256 algorithm is eventually stored.

2.2 Authentication stage

The authentication phase follows the same steps as the enrollment stage. When
a subject claims his identity, he provides his signature, which is converted in
the features vector f̃ s. Then the quantization is done using the inter-class mean
µ, thus obtaining b̃s. The reliable features r̃s are selected using RFs, and later
extended using zero padding, generating x̃s. A binary vector c̃s, representing a
possibly corrupted BCH codeword, results from the XOR operation c̃s = x̃s ⊕
FCs. The BCH decoder is selected depending on the encoder used in enrollment,
obtaining m̃s from c̃s. Finally, the SHA-256 hashed version h(m̃s) is compared
to h(ms): if both values are identical the subject is authenticated.

3 Signature Recognition System using data hiding

In this Section we propose a signature-based biometric system, where data hiding
is applied to signature images in order to hide and keep secret some dynamic
signature features (which can not be derived from a still signature image) in
a static representation of the signature itself. The marked images can be used
for user authentication, letting their static characteristics being analyzed by
automatic algorithms or security attendants. When needed, the hidden dynamic
features can be extracted and used to enforce the authentication procedure.
Specifically, the fusion of static and dynamic signature features is performed
when a high security level is requested.
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Index Description Index Description

1 Sample Count 52-54 Height, Width and Aspect Ratio

2-3 X and Y Area 55-57 Minimum, Mean and Maximum X Position

4-15 Mean Pressure 12-segm. 58-60 Minimum, Mean and Maximum Y Position

16-27 Sample Count 12-segm. 61-65 Statistical Moment M1,1,M1,2,M2,1,M0,3,M3,0

28-51 X and Y Area 12-segm. 66-68 Minimum, Mean and Maximum Pressure Value

Table 1. Static features extracted from each signature image.

3.1 Enrollment Stage

The enrollment procedure of the proposed security-scalable signature-based au-
thentication system is sketched in Figure 2, and detailed in the following. It is
worth pointing out that we use the pressure values of the signature as the host
signal where to embed the watermark, thus achieving a higher discriminative
capability for the considered signature images, with respect to the simple binary
signature images employed by conventional methods.

Both some dynamic features to be embedded in the signature image, and
some static features which will be used to perform the first level of user au-
thentication, are extracted during enrollment. For a given user u, the 68 static
features detailed in Table 1 are extracted from each of the I acquired signatures.

We consider both global (the first 20) and local features (the last 48), cal-
culated by dividing each signature image, of dimension 720× 1440 pixels, in 12
equal-sized rectangular segments [19]. Among the I signatures acquired for the
user u, a representative signature is selected to be the host image where to embed
the selected user’s dynamic features. This is accomplished taking the signature
image whose static features of Table 1 are the closest (in an Euclidean sense) to
the mean estimated from the I acquired signature.

The chosen pressure image s[i, j] undergoes a two-level wavelet decomposi-
tion. The second level subbands, s2LL[i, j], s2HL[i, j], s2LH [i, j], and s2HH [i, j],
which represent the approximation and the horizontal, the vertical, and the
diagonal detail subbands respectively, are selected for the embedding. Being
signature images typically sparse images, the subbands sγ [i, j], with γ ∈ Γ =
{2LL, 2HL, 2LH, 2HH}, are then decomposed into blocks of P×P pixels, in or-
der to identify the proper areas where the watermark has to be embedded: having
indicated with s

(b)
γ [i, j] the generic b-th block extracted from the subband γ, it

is selected for watermark embedding if its energy is greater than a fixed thresh-
old TE , that is, if the block contains a meaningful fragment of the signature.
The selected blocks are then projected in the Radon-Discrete Cosine Transform
(R-DCT) domain introduced in [4]: this transformation is implemented apply-
ing the finite Radon Transform (FRAT) [20] to each considered block, and then
performing on each FRAT projection sequence an energy compaction by means
of the DCT. Formally, the R-DCT of a selected blocks

(b)
γ [i, j] can be written as:

c(b)
γ [k, q] = ω[l]

P−1∑

l=0

r(b)
γ [k, l] cos

[
π(2l + 1)q

2P

]
, r(b)

γ [k, l] =
1√
P

∑

(i,j)∈Lk,l

s(b)
γ [i, j]

(3)
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Index Description Assigned Bits

1 Number of the Strokes 5

2 Time Duration 7

3 Pen Up/Pen Down Ratio 8

4-5 Number of X and Y Maximums 6 + 6

6-7 Initial and Final X 10 + 10

8-9 Initial and Final Y 10 + 10

10-11 Mean Instantaneous Velocity and Acceleration Direction 10 + 10
Table 2. Dynamic features extracted from each signature.

where r
(b)
γ [k, l] represents the FRAT [20], and having indicated with Lk,l the set

of points that form a line. on Z2
P .

Among the P + 1 available projections, only the sequences associated to the
two most energetic direction k1 and k2 of each block are selected to be marked.
From them, the matrix M(b)

γ is then built taking the N first components from
each sequence (without considering the DC coefficients of the projections):

M(b)
γ =

(
c
(b)
γ [k1, 1] c

(b)
γ [k1, 2] · · · c(b)

γ [k1, N ]
c
(b)
γ [k2, 1] c

(b)
γ [k2, 2] · · · c(b)

γ [k2, N ]

)
. (4)

Iterating this procedure for all the Bγ blocks selected from each subband γ,
four host vectors wγ , where the mark has to be embedded, can be generated,
considering the concatenation of the vectors originated by scanning the matrices
M(b)

γ column-wise. The watermarks are generated by extracting from each user’s
signature the dynamic features detailed in Table 2. The mean dynamic features
vector is then binarized using the bit depths given in Table 2. The so obtained
binary vector, with length equal to 92 bits, is then BCH coded to provide er-
ror resilience. We have chosen to use a (127,92) BCH code, which provides an
error correction capability (ECC) equal to 5 bits. The coded binary vector m,
consisting of 127 bits, is then decomposed into 3 separate marks m2LL, m2HL

and m2LH with dimensions equal to 32 bits, and a fourth mark m2HH with
dimension equal to 31 bits. These marks are separately embedded, by means of
QIM [21] watermarking, in the corresponding hosts wγ , γ ∈ Γ .

3.2 Authentication Stage

In the authentication stage the user is asked to provide his signature by means of
an electronic pad. His prototype signature with the embedded signature dynamic
information can be stored either in a centralized database or in a card. When a
low-security level is required the authentication is performed on the base of the
selected static features only. Otherwise, when a high-security level is needed, also
the the dynamic features embedded in the stored signature are extracted and
compared with the acquired ones. A Mahalanobis distance is used to match the
extracted features vectors, employing the standard deviations, estimated during
enrollment, of both static and dynamic features. Moreover, the best recognition
rates, as it will be outlined in Section 4.2, can be obtaining from the fusion
of both static and dynamic information. This can be accomplished using score
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Fig. 3. Proposed fuzzy commitment-based system’s performances. (a): P ′ = 50; (b)
P ′ = 80; (c) Comparison between the performances of the adaptive fuzzy commitment,
a system without protection, and the one proposed in [12].

fusion techniques [22]. Specifically, we used the double sigmoid normalization
technique, which is robust to outliers in the score distribution, followed by sum
fusion technique, thus obtaining a single fused matching score.

4 Experimental Results

In this Section an extensive set of experimental results concerning the perfor-
mances of the proposed signature-based authentication systems are presented.
A database comprising 30 users, from each of which 50 signatures have been
acquired during a week time span, has been used to test the effectiveness of the
presented approaches. Also a test set of ten skilled forgeries for each subject,
created using a training time of ten minutes for each signature whose original
was made available to the forger, has been made available.

4.1 Experimental Results: Signature-based fuzzy commitment

In this Section, the recognition performances achievable using the proposed
fuzzy commitment-based system for the protection of signature templates are
presented. For each user, I = 10 signatures have been considered during the
enrollment stage. In Figure 3(a) the system performances obtained using the
set of features indicated in [17], and considering only the (P ′ = 50) most reli-
able features for each user, are given. Two different scenarios, one where pen-
inclination-dependant features are not considered, and one the whole set with 95
features is considered, are taken into account. In order to show the effectiveness
of the proposed feature selection procedure, the system performances achieved
when (P ′ = 80) reliable features are also displayed in Figure 3(b). The results
are shown with respect to the parameter ∆ECC, used to determine the proper
error correction capability for each user. The performances have been assessed
in terms of False Rejection Rate (FRR), False Acceptance Rate (FAR) in con-
ditions of skilled forgeries (FARSF ), and FAR in conditions of random forgeries
(FARRF ), where the signatures of the users different from the analyzed one are
employed as forgeries. The achieved equal error rates (EER)s are approximately
19% (without pen-inclination features) and 16% (with pen-inclination features)

180          Emanuele Maiorana, Patrizio Campisi, and Alessandro Neri



100 90 80 70 60
0%

5%

10%

15%

20%

JPEG Quality
(a)

B
it 

E
rr

or
 R

at
e 

(B
E

R
)

45 40 35 30 25
0%

5%

10%

15%

20%

25%

30%

35%

40%

45%

50%

Marked/Noisy Signature Image PSNR
(b)

B
it 

E
rr

or
 R

at
e 

(B
E

R
)

Fig. 4. Mark extraction performances. (a): BER vs. JPEG quality level; (b): BER vs.
marked and noisy image PSNR.

for P ′ = 50, whereas EER = 16% (without pen-inclination features) and EER
= 12% (with pen-inclination features) for P ′ = 80, considering skilled forgeries.

A performance comparison among the proposed method, the one where no
template protection is taken into account, and the one in [12], which also relies on
the processing of parametric features extracted from signatures, is also reported
in Figure 3(c). Specifically, for the unprotected approach we used a Mahalanobis
distance as feature vector matcher. The performances of the method proposed in
[12] are very close to those obtainable when no protection is applied. As far as the
proposed adaptive scheme is concerned, the obtained ROC curves differentiate
with respect to the one obtained when no protection is taken into account: better
performances in terms of FRR are obtained (lower value is equal to 7%) making
the proposed approach more suitable to forensic applications. Moreover, the best
achievable EER is obtained using our adaptive fuzzy commitment approach, and
is equal to 12%.

4.2 Experimental Results: Signature-based Authentication System
using Data Hiding

The performances regarding this system have been characterized in terms of both
the robustness of the employed watermarking method and of the recognition
capabilities.

Mark Extraction Performances The performances of the proposed embed-
ding method are evaluated on the basis of the available 1500 genuine signature
images. The embedding, detailed in Section 3, is performed using random bi-
nary marks of 127 bits which, in our case, represent the BCH encoded dynamic
features extracted from the acquired signature. Some attacks, like JPEG com-
pression and additive random Gaussian noise, have been performed on the water-
marked signature images for testing the robustness of the proposed embedding
methods. The obtained results are displayed in Figure 4, where P = 10, TE = 5,
and N = 6 have been considered as system’s parameters. Figure 4(a) shows the
obtained bit-error-rate (BER) as a function of the JPEG quality of the marked
image, while Figure 4(b) shows the BER obtained when considering marked im-
ages with Gaussian noise added, as a function of the PSNR between the marked
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Fig. 5. Proposed data hiding-based recognition system’s performances. (a): static fea-
tures; (b): dynamic features; (c): individual and combined systems.

and the noisy signature images. As can be seen, the achieved results allow us to
properly extract the embedded features (using the error correcting capability of
the employed BCH codes) for compression with JPEG quality equal to 80, or
PSNR equal to 35.

Recognition Performances In Figure 5 the obtained recognition performances,
referred to a case where I = 10 signatures have been considered during enroll-
ment, are reported. Figure 5(a) and 5(b) show respectively the performances
obtained using only static features, and only dynamic features. In Figure 5(c)
the results related to the fusion of static and dynamic features are displayed. All
the images we have considered were compressed with a JPEG quality value equal
to 90. The embedding is performed using P = 10 pixels, TE = 5 and N = 6.
As it is shown, the equal error rate (EER) achievable using only static features
is approximately 15% considering random forgeries, and 17% considering skilled
forgeries. The use of dynamic features results in an EER of approximately 10%
for random forgeries and 18% for skilled forgeries. Moreover, the performances
obtainable from the combined system are better than those of the individual
ones, resulting in EER = 12, 5%, considering skilled forgeries.

5 Conclusions

In this paper we present two different approaches to protect a signature biomet-
ric template. A user adaptive template protection scheme applied to signature
biometrics, which stems from the fuzzy commitment scheme, is proposed. The
system is able to provide performances comparable with those achievable by a
non-protected system. Moreover, data hiding techniques are also used to design
a security scalable authentication system. Specifically, watermarking has been
employed to hide some dynamic signature features into a static representation of
the signature itself. Experimental results characterizing the system performances
in terms of both the achievable authentication capabilities, and the robustness
of the implemented watermarking technique, are reported.
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Abstract. In this contribution, the vulnerabilities of iris-based recogni-
tion systems to direct attacks are studied. A database of fake iris images
has been created from real iris of the BioSec baseline database. Iris im-
ages are printed using a commercial printer and then, presented at the
iris sensor. We use for our experiments a publicly available iris recogni-
tion system. Based on results achieved on different operational scenarios,
we show that the system is vulnerable to direct attacks, pointing out the
importance of having countermeasures against this type of fraudulent
actions.

Key words: Biometrics, iris recognition, direct attacks, fake iris

1 Introduction

The increasing interest on biometrics is related to the number of important ap-
plications where a correct assessment of identity is a crucial point. The term
biometrics refers to automatic recognition of an individual based on anatomical
(e.g., fingerprint, face, iris, hand geometry, ear, palmprint) or behavioral charac-
teristics (e.g., signature, gait, keystroke dynamics) [1]. Biometric systems have
several advantages over traditional security methods based on something that
you know (password, PIN) or something that you have (card, key, etc.). In bio-
metric systems, users do not need to remember passwords or PINs (which can be
forgotten) or to carry cards or keys (which can be stolen). Among all biometric
techniques, iris recognition has been traditionally regarded as one of the most
reliable and accurate biometric identification system available [2]. Additionally,
the iris is highly stable over a person’s lifetime and lends itself to noninvasive
identification because it is an externally visible internal organ [3].

However, in spite of these advantages, biometric systems have some draw-
backs [4]: i) the lack of secrecy (e.g. everybody knows our face or could get our
fingerprints), and ii) the fact that a biometric trait can not be replaced (if we
forget a password we can easily generate a new one, but no new fingerprint can



be generated if an impostor “steals” it). Moreover, biometric systems are vulner-
able to external attacks which could decrease their level of security. In [5] Ratha
et al. identified and classified eight possible attack points to biometric recogni-
tion systems. These vulnerability points, depicted in Figure 1, can broadly be
divided into two main groups:

2

Sensor

Identity claim

Matcher

Pre-Processing

Feature Extraction
& DATABASE

Matching score

1

3

4
5

6

7

8

Fig. 1. Architecture of an automated biometric verification system. Possible attack
points are numbered from 1 to 8.

– Direct attacks. Here, the sensor is attacked using synthetic biometric sam-
ples, e.g. gummy fingers (point 1 in Figure 1). It is worth noting that in
this type of attacks no specific knowledge about the system is needed. Fur-
thermore, the attack is carried out in the analog domain, outside the digital
limits of the system, so digital protection mechanisms (digital signature, wa-
termarking, etc) cannot be used.

– Indirect attacks. This group includes all the remaining seven points of
attack identified in Figure 1. Attacks 3 and 5 might be carried out using
a Trojan Horse that bypasses the system modules. In attack 6, the system
database is manipulated. The remaining points of attack (2, 4, 7 and 8)
exploit possible weak points in the communication channels of the system.
In opposition to direct attacks, in this case the intruder needs to have some
additional information about the internal working of the system and, in most
cases, physical access to some of the application components. Most of the
works reporting indirect attacks use some type of variant of the hill climbing
technique introduced in [6].

In this work we concentrate our efforts in studying direct attacks on iris-based
verification systems. For this purpose we have built a database with synthetic
iris images generated from 27 users of the BioSec multi-modal baseline corpus
[7]. This paper is structured as follows. In Sect. 2 we detail the process followed
for the creation of the fake iris, and the database used in the experiments is
presented. The experimental protocol, some results and further discussion are
reported in Sect. 3. Conclusions are finally drawn in Sect. 4.
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Fig. 2. Iris capture preparation.

2 Fake Iris Database

A new iris database has been created using iris images from 27 users of the
BioSec baseline database [7]. The process is divided into three steps: i) first
original images are preprocessed for a better afterwards quality, then ii) they
are printed on a piece of paper using a commercial printer as shown in Figure 2,
and lastly, iii) printed images are presented at the iris sensor, as can be seen in
Figure 3, obtaining the fake image.

2.1 Fake iris generation method

To correctly create a new database, it is necessary to take into account factors
affecting the quality of acquired fake images. The main variables with significant
importance for iris quality are found to be: preprocessing of original images,
printer type and paper type.

We tested two different printers: a HP Deskjet 970cxi (inkjet printer) and
a HP LaserJet 4200L (laser printer). They both give fairly good quality. On
the other hand, we observed that the quality of acquired fake images depends
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Fig. 3. Capturing fake iris.

PRINTER PAPER PREPROCESSING [8]
Ink Jet White paper Histogram equalization
Laser Recycled paper Noise filtering

Photographic paper Open/close
High resolution paper Top hat

Butter paper
Cardboard

Table 1. Options tested for fake iris generation.

on the type of paper used. Here comes the biggest range of options. All the
tested types appear in Table 1. In our experiments, the preprocessing is specially
important since it has been observed that the iris camera does not capture
correctly original images printed without previous modifications. Therefore we
have tested different enhancement methods before printing in order to acquire
good quality fake images. The options tested are also summarized in Table 1.
By analyzing all the possibilities with a few images, the combination that gives
the best segmentation results and therefore the best quality for the afterwards
comparison has been found to be the inkjet printer, with high resolution paper
and an Open-TopHat preprocessing step. In Figure 4, examples using different
preprocessing techniques with this kind of paper and inkjet printer are shown.

2.2 Database

The fake iris database follows the same structure of the original BioSec database.
Therefore, data for the experiments consists of 27 users × 2 eyes × 4 images ×
2 sessions = 432 fake iris images, and its corresponding real images. Acquisition
of fake images has been carried out with the same iris camera used in BioSec, a
LG IrisAccess EOU3000.
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(a) Original image - no enhancement
CAPACITIVE SENSOR

(b) Fake image - no enhancement

(c) Fake image - histogram equalization
CAPACITIVE SENSOR

(d) Fake image - noise filtering

(e) Fake image - TopHat
CAPACITIVE SENSOR

(f) Fake image - Open+TopHat

Fig. 4. Acquired fake images with different modifications using high quality paper and
inkjet printer.

3 Experiments

3.1 Recognition system

We have used for our experiments the iris recognition system1 developed by
Libor Masek [9]. It consists of the following sequence of steps that are described
next: segmentation, normalization, encoding and matching.

For iris segmentation, the system uses a circular Hough transform in order to
detect the iris and pupil boundaries. Iris boundaries are modeled as two circles.
The system also performs an eyelids removal step. Eyelids are isolated first by
fitting a line to the upper and lower eyelid using a linear Hough transform (see

1 The source code can be freely downloaded from www.csse.uwa.edu.au/~pk/

studentprojects/libor/sourcecode.html
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Figure 5(a) right, in which the eyelid lines correspond to the border of the black
blocks). Eyelashes detection by histogram thresholding is available in the source
code, but it is not performed in our experiments. Although eyelashes are quite
dark compared with the surrounding iris region, other iris areas are equally dark
due to the imaging conditions. Therefore, thresholding to isolate eyelashes would
also remove important iris regions. However, eyelash occlusion has been found
to be not very prominent in our database.

Normalization of iris regions is performed using a technique based on Daug-
man’s rubber sheet model [10]. The center of the pupil is considered as the refer-
ence point, based on which a 2D array is generated consisting of an angular-radial
mapping of the segmented iris region. In Figure 5, an example of the normaliza-
tion step is depicted.

CAPACITIVE SENSOR

(a) Original image and noise image

(b) Normalized iris pattern

(c) Noise mask

Fig. 5. Examples of the normalization step.

Feature encoding is implemented by convolving the normalized iris pattern
with 1D Log-Gabor wavelets. The rows of the 2D normalized pattern are taken
as the 1D signal, each row corresponding to a circular ring on the iris region. It
uses the angular direction since maximum independence occurs in this direction.
The filtered output is then phase quantized to four levels using the Daugman
method [10], with each filtering producing two bits of data. The output of phase
quantization is a grey code, so that when going from one quadrant to another,
only 1 bit changes. This will minimize the number of bits disagreeing, if say
two intra-class patterns are slightly misaligned and thus will provide more ac-
curate recognition [9]. The encoding process produces a binary template and a
corresponding noise mask which represents the eyelids areas (see Figure 5 (c)).
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For matching, the Hamming distance is chosen as a metric for recognition.
The Hamming distance employed incorporates the noise mask, so that only sig-
nificant bits are used in calculating the Hamming distance between two iris
templates. The modified Hamming distance formula is given by

HD =
1

N −∑N
k=1 Xnk(OR)Y nk

·
N∑

j=1

Xj(XOR)Yj(AND)Xn′j(AND)Y n′j

where Xj and Yj are the two bitwise templates to compare, Xnj and Y nj

are the corresponding noise masks for Xj and Yj , and N is the number of bits
represented by each template.

In order to account for rotational inconsistencies, when the Hamming dis-
tance of two templates is calculated, one template is shifted left and right bit-
wise and a number of Hamming distance values are calculated from successive
shifts [10]. This method corrects for misalignments in the normalized iris pattern
caused by rotational differences during imaging. From the calculated distance
values, the lowest one is taken.

3.2 Experimental Protocol

For the experiments, each eye in the database is considered as a different user.
In this way, we have two sessions with 4 images each for 54 users (27 donors ×
2 eyes per donor).

Two different attack scenarios are considered in the experiments and com-
pared to the system normal operation mode:

– Normal Operation Mode (NOM): both the enrollment and the test are
carried out with a real iris. This is used as the reference scenario. In this
context the FAR (False Acceptance Rate) of the system is defined as the
number of times an impostor using his own iris gains access to the system
as a genuine user, which can be understood as the robustness of the system
against a zero-effort attack. The same way, the FRR (False Rejection Rate)
denotes the number of times a genuine user is rejected by the system.

– Attack 1: both the enrollment and the test are carried out with a fake iris.
In this case the attacker enrolls to the system with the fake iris of a genuine
user and then tries to access the application also with a fake iris of the same
user. In this scenario an attack is unsuccessful (i.e. the system repels the
attack) when the impostor is not able to access the system using the fake
iris. Thus, the attack success rate (SR) in this scenario can be computed as:
SR = 1− FRR.

– Attack 2: the enrollment is performed using a real iris, and tests are carried
out with fake iris. In this case the genuine user enrolls with his/her iris and
the attacker tries to access the application with the fake iris of the legal
user. A successful attack is accomplished when the system confuses a fake
iris with its corresponding genuine iris, i.e., SR = FAR.
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(a) Correct iris detection
CAPACITIVE SENSOR

(b) Incorrect iris detection

Fig. 6. Examples of fake images with correct iris detection (left) and incorrect iris
detection (right).

In order to compute the performance of the system in the normal operation
mode, the experimental protocol is as follows. For a given user, all the images of
the first session are considered as enrolment templates. Genuine matchings are
obtained by comparing the templates to the corresponding images of the second
session from the same user. Impostor matchings are obtained by comparing
one randomly selected template of a user to a randomly selected iris image of
the second session from the remaining users. Similarly, to compute the FRR in
attack 1, all the fake images of the first session of each user are compared with
the corresponding fake images of the second session. In the attack 2 scenario,
only the impostor scores are computed matching all the 4 original samples of
each user with its 4 fake samples of the second session. In our experiments, not all
the images were segmented successfully by the recognition system. As a result,
it was not possible to use all the eye images for testing experiments.

3.3 Results

The number of correctly segmented images were 348 for the original database
(80.56% of the 432 available) and 166 for the fake database (38.43% of the 432).
In Figure 6, several examples of fake images with correct and incorrect iris detec-
tion are plotted. The rate of correctly segmented images for the original database
is consistent with that reported in the description of the recognition system used
in this paper, with which a segmentation rate of around 83% is attained on the
CASIA database [9]. Regarding fake images, it is worth noting than nearly 40%
of them pass through the segmentation and normalization stages, and they are
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input into the feature extraction and matching stages. It should be noted that
the version of the CASIA database used in [9] provided good segmentation, since
pupil regions of all iris images were automatically detected and replaced with a
circular region of constant intensity to mask out the specular reflections, thus
making iris boundaries clearly distinguishable.

In Table 2 we show the Success Rate (SR) of the direct attacks against
the recognition system at four different operating points, considering only the
matchings between correctly segmented images. The decision threshold is fixed
to reach a FAR={0.1, 1, 2, 5} % in the normal operation mode (NOM), and
then the success rate of the two proposed attacks is computed. We observe that
in all the operating points, the system is highly vulnerable to the two attacks
(i.e. a success rate of 50% or higher is observed). This is specially evident as the
FAR in the normal operation mode is increased. Also, higher success rates are
observed for attack 1. For this kind of attack, an intruder would be correctly
enrolled in the system using a fake image of another person and at a later date,
he/she would be granted access to the system also using a fake image.

NOM Attack 1 Attack 2

FAR - FRR (%) SR (%) SR (%)

0.1 - 12.71 57.41 49.32

1 - 8.70 74.07 66.06

2 - 7.86 76.85 68.78

5 - 6.19 82.41 73.30

Table 2. Evaluation of the verification system to direct attacks. NOM refers to the
system normal operation mode and SR to the success rate of the attack.

4 Conclusion

An evaluation of the vulnerabilities to direct attacks of iris-based verification
systems has been presented. The attacks have been evaluated using fake iris
images created from real iris of the BioSec baseline database. We printed iris
images with a commercial printer and then, we presented the images to the iris
sensor. Different factors affecting the quality of acquired fake images have been
studied, including preprocessing of original images, printer type and paper type.
We have chosen the combination giving the best quality and then, we have built
a database of fake images from 54 eyes, with 8 iris images per eye. Acquisition
of fake images has been carried out with the same iris camera used in BioSec.

Two attack scenarios have been compared to the normal operation mode
of the system using a publicly available iris recognition system. The first at-
tack scenario considers enrolling to the system and accessing it with fake iris.
The second one represents accessing a genuine account with fake iris. Results
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showed that the system is highly vulnerable to the two evaluated attacks. We
also observed that about 40% of the fake images were correctly segmented by
the system. When that this happens, the intruder is granted access with high
probability, being the success rate of the two attacks of 50% or higher.

Liveness detection procedures are possible countermeasures against direct
attacks. For the case of iris recognition systems, light reflections or behavioral
features like eye movement, pupil response to a sudden lighting event, etc. have
been proposed [11, 12]. This research direction will be the source of future work.
We will also explore the use of another type of iris sensors, as the OKI’s hand-
held iris sensor used in the CASIA database2.
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Abstract. This paper focuses on the requirements for face images to be used in 
Machine Readable Travel Documents, defined in the ISO/IEC 19794-5 
standard. In particular an evaluation framework is proposed for testing software 
able to automatically verify the compliance of an image to the standard. The 
results obtained for thee commercial software are reported and compared. 

1. Introduction 

Face represents one of the most used biometric traits, for both computer 
automated and human assisted person identification. To allow 
interoperability among systems developed by different vendors and 
simplify the integration of biometric recognition in large-scale 
identification (e-passport, visas, etc.) a standard data format for digital 
face images is needed. In this context, the International Civil Aviation 
Organization (ICAO) started in 1980 a project focused on machine 
assisted biometric identity confirmation of persons. Initially three 
different biometric characteristics where identified for possible 
application in this context (face, fingerprint, iris), but finally face was 
selected as the most suited to the practicalities of travel document 
issuance, with fingerprint and/or iris available for choice by States for 
inclusion as complementary biometric technologies. Of course high 
quality, defect-free digital face images are needed to maximize both the 
human and computer assisted recognition accuracy. Starting from the 
ICAO work, in 2004 the International Standard Organization (ISO) 
defined a standard [3] for the digital face images to be used in the 
Machine Readable Travel Documents. The standard specifies a set of 
characteristics that the image has to comply, mainly related to the 
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position of the face in the image and to the absence of defects (blurring, 
red eyes, face partially occluded by accessories, etc.) that would affect 
both the human and automatic recognition performance.  
In view of the widespread adoption of the new standard, some vendors 
of biometric technologies started to develop and distribute software 
applications able to automatically verify the compliance of a face image 
to the ISO standard. However, until now no independent and systematic 
evaluation of these algorithms have been done, and it is not clear if 
these systems can effectively assist or substitute humans in checking 
face-image compliance with the standards. 
To the best of our knowledge one of the few experiments related to this 
issue has been carried out by the Federal Office for Information 
Security (BSI) in Germany, one of the first European countries to adopt 
the electronic passport; this evaluation [5], aimed at verifying the 
compliance of face images to the ISO/IEC 19794-5 standard [3], was 
performed on 3000 images from field applications, and was carried out 
mainly by manual inspection. 
The aim of this paper is to define a testing protocol for the automatic 
evaluation of systems verifying compliance of face-images with 
ISO/IEC 19794-5 standard. Starting from the guidelines and the 
examples of compliant and non-compliant images provided in the ISO 
standard, a set of salient characteristics has been identified and 
encoded, a precise evaluation protocol has been defined, and a software 
framework has been developed to fully automate the test. We believe 
that the possibility of fully automating such evaluation is a crucial point 
since it allows to effortless repeat the test on new systems and new 
databases.  
The paper is organized as follows: in section 2 the main ISO 
requirements are detailed, in section 3 the evaluation protocol and 
framework are introduced; section 4 presents the experiments carried 
out and finally in section 5 some concluding remarks are given. 

2. The ISO/IEC 19794-5 standard and the tests defined 

The ISO/IEC 19794-5 international standard [3] specifies a record 
format for storing, recording and transmitting the facial image 
information and defines scene constraints, photographic properties and 
digital image attributes of facial images. 
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Each requirement is specified for different face image types:  
• Full frontal. Face image type that specifies frontal images with 

sufficient resolution for human examination as well as reliable 
computer face recognition. This type of image includes the full head 
with all hair in most cases, as well as neck and shoulders. 

• Token frontal. Face image type that specifies frontal images with a 
specific geometric size and eye positioning based on the width and 
height of the image. This image type is suitable for minimizing the 
storage requirements and to simplify computer based recognition (the 
eyes are in a fixed position). 

The requirements introduced by the ISO standard are organized in two 
categories: geometric and photographic requirements.  
The geometric requirements are related to the position of the face and 
of its main components (eyes, nose, etc.) within the digital image. In 
Fig. 1. the geometric characteristics of the digital image used to specify 
the requirements for the full frontal format are shown. The following 
basic elements are considered in the definition of the requirements:  
− A: image width, B: image height; 
− AA: imaginary vertical line positioned at the center of the image; 
− BB: vertical distance from the bottom edge of the image to an 

imaginary horizontal line passing through the center of the eyes; 
− CC: head width defined as the horizontal distance between the 

midpoints of two imaginary vertical lines; each imaginary line is 
drawn between the upper and lower lobes of each ear and shall be 
positioned where the external ear connects the head; 

− DD: head height defined as the vertical distance between the base 
of the chin and the crown.  

 
 
 
 
 
 
 
 
 

Fig. 1. Geometric characteristics of the Full Frontal Face Image (a) and definition of the pose 
angles with respect to the frontal view of the subject (b). 

(a) (b)
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The photographic requirements refer to characteristics of the face (e.g. 
expression, mouth open) and of the image (e.g. focus, contrast, natural 
skin tone). Starting from the guidelines and the examples of 
acceptable/unacceptable images provided in [3], we defined a set of 
tests (see Table 1). 

Table 1. Tests defined to evaluate systems for ISO compliance check. The last column of the 
table (Section) denotes the section of [3] from which the test was derived. 

N° Description of the test Section 
Feature extraction accuracy tests 

1 Eye Location Accuracy  
2 Face Location Accuracy (other points)  

Geometric tests (Full Frontal Image Format) 
3 Eye Distance (min 90 pixels) 8.4.1 
4 Relative Vertical Position (0.5B<=BB<=0.7B) 8.3.3 
5 Relative Horizontal Position (no tolerances) 8.3.2 
6 Head Image Width Ratio (0.5A<=CC<=0.71A) 8.3.4 
7 Head Image Height Ratio (0.7B<=DD<=0.8B) 8.3.5 

Photographic and pose-specific tests 
8 Blurring 7.3.3 
9 Looking Away 7.2.3 

10 Ink Marked/Creased A3.2.3 
11 Unnatural Skin Tone 7.3.4 
12 Too Dark/Light 7.3.2 
13 Washed Out 7.4.2.1 
14 Pixelation A3.2.3 
15 Hair Across Eyes A3.2.3 
16 Eyes Closed 7.2.3 
17 Varied Background A2.4 
18 Roll/Pitch/Yaw Greater 5 7.2.2 
19 Flash Reflection on Skin 7.2.10 
20 Red Eyes 7.3.4 
21 Shadows Behind Head A3.2.3 
22 Shadows Across Face 7.2.7 
23 Dark Tinted Lenses 7.2.11 
24 Flash Reflection on Lenses 7.2.11 
25 Frames too Heavy A4.3 
26 Frame Covering Eyes 7.2.3 
27 Hat/Cap A3.2.3 
28 Veil over Face A3.2.3 
29 Mouth Open 7.2.3 
30 Presence of Other Faces or Toys too Close to Face A3.2.3 

The token face image format inherits the requirements of the frontal 
face image type [3], does not require to comply with the geometric 
constraints of full frontal images (see tests 3..7 in Table 1), but enforces 
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other geometric constraints related to the eyes position and the image 
size proportion (see Table 2).  

Table 2. Geometric tests for the token image type. The last column of the table (Section) 
denotes the section of [3] from which the test was derived. 

Geometric tests (Token Frontal Image Format) Section 
Image Width W (min 240 pixels) 9.2.4 
Image Height (= W / 0.75) 9.2.3 
Y Coordinate of Eyes (=0.6 * W) 9.2.3 
X Coordinate of First (right) Eye (=(0.375 * W) – 1) 9.2.3 
X Coordinate of Second (left) Eye (=(0.625 * W) – 1) 9.2.3 
Width from Eye to Eye (inclusive) (=0.25 * W) 9.2.3 

3. The software framework 

A software framework has been developed to evaluate and analyze the 
performance of algorithms provided in the form of SDK (Software 
Development Kit). The framework offers the following functionalities. 
− Manual image labeling. It allows to load a database of images and, 

for each of them, to manually: 
o label by point and click the main facial features such as eye 

centers, center of mouth, nostrils, etc.; 
o specify the compliance of the image with respect to the 

characteristics underlying the tests 8..30 in Table 1. Labels are 
tri-state values (compliant, non-compliant and dummy). A dummy 
label is assigned when the human expert is not confident enough 
whether the image is compliant or not.  

− Artificial dataset generation. Most of the images used for the tests 
belong to face databases available to the scientific community; for 
some of the tests it is very difficult to find in these databases a 
sufficient number of non-compliant images. The framework offers a 
tool to generate artificial images non-compliant with respect to a 
particular characteristic by applying some image processing to “real” 
compliant images. In the current version of the framework the 
following transformations are available: blurring, brightness and 
contrast adjustment, pixelation, addition of red eyes. Each 
transformation is characterized by a specific set of parameters that 
can be tuned to control the effect of the operation on the real image 
(see figure 2 for some example). 
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− Automatic SDK testing. In order to interface the framework with 
different SDKs a simple interface protocol based on a command-line 
executable has been defined and provided to the SDK vendors. The 
executable evaluates the compliance of a single image and provides 
in output a compliance degree (in the range 0..100) for each of the 
characteristics underlying the tests in Table 1. The results obtained 
can be analyzed and compared on the basis of several performance 
indicators among which EER, FAR/FRR curves, DET graphs. Any 
new SDK, in order to be tested, simply needs to comply with the 
defined testing protocol. 

4. Experiments 

Three commercial SDKs, whose names cannot be disclosed (here 
referred to as A, B and C), have been evaluated in our experiments; for 
each of them the compliance of each image in the dataset has been 
measured with respect to the characteristics 1, 8..30 underlying the 
cases reported in Table 1; the geometric tests 2..7 are not included in 
this study, because of the non-uniform way the different SDKs provide 
in output details about the location of internal face-feature. This part of 
the evaluation will be done in a successive study. 
Analogously to a biometric verification systems the SDKs here 
evaluated can make two types of errors: declaring compliant with 
respect to a given characteristic an image that is non-complaint (False 
Acceptance) and declaring non-compliant and image that is compliant 
(False Rejection). Images labeled as dummy for a given characteristic 
are excluded from the corresponding test. 
According to this protocol, the results are reported for each 
characteristic in terms of EER and rejection rate. A rejection occurs 
when either the SDK is not able to process an image or the image is 
processed but the SDK is not able to evaluate the specific 
characteristic. According to the best practices the rejection is here 
included in the calculation of EER [4]: this is implicitly done by, 
assuming that a 0 compliance degree (for the given characteristic) is 
returned in case of rejection. This choice is aimed at discouraging the 
software to reject the most uncertain cases thus improving the 
performance over processed images. 
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4.1 The database 

The dataset used is the publicly available AR Face Database [1] 
containing 2000 images of different subjects. Unfortunately some of 
the images are defective or not available, so that finally 504 images 
from 126 subjects have been selected. The images, whose original size 
is 768×576 pixels, have been cropped to 480 (w) × 640 (h). The 
database contains about four images of each subject: one with natural 
lighting and expression, two with evident facial expressions (smile and 
angry) and one with a strong lateral illumination. The presence of 
images with varying expression and lighting allows to verify the ability 
of the various SDKs to evaluate the compliance with respect to some of 
the characteristics given in section 2. Unfortunately the original dataset 
contains no (or a few) images non-compliant with respect to some of 
the requirements identified. In order to carry out a more precise 
evaluation of all the characteristics, some additional “artificial” datasets 
have been generated by applying specific digital image operations (see 
Fig. 2) that cannot be described here in detail for lack of space. In 
particular, derived datasets have been generated for blurring (1008 
images), unnatural skin tone (748), too dark/light (735), washed out 
(1008), pixelation (1008), red eyes (1008). The images in these datasets 
are equally distributed between compliant and non-compliant. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 2. An example of application of each image operation. (a) Original image; (b) blurred; (c) 
unnatural skin tone; (d) too dark/light; (e) washed out; (f) pixelation; (g) red eyes. 

(a) 

(b) (c) (d)

(e) (f) (g)
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4.2 Experimental results 
The results of the evaluation carried out are reported in this section. As 
to the geometric requirements, the eye localization accuracy of the 
SDKs is shown in Table 3. The columns refer to increasing intervals of 
localization errors (in pixels). The column “Correct” includes all the 
cases where the maximum error (among the single errors for the two 
eyes) is lower than 6 pixels. On average, in the images used for testing, 
the distance between the two eyes is 125 pixels. The result for SDK B 
is not reported since it does not output the eye position. The two SDKs 
achieve a very good localization accuracy, even in the presence of 
difficult cases; A is the most accurate. 
Table 3. Eye localization accuracy. 

SDK Correct [6;9[ [9;13[ [13;16[ [16;∞[ 
A 488 4 4 3 5 
C 424 64 5 4 7 

Table 4. EER and Rejection Rate of the three SDKs evaluated. 
A B C Characteristic EER Rej. EER Rej. EER Rej. 

8 Blurred 1.88% 3.47% 2.48% 0.30% 65.87% 0.60% 
9 Looking Away 1.79% 0.20% - - 1.19% 0.40% 
10 Ink Marked/Creased - - - - - - 
11 Unnatural Skin Tone 7.09% 0.00% 50.00% 0.13% 2.67% 0.40% 
12 Too Dark/Light - - 25.15% 0.14% 25.17% 0.54% 
13 Washed Out - - 23.11% 0.99% 0.79% 1.98% 
14 Pixelation - - 1.39% 0.50% - - 
15 Hair Across Eyes 50.00% 94.44% - - - - 
16 Eyes Closed 12.11% 2.90% - - 22.59% 0.41% 
17 Varied Background 17.91% 0.24% 48.87% 0.72% 46.86% 0.48% 
18 Roll/Pitch/Yaw Greater 5 - - 13.96% 0.60% 43.72% 0.40% 
19 Flash Reflection on Skin 0.51% 0.20% 49.38% 0.60% - - 
20 Red Eyes 4.86% 0.60% 50.00% 0.99% 3.70% 1.10% 
21 Shadows Behind Head - - - - - - 
22 Shadows Across Face 28.94% 2.78% - - 34.77% 0.40% 
23 Dark Tinted Lenses - - - - 25.00% 0.40% 
24 Flash Reflection on Lenses - - - - 22.77% 0.42% 
25 Frames too Heavy - - - - - - 
26 Frame Covering Eyes 50.00% 93.82% - - 16.18% 0.20% 
27 Hat/Cap - - - - - - 
28 Veil over Face - - - - / 0.40% 
29 Mouth Open 5.88% 23.72% - - 14.64% 0.20% 
30 Objects too Close to Face - - - - - - 
- the SDK does not support the test for this characteristic 
/ the EER is not calculated since the dataset does not contain non-compliant images 
The bolded values indicate the best performance for each characteristic. 
The grayed rows correspond to characteristics evaluated mainly on compliant images. For these 
characteristics additional tests on extended datasets are needed. 
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The results obtained by the three SDKs on tests 8..30 are reported in 
Table 4 where the EER and rejection rate are given. The rejection rate 
is in most cases quite low, but it is worth noting that this value for SDK 
A is noticeable for some characteristics (e.g. hair across eyes). For a 
further comparison of the three SDKs, the results in terms of EER 
shown in Table 4 are summarized in Fig. 3 where the EER distribution 
for the three SDKs is reported. Five EER intervals have been defined 
and each bar of the graph represents the number of tests that a given 
SDK is able to manage with an accuracy value included in the related 
range. 

 

 

 

 

 

 

 

 
Fig. 3. Distribution of the three SDKs accuracy in five EER intervals. The x-axis reports the 
EER ranges, and the y-axis indicates the number of tests on which a SDK reaches an EER 
included in that range. 
 
It is worth noting that the number of characteristics evaluated by the 
three SDKs is different: in particular, A verifies 11 requirements, 
reaching in most cases a good accuracy; B evaluates only 9 
requirements and the results obtained are mostly unsatisfactory; finally, 
C deals with 14 requirements and the accuracy is quite variable and 
strictly dependent on the specific requirement. 

5. Conclusions 

This work addresses the problem of evaluating the accuracy of 
automatic software for ISO/IEC 19794-5 compliance check. To this 
purpose, a testing protocol and an evaluation framework have been 
developed. 
The results show that the three SDKs evaluated are able to accurately 

4

3

2 2

0

2

1

2

4

0

4

1

5

3

1

0

1

2

3

4

5

6

[0%; 5%] ]5%; 15%] ]15%; 30%] ]30%; 50%] ]50%; 100%]

A B C

202          M. Ferrara, A. Franco and D. Maltoni



check only some characteristics while achieving unsatisfactory 
performance for others. An analysis of the results in Table 4 and Fig. 3 
show that some requirements (e.g. blurred, unnatural skin tone, washed 
out) are easily verifiable by an automatic software. On the other hand, 
characteristics like hair across eyes or frame covering eyes are difficult 
to be automatically evaluated, and a human expert inspection is 
recommended. Finally, characteristics such as looking away, too 
dark/light and mouth open are not classified accurately by the three 
SDKs, but a deeper analysis of the problem and the availability of 
training images would certainly allow to significantly improve the 
performance. As future work the dataset will be extended by including 
new samples of non-compliant images with respect to all the grayed 
characteristics in Table 4. It is our intention to make a new database 
(labeled and partitioned into training and test sets) available to the 
scientific community to allow the comparison with other SDKs, the 
improvement of existing techniques and development of new 
algorithms. 
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Abstract. An approach for the evaluation of the average slope of the vertically 
oriented strokes of signatures is described. It is based on the properties of the 
Fourier Transform which allow accumulating energy of pixels lying on straight 
lines of same slope alongside a single straight line in the frequency domain. The 
slope of the latter determines straightforwardly the stroke slope since both 
slopes differ in π/2.  
 
Key words: Handwriting, Line slope, Segmentation 
 

1   Introduction 
A new emerging area of interest concerns the increased people mobility and 
development of fast and reliable authentication systems based on biometric 
parameters, including handwriting. The ever increasing threats of illegal access to 
specific information or equipment require developing of reliable and non-abusive 
access-permit systems. The signature happened to be one of the biometrics modalities 
that had been commonly accepted and used for document authentication. The 
identification parameters relate to geometric shape of different elements constituting 
the signature, type of connections between them, evaluation of the applied pressure 
and writing dynamics, tilt towards the basic line. To measure them automatically one 
has to segment first the signature into strokes.  

The slope of the strokes is one of the parameters that have been always used. It 
reflects the established writer’s dynamic stereotype. It may play a significant role in 
cases where no forgery is expected, or in case of specific handwriting. However, 
strictly determined slope does not exist at all due to the natural variations of 
handwriting from the one hand, and different stroke slope inherent to specific 
characters and connections between them, on the other hand. This specificity has lead 
to the qualitative estimation of the slope in terms of categories as “left”, “upright”, 
right”, “predominantly right” and like. But they do not indicate exactly how big the 
slope is and do not make it possible to distinguish between different “right” slopes for 
example. Measurement of slope of different strokes is tedious and time consuming 
work and is prone to subjectivity. By this reason an objective measure of the 
“average” slope of the strokes in handwriting is desirable. 

Another problem related to the graphometric methodology in handwriting analysis 
concerns the evaluation of character width and distances between letters. If the 
average slope of writing is known this may help the proper segmentation of the words 
and contribute to the above mentioned parameters. 

Different heuristics and Hough Transform (HT) based techniques have been used 
for the detection of line slope [1,4,5]. Since HT is generally applied to binarized 
images, to apply it for halftone images V. Shapiro [4]  replaces the original image by a 
simulated one, using the DH (Digital Halftone) transform and showing the closeness 
of the obtained results to those obtained from RD (Radon transform) applied to the 
original half tone image. Thus the computational cost inherent to RD is reduced. 
However, it is hardly applicable to the problem of stroke slope evaluation. In [1] an 
attempt in this direction is made, also based on HT, where a method is proposed 
making the HT-approximation error close to zero. Thus, evaluating maximums in HT-
space the row slope and character tilt could be evaluated. The major problem in all 
HT-based cases concerns the calculation workload.   



In this paper an approach is suggested dealing with halftone images and giving the 
possibility for fast and reliable stroke slope evaluation. It is based on the well known 
properties of the Fourier Transform (FT) which is an additional advantage, because 
one can use optimized FT procedures included in the libraries of scientific oriented 
software products like Matlab. 

2   The Approach 

The approach is based on the fact steming from the Fourier slice theorem that FT of a 
straight line of slope θ is a straight line of slope θ + π/2. This statement could be 
checked in the following way. 

Let the image f(p,q) of size NxN  contains only the horizontal line lo: q=0, i.e.  
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Thus, DFT of lo is the vertical straight line at m = 0, which may be taught as a 

rotation of lo at 900 about the origin. 
Let now the horizontal line lo be shifted at the position qo ≠ 0. According to the 

shifting property of FT [2,3] we will have 
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column will be the first one. This result shows that if we have a few horizontal straight 
line segments in f(p,q) their DFT will result in a  non-zero column at the origin. This is 
so because the image f(p,q) could be presented as a sum of as many as the number of 
segments images, each of them containing just one segment. Therefore, DFT of a set 
of horizontal lines will be an image of zero entries except the ones alongside the first 
vertical column. 

In the same way using the rotation property of FT we may claim that the FT of a 
line lθ of slope θ will result in the rotation at angle θ of the FT of line lo. Therefore the 
FT of the rotated line will be a non-zero line rotated at the angle θ + π/2. Same will be 
valid for a set of line segments oriented at an angle θ. This suggests the following 
technique for the detection and extraction of straight lines of same slope in a source 
image f(p,q).  

1. Evaluate g(m,n) as a centered DFT of  f(p,q). 
2. Using a circular scan of g(m,n) about the center detect the peaks alongside the 

circle. 
3.  Evaluate the angle of line through the center and the maximal peak.  
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3   Experimental results 

To check the efficacy of the approach different experiments have been carried out in 
Matlab environment. In the first experiments gray scale images with line segments of 
almost same orientation were used.  In Fig. 1 sloped line segments are present together 
with their DFT. An angle of 76.20 is detected from the image in Fig. 2b which 
corresponds to -13.80 of slope for the original image. 

     
 

                    
 

                                            a)                                                          b)  
 

Fig. 1. a) Slant lines, b) DFT of the image from a) 
 

The background around the bright line in Fig 2b is not uniform which is due to the 
non-zero background in the original image. Also, the lines drawn by pencil are not 
fully black and of same width as it could be seen in Fig. 1a. This may cause problems 
with the correct detection of the slope. To avoid random bright pixels in the DFT 
image that may produce false maximums, it is better to use different radii of circular 
scanning. In these simple cases a value of about 1/6 of the image height was used 
without problems. 

The above examples contained simple images. To be useful in practice the 
approach has to have the ability to detect the slope in more complicated cases, 
consisting of strokes of different orientation, provided predominant orientation exists, 
e.g. signatures.  

In Fig. 2a) an example of a signature is shown. Fig. 2b presents its DFT and Fig. 
2c shows the plot of the circular scan. An angle of 750 was evaluated corresponding to 
the highest maximum. This maximum is related to the vertically oriented strokes. The 
other two bright lines describe the slope of the upper signature strokes inclined less 
than π/4 and the slope of the intermediate connecting elements. 

 

     
 

                       a)                                                    b)  
 
 

 
 

                                                 c) 
              

Fig. 2. a) Signature,  b) DFT of the signature, c) Plot of the circular scan 
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Detecting the slope angle one could apply inverse FT preserving only the values 

alongside the corresponding line in the FT domain. Fig. 3a) presents the result of such 
an operation for the image in Fig. 2a). Applying a proper threshold one will obtain the 
image in Fig. 3b) where the lines correspond to the major vertically oriented strokes in 
the signature. Distances between them may be used as another quantitative 
identification parameter. This could be easily achieved if a projection on the line 
perpendicular to the strokes is generated. The distances between the local peaks will 
correspond to the differences between strokes.  

 

   
 

a) b) 
 

Fig. 3. a) Inverse FT alongside the slope, b) Extraction of the black lines 
 

One could repeat this operation using the next peak from the circular scanning 
graph thus obtaining the major horizontally oriented strokes. 

3   Conclusion 

In this paper a DFT (Discrete Fourier Transform) based approach is applied to the 
automatic detection of the slope of straight line segments in signatures. It does not 
assume a binarized image as an input. Basic properties of FT are used to prove its 
adequacy. Using the well developed procedures for the evaluation of FT, the approach 
does not require many efforts for its implementation and it is computationally 
inexpensive. The preliminary experiments have shown that it is robust to the 
background structure and to the quality of the foreground object. The extraction of 
predominantly oriented strokes could help signature segmentation and evaluation of 
important authentication parameters.  
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Abstract. In this paper we present a new speaker recognition system
based on the fusion of two identification classifiers followed by a verifi-
cation step. The user pronounces two passwords: the first one is com-
posed by three words uniquely combined from a set of 21 possible words,
while the second password represents the name of the user. The first
step of the proposed system uses the first password to feed two iden-
tification classifiers: a speaker identification system (text independent)
and a isolated word identification system (speaker independent). The
isolated word identification system is constructed as the fusion of three
classifiers, one for each word of the first password. The aim of this first
step is to identify a couple speaker/password corresponding to the first
password by combining the results of the two identification classifiers.
A verification system is then applied on the second password in order
to confirm or infirm the identification result (speaker identity) given by
the fusion above. Compared with a state of the art speaker recognition
system (text dependent) that gives an EER of 4.76%, the first step of
the proposed system provides an EER of 0.38%, while the second step
an EER of 0.26% for a text independent verification and of 0.13% for a
text dependent verification.

Key words: Biometric recognition system, Speaker identification, Iso-
lated word recognition, Data fusion, GMM/UBM.

1 Introduction

The biometric recognition systems, used to identify persons on the basis of phys-
ical or behavioral characteristics (voice, fingerprints, face, iris, etc.), have gained
in popularity during recent years especially in forensic work and law enforce-
ment applications [1]. The use of the voice as a biometric characteristic offers
advantages such as: it is well accepted by users, can be recorded by regular micro-
phones, the hardware costs are reduced, etc. Two different tasks can be defined
for voice-based biometric systems: speaker identification and speaker verifica-
tion. In the former case, an unknown speaker is compared to N known speakers
models stored in the database and the best matching speaker is returned as the



recognition decision. In the later case, an identity is claimed by a speaker and the
system compares the voice sample to the voice model of the claimed speaker. If
the similarity exceeds a predefined threshold, the speaker is accepted, otherwise
is rejected. Two methods can be employed for both systems: text-dependent and
text-independent. The text pronounced by the speaker is known beforehand by
the system in the former case, while the system does not have any information
on the pronounced text in the later case [9].

However, due to channel distortions, ambient noise, etc., a mismatch between
training and testing conditions appears and the performances of voice-based
biometric systems easily degrade. In order to improve the performances of these
systems a solution is to merge different information carried out by the speech
signal. Several studies on data fusion shown that the performances of this kind
of speaker recognition system are improved [2, 8, 10]. However, the results are
less good compared to biometric systems based on other modalities (fingerprint,
iris, etc) or on the fusion of different modalities.

This paper proposes a fusion approach that uses two kinds of information
contained in the speech signal: the speaker (who spoke?) and the password
pronounced (what was said?). A first test signal is used to identify a couple
speaker/password. This step is done by merging the likelihood ratios given by
two identification systems: a speaker identification system (text-independent)
and a word recognition system (speaker-independent). The word identification
system is constructed as the fusion of three isolated word recognition systems,
one for each word of the first test signal. The speaker identified by this first
step is then confirmed by a classical verification system on a second test sig-
nal. The first test signal is composed by three words uniquely combined from a
set of 21 possible words, while the second one represents the name of the user.
The proposed system gives good improvements in terms of Equal Error Rate
(EER) compared with the state of the art (text dependent speaker recognition
system). Note that the experiments presented in this study use the platform
ALIZE developed by the LIA laboratory (Avignon University, France) [4].

This paper is organized as follows. Section 2 provides a brief overview of
speaker recognition systems. Section 3 presents the proposed system while the
experiments are discussed in Section 4, followed by conclusions in the last section.

2 Speaker recognition system overview

The general structure of an automatic speaker recognition system is shown
in Figure 1. This system operates in two modes: training and recognition. In
the training mode a new speaker (with a known identity) is enrolled into the
database, while in the recognition mode an unknown speaker gives a speech in-
put signal and the system try to identify the speaker. This system can be used
for both identification and verification tasks.
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Fig. 1. Architecture of a speaker recognition system.

2.1 Features extraction

Features extraction is the first component of an Automatic Speaker Recognition
(ASR) system [6]. It transforms the input speech waveform into a sequence of
acoustic feature vectors (called also parameters) through a signal time division.
Most of the speech parameters used in speaker recognition systems relies on a
cepstral representation of the speech signal [11]. The aim of this transformation
is to obtain a new representation that is more compact, less redundant, and more
suitable for statistical modeling.

Mel-frequency cepstral coefficients (MFCC): The use of the MFCC pa-
rameters is motivated by studies of the human peripheral auditory system. The
speech signal x(n) is firstly divided into q short time windows. The Discrete
Fourier Transform (DFT) is then applied to convert each time window into the
spectral domain. Each magnitude spectrum is then smoothed by a bank of tri-
angular overlapping bandpass filters. Each filter, H(k,m), computes a weighted
average of that sub-band, which is then logarithmically compressed:

X ′(m) = ln

(
N−1∑
k=0

|X(k)|H(k,m)

)
, (1)

where X(k) is the DFT of a time window of length N of the signal x(n), the index
k corresponds to the frequency fk = kfs/N , with fs the sampling frequency, the
index m is the filter number, and the filters H(k,m) are triangular filters defined
by the center frequencies fc(m) [13]. The log compressed filter outputs X ′(m),
called also mel log-amplitudes, are then decorrelated by using the Discrete Cosine
Transform. The MFCCs are the amplitudes of the resulting spectrum.

A schematic representation of this procedure is given in Figure 2.
The mel mapping used here to define the bank of triangular filters is:

Mel(f) = 2595 log10(1 +
f

700
). (2)

The LFCC parameters are calculated in the same way as the MFCC, but the
triangular filters use a linear frequency repartition.
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Fig. 2. Extraction of MFCC parameters.

Energy and Derivatives(∆, ∆∆): Usually we need to add other parameters
to the cepstral ones, such as the energy and the derivatives. The energy in a frame
is the sum over time of the power of the samples in the frame. Another important
fact about the speech signal is that it is not constant from one frame to another,
for this reason we also add features related to the change in cepstral features
over time. We do this by adding for each vector features a velocity feature (∆)
and acceleration feature (∆∆)[10].

2.2 Speaker modeling

The training phase uses the acoustic vectors extracted from each segment of
the signal to create a speaker model which will be stored in a database. In ASR
system there are two class of methods that give good results of recognition: deter-
ministic methods (dynamic comparison and vector quantization) and statistical
methods (Gaussian Mixture Model - GMM, Hidden Markov Model - HMM),
these last ones being the most used in this domain.

We have chosen to use a GMM based system that employs a Universal Back-
ground Model (UBM). The UBM has been introduced by [12] in speaker verifi-
cation in order to capture the general characteristics of a population. This model
is created by using all recording of the database, the aim being to have a general
model of speakers which will be then used to adapt each speaker model. This
choice was motivated by two reasons: modeling by GMM is very flexible with
regard to the type of the signal and the use of GMM gives a good compromise
between performances and the complexity of the system.

GMM-UBM: The matching function in GMM is defined in terms of the log
likelihood of the GMM in respect to the speech segment X given by:

p(X|λ) =
Q∑
q=1

log p(xq|λ), (3)

where p(xq|λ) is the Gaussian mixture density of the qth segment in respect to
the speaker λ:

p(xq|λ) =
G∑
i=1

pif(xq|µ(λ)
i , Σi), (4)
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with the mixing weights constrained by
G∑
i=1

pi = 1.

In these expressions xq is the D-dimensional acoustic vector corresponding
to the qth time window of the input signal, pi, µ

(λ)
i and Σi (i = 1, . . . , G) are the

mixture weight, mean vector, and covariance matrix of the ith Gaussian density
function (denoted by f) of the speaker λ, while G denotes the number of GMM
used by the model.

The speaker model λ is thus given by: λ =
{
pi, µ

(λ)
i , Σi|i = 1, . . . , G)

}
. The

UBM model has the same form: UBM =
{
pi, µ

(UBM)
i , Σi|i = 1, . . . , GU

}
and is

created by using all recordings of the database.
The mean vectors of speaker model µ(λ)

i are adapted to the training data
of the given speaker from the UBM, i.e. µ(UBM)

i , by using the Maximum a
Posteriori (MAP) adaptation method [7], the covariance matrices and mixture
weights remaining unchanged.

2.3 Pattern matching and decision

Given a segment of speech, Y , and a hypothesized speaker, S, the task of speaker
recognition system is to determine if Y was spoken by S. This task can be defined
as a basic hypothesis test between:

– H0: Y is from the hypothesized speaker S
– H1: Y is not from the hypothesized speaker S

To decide between these hypotheses, the optimum test is the likelihood ratio:

p (Y |H0)
p (Y |H1)

{
≥ θ Accept H0

< θ Reject H0
, (5)

where p(Y |Hi) is the probability density function for the hypothesis Hi evalu-
ated for the observed speech segment Y , also referred to the likelihood of the
hypothesis Hi. The decision threshold for accepting or rejecting H0 is θ. A good
technique to compute the two likelihoods, p(Y |H0) and p(Y |H1), is given in [5].

3 Proposed system architecture

In this paper we present a new ASR system based on the fusion of two identifi-
cation classifiers followed by a verification step (Fig. 3). This system is divided
into two stages, the first one composed by two classifiers (speaker and word clas-
sifiers) and the second one made up by a verification system using the decision
result of the first stage. Each speaker is identified by two signals: the first one
(combination of three words from a set of 21 possible words) is used by both
speaker and word identification systems, while the second one by the verification
system. All classifiers used a normalization UBM model, as presented in section
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2.2. This means that during the creation of the models (speakers, words), each
model is adapted by the MAP method from the UBM model.

Speaker 
identification system 

Speech identification 
system 

Fusion Spk

Speaker Verification
system 

Decision

Segmentation

Fig. 3. Global system architecture.

3.1 Speaker identification text independent system

The speaker identification system is an open-set text independent system. This
system calculate the log likelihood ratio, by using Eq. (3), between the first signal
(made up by three words W1,W2,W3) and all speakers models. No decision is
taken at this level, but the log likelihood ratios are sorted.

3.2 Word identification speaker independent system

The same signal, made up by three words, is also used to feed a word identifi-
cation speaker independent system (Fig. 4). This system is constructed as the
fusion of three classifiers, one for each word of the first signal. The outputs of each
classifier are used in order to propose one or several recognized combinations of
words. Only the first three outputs of each module are combined by taking into
account the log likelihoods and the validity of the password. Each combination
of outputs will have associated the sum of their log likelihood. This approach,
which uses a manual words segmentation, was compared with a Viterbi algo-
rithm that performs an automatic extraction of the three words from the entire
first signal. The results are presented in section 4.

3.3 Data Fusion

After sorting the log likelihood ratios LLK(W1,W2,W3|Spi) calculated with
regard to the models of each speaker Spi, with i = 1 . . . N and N the number of
speakers stored in the database, and the log likelihood ratios LLK(W1,W2,W3

|Pswi) calculated with regard to the models of each password Pswi (see Fig.
4), a first test consists to compare the most likely speaker given by the speaker
classifier with the first three identified passwords (made up by three words)
given by the word identification system. If his password was found between the
three identified passwords, a couple (speaker/password) was thus identified. A
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Fig. 4. Speech identification system.

second test consists to compare the most likely password with the first three
identified speakers. If this password belongs to one of them, another couple
(password/speaker) is identified. In the cases where two couples are identified,
the couple with the biggest likelihood ratio (Lk Sp + Lk Psw) is retained. The
system can reject directly a recording if there are no identified couples.

3.4 Speaker verification system

The verification system uses a second signal pronounced by the speaker previ-
ously identified in section 3.3. If the likelihood ratio of this verification is smaller
than a predefined threshold, the identity of the speaker is confirmed, otherwise
the speaker is rejected. For this stage, we have tested two possibilities: a ver-
ification based on a text-independent system (no information available on the
pronounced word) and on a text-dependent system. The former is more flexible
as it allows the speaker to pronounce what he prefers.

4 Experiments

Database: In order to evaluate the proposed system a corpus of specific pass-
words has been recorded. This corpus contains the recordings of 21 isolated
words (French language) pronounced by 5 woman and 53 man (≈ 4, 28 hours).
The recordings were stored in WAV format, with a sampling rate fs = 44.1kHz.

Parameterization : The parameterization was realized by using MFCC pa-
rameters for the passwords modeling and LFCC for the speaker modeling. We
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have optimized the acoustic parameter for this application; all the 8 ms the sig-
nal is characterized by a vector made up of 16 ceptrals coefficients, energy and
their derivatives (∆, ∆∆).

Universal Background Model (UBM) In ours experiments, we have tested
different sizes (number of Gaussian component, i.e. GU ) of UBM: 64, 128, and
512. Note that the UBM is created by using all recordings of the database. The
best compromise performance-computation time was obtained by using GU =
128 Gaussian components for UBM model.

Reference system The results obtained by the global proposed system are
compared to a classical text-dependent identification speaker system [3]. In the
training stage of the reference system a speaker model is created from the feature
vectors (16 LFCC+Energy+∆+∆∆). Each speaker model is created by using
three passwords (made up by three words). However the recognition phase uses
all the passwords of the speakers pronounced by the impostors and the other
two passwords pronounced by the clients. We have optimized the number of
Gaussian components for the tests signal. The optimal value for our database is
G = 24 best components from the GU = 128 of UBM model.

Training and test data: For both identification systems (speaker and pass-
word) the first signal was composed by three words W1,W2,W3 combined in a
unique way from the set of 21 possible words. This kind of signal was used for
both training and test steps. The second signal used for the verification system
(for training and test also) was chosen in our application as the name of the user.
However, this is not a restriction for a text-independent verification system.

The database was divided into two groups: 49 clients and 9 impostors. In or-
der to evaluate the proposed system we have chosen an equal number of positive
and negative tests.

1. The speaker identification system (text-independent) uses 3 recordings of
17 words of the 49 clients for the training phase (≈ 29 minutes). For the
recognition phase, the system uses 2 recording of 20 words of the 49 clients
and 5 recordings of 20 words of the 9 impostors (784 tests).

2. The word identification system (speaker-independent) uses 3 recordings of
the 49 clients for the training phase (≈ 29 minutes). For the recognition
phase, the system uses 2 recording of the 49 clients and all recordings of the
impostors (784 tests).

3. The verification system uses 8 recordings of the second passwords of every
client for the training phase (≈ 7 minutes) and 2 recordings of the 49 clients
as well as all the recordings of the 9 impostors for the recognition phase.

The reference system uses for the training phase 3 recordings of 3 words of
the 49 clients (≈ 8 minutes). For the recognition phase we used 2 recording of
the 49 clients and 3 recordings of the 9 impostors (576 tests).
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4.1 Results and discussion

Table 1 presents the performances of each stage of the proposed system compared
to the state of the art system in terms of Equal Error Rate (EER).

Table 1. performances of different systems.

Systems Parameters EER (%)

Reference System
16 LFCC+Energy+∆∆ 4.76%

text dependent

Fusion between

Speaker: 16 LFCC+Energy+∆∆
0.38%

speaker and word Isolated words: 16 MFCC+Energy+∆∆
identification systems

Verification
16 LFCC+Energy+∆∆

Dep. Indep.
after fusion 0.13% 0.26%

The first stage of the proposed system (fusion) has an EER of 0.38% in
comparison with the state of the art (text dependent speaker recognition system)
which reach 4.76%. The combination of the speaker identity with the password
recognition improves the performances by 90%. The second stage of the system
(verification stage) improves the results with 31% in respect to the first stage
using a text-independent (EER of 0.26%) and with 34% using text-dependent
verification system (EER of 0.13%). In the text independent case, the user has
more flexibility: he needs to memorize only a password (of three words) and he
can use any text for the second part. The better performance was obtained for a
text dependent verification stage, which is explained by the fact that the model
contains speaker and text information.

In the first stage we use a word identification system, based on the fusion of
three words recognition modules, which gives an EER of 5.56%. The segmen-
tation was ideal (manually applied) but we have evaluated also an automatic
segmentation system. We have compared this system with a Viterbi algorithm.
In the case of Viterbi algorithm, the passwords are modeled by an HMM with
three states and the identification system is feed directly with the combined
password of three words (without segmentation). The Viterbi approach gives an
EER of 23,84%, which is much higher than the fusion of three words recognition
systems based on a manual segmentation. This can be explaining by the fact
that in HMM modeling is difficult to reject the impostors.

5 Conclusion and perspectives

In this paper, we have presented several experiments to improve the perfor-
mances of a voice-based biometric system by using two classifiers and a verifi-
cation system. The fusion of the results of a speaker identification system and
a words identification system constitutes the first stage of the proposed system.
This stage improves the EER by 90% in comparison with a state of the art
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text-dependent system. The second stage is a speaker verification system that
uses the result (speaker identified) of the first stage. The aim here is to confirm
or infirm the result returned by the fusion system. This second stage allows to
reduce the number of impostors accepted by the first stage and improves the
results of the fusion by decreasing the EER from 0.38% to 0.13% (in a text de-
pendent system). The global system improves significantly the performances in
term of EER with regard to the reference system. Further works should evaluate
the impact of an automatic segmentation module and the influence of different
additive noises.
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Abstract. Biometrics is the automated method of recognizing a 
person  based  on  a  physiological  or  behavioural  characteristic. 
Biometric  technologies  are  becoming  the  foundation  of  an 
extensive  array  of  highly  secure  identification  and  personal 
verification  solutions.  In  the  last  few  years  there  is  increasing 
evidence  that  technologies  based  on  multimodal  biometrics  can 
provide better identification results if proper fusion schemes are 
accommodated.  In  this  work,  we  present  a  novel  platform  for 
multimodal  biometric  acquisition  which  combines  voice,  video, 
fingerprint  and  palm  photo  acquisition  through  an  integrated 
device, and the preliminary fusion experiments on combining the 
acquired biometrics modalities.  The results are encouraging and 
show clear improvement both in terms of False Acceptance Rate 
and False Rejection Rates compared to the corresponding single 
modality  approaches.  In  the  current  report,  fusion  was 
accommodated  at  the  output  of  the  single  modalities;  however, 
fusion experimentation is ongoing and further fusion methodologies 
are under investigation.          

Keywords: Biometric fusion, Data Acquisition, GUI, Matlab

1   Introduction

The emergence  of  automatic  identification  of  an  individual  by 
using certain physiological or behavioral traits, has addressed the 
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problems  that  plague  traditional  verification  methods  such  as 
passwords  and  ID  cards  [1].  Biometric  authentication  requires 
comparing  a  registered  or  enrolled  biometric  sample.  During 
enrolment a sample of the biometric trait is captured, processed by 
a computer, and stored for later comparison. A biometric system 
based on a single biometric identifier for a personal identification is 
often not able to meet the desired performance requirements. The 
performance  is  largely  affected  by  noise  in  sensed  data,  non-
universality,  upper  bound  on  identification  accuracy,  and  spoof 
attacks [2]. 

Some of the limitations of a biometric system can be addressed 
by  using  a  consolidation  of  multiple  sources  of  biometric 
information  [3,4,5].  A  multimodal  biometric  system  combines  a 
variety of biometric identifies in making a personal identification 
and  takes  the  advantage  of  the  capabilities  of  each  individual 
biometric.  Based  on  the  nature  of  biometric  modalities, 
multibiometric  systems  can  be  classified  into  six  categories 
including  multi-sensor,  multi-algorithm,  multi-instance,  multi-
sample, multimodal and hybrid [6].

Multibiometric systems provide a variety of advantages against 
traditional  biometric  systems  and  are  able  to  encounter  the 
performance requirements of various applications [7]. The problem 
of  non-universality  is  addressed,  since  sufficient  population 
coverage  can  be  ensured  by  a  multiple  traits.  Furthermore, 
multibiometric  systems can  facilitate  the  indexing of  large-scale 
databases, can address the problem of noisy data and provide anti-
spoofing measures by making it difficult for an impostor to spoof 
multiple biometric traits of a legitimate enroll individual.

In  this  paper  we  present  a  new  multimodal  biometric  data 
acquisition  platform  and  security  system.  The  proposed  system 
uses  fingerprint,  face,  voice  and  palm  geometry  features  of  an 
individual  for  verification  purposes.  The  paper  is  organized  as 
follows: Section 2 presents the single modality biometrics for voice 
fingerprint and hand geometry. Section 3 describes the Biometrics 
Fusion.  The  system  is  detailed  in  section  4  whereas  Section  5 
presents  the  evaluation  of  the  results  and  related  discussion. 
Finally, conclusions and further work are stated in Section 6.

2 Single modality biometrics

Multibiomteric systems use multiple biometric modalities. A brief 
description of biometrics that used for our system is given below. 
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2.1 Voice Biometrics / Extraction method

    Voice is the natural means of communication for human beings thus making it the 
most convenient to use biometric.  In addition, voice needs inexpensive equipment for 
capturing  and  can  be  deployed  in  a  variety  of  telephone-based  or  internet-based 
applications where other biometrics are impossible to be deployed. Voice biometric is 
utilised  in  this  work  in  the  form  of  text-dependent  Speaker  Verification  using 
concatenated phoneme Hidden Markov Models (HMMs) [8]. The experimental setup 
included the evaluation of the Speaker Verification performance using the traditional 
Mel Frequency Cepstral Coefficients (MFCC) [9, 10] while future experiments will 
involve the Perceptual Linear Prediction (PLP) coefficients [11]. 

The procedure is initiated when the user is text-prompted a series of utterances by 
the system in order to capture the speech samples. This procedure is repeated both in 
the data capture phase where the multimodal biometric database is created, and the 
verification phase  where the  captured  speech of a specific user is verified 
against  his  HMM  models  or  Voiceprint.  A  front-end  feature  extractor  is 
incorporated to calculate the voice features, which are used for both the enrolment 
and the speaker verification phase. In the enrolment phase, speaker-specific phoneme 
models are created for each reference speaker. In the speaker verification phase, the 
phoneme concatenation model corresponding to the prompted single-digit sequence is 
constructed, and the accumulated likelihood of the input speech frames for the model 
is compared with a threshold to decide whether to accept or reject the speaker. In the 
case of successful speaker verification, the features of the speech signal are stored for 
updating the HMM models of the specific speaker. The approach is based on a simple 
vocabulary consisting of a  single digit  numbers spoken continuously in sequences 
such  as  “2-3-5-7-9”.  The  advantage  is  that  by  training  HMM  models  for  the 
phonemes needed to construct all the single-digits of the vocabulary, the method can 
employ random sequences for authentication, and thus its robustness to impostors is 
increased. 

2.2 Fingerprint Biometrics / Extraction Method

Fingerprints  are  probably  the  more  extensively  studied 
biometric. Uniqueness, permanence, easy acquisition and the small 
size of the acquisition devices (at least the electronic ones) make 
fingerprints one of the most popular person identification methods. 
Usage  of  fingerprints  in  verification  systems  is  not  so  common 
because fingerprint  acquisition has been related,  for years,  with 
criminal prosecution and, therefore, it raises user annoyance. This 
prepossession  is  getting  lower,  however,  mainly  due  to  the 
extensive usage of fingerprints for user authentication in popular 
computing systems such as laptops.

Characteristic fingerprint features are generally categorized into 
three  levels  [12]:  patterns,  points  and  shape.  Patterns  are  the 
global details of the fingerprint such as ridge flow and pattern type. 
Although they are not unique, patterns are useful for fingerprint 
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classification into generic categories such as whorl, left loop, right 
loop, etc. Points refer to the characteristics or minutiae proposed 
by Galton [13]  and include ridge bifurcations and endings.  They 
have sufficient discriminating power to establish the individuality 
of  fingerprints.  Finally,  shape  features  include  all  dimensional 
attributes of the ridge such as ridge path deviation, width, pores, 
edge contour,  incipient  ridges,  breaks,  creases,  scars,  and other 
permanent details. It is claimed that shape features are permanent, 
immutable,  and unique according to the forensic experts,  and if 
properly utilized, can provide discriminatory information for human 
identification.

In the context of the proposed multibiometric system we do not 
enter  into  a  sophisticated  feature  extraction  process  for  the 
fingerprint  biometric.  Instead  we  have  tried  to  combine  level  1 
(patterns)  and  level  3  (shape)  features  through  a  smart 
combination  of  fractal  scanning  of  image  points  and  frequency 
analysis  of  these  points.  The  proposed  fingerprint  feature 
extraction method is simple through powerful: A signature  S (1D 
vector, see also Fig. 1) is created for each 2D fingerprint image by 
using the well known Hilbert fractal [14] (see Fig. 2) which is one 
of the most popular space filling curves. Then the power spectrum 
PD(S) of the signature is computed over a set of frequency bands 
(see Fig. 3). The vector of power spectrum values in the various 
frequency bands is used as feature vector for the fingerprint image. 
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Fig. 1: Image signature using the luminance at sampled points
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Fractal filling curved superimposed on a fingerprint image

Fig. 2: Hillbert filling curve for 2D points sampling
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Fig. 3: Feature vector for a fingerprint image

2.3 Hand Geometry Biometrics / Extraction Method

Hand geometry biometric systems are becoming very popular for 
verification purposes. Although hand geometry is not as unique as 
other biometrics (e.g.,  fingerprints),  it is permanent and has not 
been related for criminal prosecution; therefore it is an acceptable 
method for verification for the great public. In person identification 
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systems hand geometry has been used mostly as a complement to 
fingerprints.  However,  in  cases  of  small  user  population,  hand 
geometry biometrics are commonly used for authentication since 
they  present  acceptable  FAR  and  FRR  rates.  Hand  geometry 
biometrics fall into two main categories: geometric measurements 
and  contour  description.  The  automatic  extraction  of  geometric 
measurements  from a hand geometry image is  a  rather  difficult 
error  pruned  task.  The  method  is  more  appropriate  in  a  semi 
automatic  environment  where  a  human  user  indicates  the 
prominent points in the hand contour. Contour description methods 
have  in  general  lower  accuracy  but  they  are  more  robust  in 
automatic authentication processes. 

In this study we have adopted a contour description approach 
because it is faster and fits well in our multibiometric environment. 
Fourier descriptors [15] provide a means to describe contours. The 
idea  is  to  represent  the  contour  as  a  function  of  one  variable, 
expand the  function  in  terms of  its  Fourier  series,  and  use  the 
coefficients of the series as the features.

Let us assume that the palm boundary coordinates (x(n), y(n)), n 
= 0, 1, …, N, have been extracted in the preprocessing stage. A 
complex  sequence  z(n)  is  simply  generated  from  the  boundary 
coordinates:

1,...,1,0        ),()()( −=+= Nnnjynxnz

(2.3.1)
Taking the Discrete Fourier Transform of the sequence z(n) we 

get:
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[ ]Ta(Naa )1 ... )1( )0( −=a

(2.3.3)

The values a

)(
)(

ka
kFd =  are called Fourier descriptors (please 

note that there are several types of Fourier descriptors; all of are 
based on the previously stated principle). It can be easily shown 
that the values Fd(k) are independent of translation, rotation and 
scaling.

In  the  current  work  we  use  a  limited  subset  of  the  Fourier 
descriptors as the palm geometry biometric:

[ ]Tddd (MFFF ) ... )2( )1(ˆ =a NM << (2.3.4)

It  appears  that  an  M  equal  to  64  provides  an  accurate 
description of the palm contour which is free of noise (see Fig. 4)
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Fig. 4: Palm contour approximation using 64 Fourier 
coefficients. 

3 Biometrics Fusion

An effective fusion scheme is required to combine the information 
presented  by  individual  modalities.  Biometric  fusion  combines 
biometric  characteristics  and  can  improve  accuracy,  robustness, 
fault  tolerance  and  efficiency  of  a  multibiometric  system.  Three 
levels of fusion are possible: (a) fusion at the feature extraction, (b) 
fusion at the matching score level  and (c) fusion at the decision 
level

In  the  case  of  fusion  at  the  feature  extraction  the  features 
obtained  from each  biometric  is  used  to  compute  a  multimodal 
feature vector which is used for the biometric authentication. The 
second approach involves fusion at the matching score level. For 
each  biometric,  the  user  is  validated  and  a  matching  score 
indicating  the  proximity  of  the  feature  vector  with  the  trained 
model is calculated. These scores are then combined in order to 
verify the claimed identity. The third approach which was used in 
this work is the fusion at the decision or output level.  The final 
decision is the fusion of individual accept or reject decisions taken 
by each biometric method.

4  Multibiometric Data Acquisition

Acquiring multimodal biometric data can be a tedious and time 
consuming task. The use of an integrated system which can provide 
data  collection  for  a  range  of  different  biometrics  can  greatly 
simplify the process. For this reason, we have developed POLYBIO 
[16],  a  novel,  automated  system  for  multimodal  biometric  data 
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acquisition.  The  systems  consist  of  two  components:  a)  The 
Multimodal biometric sensor hardware shown in Figure 5(a), and 
b)  The  Data  Acquisition  software  shown  in  Figure  5(b).  The 
multimodal  biometric  sensor  hardware  integrates  an  array 
microphone for voice recording, a digital USB web-camera for face 
still  image  and  video  capture,  a  USB digital  web-camera  facing 
down accompanied by  two lighting units and six positioning pins 
on a black board for palm geometry and a USB optical Fingerprint 
Reader [17] for fingerprint capture. The hardware component is 
connected to a PC via a six port USB hub.

 
(a)  (b)

Fig. 5: (a) Multibiometric sensor hardware, (b) Data acquisition 
software

The Data Acquisition software provides a user-friendly Graphical 
User  Interface  and  an  automatic  mechanism  for  capturing  and 
storing data in a multimodal biometric database. The  software 
entails  four  interactive  screens for  voice,  face,  palm,  fingerprint 
data acquisition as illustrated in Figure 6. The administrator  can 
insert  a  new,  select  or  delete  an  existing  user  using  the 
administrator console (Fig. 5(b)). During acquisition, a new entry is 
created in the system database which contains subfolders for voice, 
face, palm and fingerprint storage.

A  multimodal  biometric  database  was  created  which  contains 
samples from voice, face, palm and fingerprint for 30 individuals, 
15 men and 15 women. Five data capture sessions were stored for 
each biometric,  four  of  which are used for training and one for 
testing.  The  database  is  used  for  testing  the  four  biometric 
methods  and  for  devising  data  fusion  models  for  improving  the 
overall verification performance.
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(a) (b)

 
(c) (d)

Fig.6: Multimodal Biometric Data acquisition Software screens 
for (a) Voice, (b) Face, (c) Palm, (d) Fingerprint

5 Experimental Results

In  this  section  we  present  experimental  results  for  biometric 
authentication based on single modalities (voice, fingerprint, palm 
geometry) and through fusion of the output scores. As mentioned 
earlier a multibiometric set of 30 individual was created with three 
instances per subject used for template creation and the other one 
for test. In the following paragraphs we describe the verification 
process in detail. 

5.1 Voice verification

Speaker  verification  performance  of  the  system  was  evaluated 
using the MFCC coefficients. Experiments were contacted to assess 
the  effect  that  the  number  of  the  utterances  used  for  training 
speaker-specific HMM models have on the speaker authentication 
performance.  Tests  were  also  performed  to  examine  the 
authentication  decision  threshold  selection  process  and  the 
normalization of HMM scores through the use of a world model. 
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Single Gaussian mixture HMM models [18] were trained with 13 
coefficient MFCC features which include delta coefficients for each 
speaker using the four enrolment sessions of the database while 
speaker  verification  performance  was  evaluated  using  10 
utterances  from  each  of  the  20  speakers.  Each  speaker  is 
authenticated  against  all  20  HMM  speaker  models  using  all 
authentication utterances. The graph in Figure 7(a) was created by 
averaging speaker dependent HMM scores for each speaker. Axis X 
shows the speakers attacking each model (impostors) while axis Y 
shows the speaker dependent HMM models. Axis Z represents the 
averaged  HMM  scores  for  each  impostor-model  combination. 
Shifting a horizontal plane along the Z axis and each time taking 
the  point  of  intersection  with  Z  axis,  we  calculate  the  False 
Acceptance Rate (FAR), False Rejection Rate (FRR) and hence the 
Equal Error Rate (EER) [11]. In Figure 7(b), the horizontal plane 
represents the threshold for which FAR equals FRR for the specific 
experiment. It can be seen that the prominent diagonal represents 
speaker identification for the 20 speakers. 

(a) (b)

Fig.7: Averaged Speaker Verification Results

Table  1  summarises  the  evaluation  results.  It  can  be  seen  that 
better performance was achieved using four enrolment sessions for 
training  and  a  world  model.  Even  thought  the  best  achieved 
EER=1.8% is not considered adequate for a commercial system, at 
this stage of the project is acceptable since more research will be 
performed  utilising  models  with  more  Gaussian  Mixtures, the 
incorporation  of  acceleration  coefficients,  bootstrapping  in  the 
training  of  the  models,  individual  decision  threshold  for  each 
speaker and Cepstral  Mean Subtraction.  It  is  expected that this 
research will result a significant drop in the EER.

Table 1: Speaker Verification Results

Without World model
Enrolment Sessions

2 3 4

% EER 4.12 3.52 2.84
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% FAR 4.12 3.53 2.82

% FRR 4.11 3.51 3.86

With World Model Enrolment Sessions

2 3 4

% EER 3.01 2.5 1.8

% FAR 3.00 2.5 1.82

%FRR 3.05 2.5 1.79

5.2 Fingerprint verification

Let us denote with fj
(k) the j-th fingerprint feature vector of the k-

th subject. We have already mentioned that in our experiments we 
have a population of N = 30 subjects (that is k = 1,2,…,N) and we 
use  three  instances  (j=1,..,3)  per  biometric  per  subject.  The 
fingerprint  feature  vectors  fj

(k) are  the  power  density  values  in 
several frequency bands, described earlier in Section 2.2. We also 
denote with y(k) the feature vector used for testing.

Due to the limited number of training instances per subject (i.e., 
three) we consider as the biometric template of the k-th subject the 
matrix:

]  [ )(
2

)(
2

)(
1

)( kkkk fffF =     (5.2.1)

It is obvious that many different templates can be constructed 
depending on the number of training vectors. Gaussian models and 
Neural  Network  representations  are  among  the  most  popular 
approaches for template construction and user modeling.  In our 
case we have implicitly consider that all training instances serve as 
Support Vectors [19].

For each subject we also define a threshold:

( ))()()( max k
j

k
i
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kT ff −=
≠

  

(5.2.2)
False Rejection (FR) and False Acceptance (FA) are then defined 

as:
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(5.2.4)
We evaluate the fingerprint biometric by using a four folder cross 

validation approach.  Three instances  per  subject  were  randomly 
selected and used as training patterns while the fourth was used 
for testing. We repeated this process for 20 cycles and the average 
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results  are  shown  in  the  Table  2  below  (we  report  also  the 
experimentation on the number features used).

The limited number of training vectors leads to important FAR 
and FRR fluctuations. This is mainly due to the adoption of a user 
specific  threshold  (see  equation  (5.2.2)).  Including  an  outlier 
feature vector in the training set increases the threshold leading to 
a loose model for the particular subject. This, in turn, increases the 
FAR for this subject model and may also decrease the FRR. The 
availability of additional training vectors will alleviate this problem 
since a more robust threshold would be selected (i.e., based on first 
order statistics).   

Table 2: Average FRR and FAR as a function of feature number for 
the fingerprint biometric

Number of features
8 12 16 20 32

Average False 
Rejection  Rate 
(%)

11.2
(± 

4.5)

9.5
(± 3.3)

9.4
(± 

2.6)

9.1
(± 2.3)

8.9
(± 2.0)

Average False 
Acceptance  Rate 
(%)

14.3
(± 

3.5)

12.6
(± 3.2)

10.1
(± 

2.6)

9.4
(± 2.5)

9.0
(± 2.6)

5.3 Hand geometry verification

The approach followed for hand geometry verification is identical 
to  the  fingerprint  verification  one.  The  feature  vectors  now 
correspond  to  the  Fourier  Descriptors  as  already  mentioned  in 
Section 2.3.

Table 3: Average FRR and FAR as a function of feature number for 
the hand geometry biometric

Number of features
8 12 16 32 64

Average False 
Rejection  Rate 
(%)

 18.7
 (± 
4.4)

15.7
 (± 4.1)

12.1
(± 

2.8)

11.4
(± 2.6)

10.7
(± 2.5)

Average False 
Acceptance  Rate 
(%)

16.0
(± 

4.1)

15.5
(± 2.5)

14.8
(± 

2.4)

9.9
(± 2.3)

9.9
(± 2.3)
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Comparing the results of Tables 2 and 3 it is verified once again the 
claim  that  fingerprints  are  more  discriminative  than  hand 
geometry. However, the difference is not high; this may be assigned 
to  the  simplified  feature  extraction  method  adopted  for 
fingerprints.      

5.4. Multimodal verification

Our main claim in this work is that multimodal verification can 
achieve high performance in terms of both FAR and FRR even in 
cases  where  single  modality  verification  is  not  tune  for  best 
performance.  This  claim  is  supported  by  the  theory  of  weak 
classifiers combination [20] which led to powerful classifiers and 
pattern recognition systems [21].

We combine  the  single  modalities  at  the  output  level  using a 
simple voting scheme: A user is  authenticated if  the majority of 
individual modalities vote for authentication and is rejected if the 
majority vote against.

Table 4 presents the FAR and FRR of the multimodal scheme. In 
the experimentation we used feature vectors of  M = 20 elements 
for the fingerprint biometric and M = 32 elements for the hand 
geometry  biometric.  The  voice  print  template  used  is  the  one 
obtained  via  two  enrolment  sessions  and  without  the  usage  of 
World model. 

Table 4: Comparison of single modalities and multimodal 
verification

Modality

Voice Hand 
geometry

Fingerpri
nt

Multimod
al

Average False 
Rejection  Rate 
(%)

4.11 11.4 9.1 0.86

False 
Acceptance Rate 
(%)

4.12 9.9 9.4 1.23

The results indicate clearly the validity of multimodal verification. 
The best of single modality FAR and FRR (voice biometric) are far 
away from the corresponding rates achieved via output level fusion. 
Furthermore, even the best tuned modality (voice biometric with 
four enrollment sessions and using world model) does not achieve 
(FAR  =  1.79,  FRR  =  1.82)  the  rates  obtained  by  multimodal 
verification.  
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6   Conclusions and further work

This  study  presents  an  integrated  platform  for  multimodal 
biometric acquisition for person identification. While the primary 
aim was to introduce the overall systems we have also presented 
the  methods  we  use  for  biometrics  extraction  from  voice, 
fingerprints  and  palm  contour.  It  was  shown  through  an 
experimental  study  that  even  weak  single  modality  verification 
systems can  lead to  high performance  ones using simple  fusion 
methods.

The  work  on  biometric  fusion  is  ongoing.  We  are  currently 
experimenting  on  alternative  fusion  methods  including  feature-
based,  score-based  and  rule-based  fusion.  In  addition  we  will 
explore  alterative  feature  extraction  methods,  at  least  for  the 
fingerprint and hand geometry modalities. We seek to investigate 
what  happens  in  cases  where  highly-tuned  single  verification 
modalities are combined through output voting schemes.     
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