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Abstract

Abstract interpretation is a general framework for static program analysis. In
recent years this framework has been used outside academia for verification of
embedded and real-time systems. Airbus and the European Space Agency are
examples of organisations that have successfully adapted this analysis framework
for verification of critical components.

Logic programming is a programming paradigm with a sound mathematical
foundation. One of its characteristics is the separation of logic (the meaning of
a program) and control (how it is executed); hence logic programming, and in
particular its extension with constraints, is a language comparatively well suited
for program analysis.

In this thesis logic programming is used to analyse software developed for
embedded systems. The particular embedded system is modeled as an emulator
written as a constraint logic program. The emulator is specialised with respect
to some object program in order to obtain a constraint logic program isomorphic
to this object program. Applying abstract interpretation based analysers to the
specialised emulator will provide analysis results that can directly be related back
to the object program due to the isomorphism maintained between the object
program and the specialised emulator.

Two abstract interpretation based analysers for logic programs have been de-
veloped. The first is a convex polyhedron analyser for constraint logic programs
implementing a set of widening techniques for improved precision of the analysis.
The second analyser is a type analysis tool for logic programs that automatically
derives a pre-interpretation from a regular type definition.

Additionallly, a framework for using a restricted form of logic programming,
namely Datalog, to express and check program properties is described.

At the end of the thesis it is shown how instrumenting the semantics of the emu-
lator can be used to obtain, for instance, a fully automatic Worst Case Execution
Time analysis by applying the convex polyhedron analyser to the instrumented
and specialised emulator.

The tools developed in this thesis have all been made available online for
demonstration.





Resume (in danish)

Abstract interpretation er en overordnet referenceramme for statisk program-
analyse. I de seneste år har abstract interpretation vundet udbredelse uden for
det akademiske miljø, hvor det er blevet anvendt til verifikation af indlejrede og
tidskritiske systemer.

Logikprogrammering er et programmeringsparadigme der har et solidt mate-
matisk fundament. Et af dets karakteristika er adskillelsen af logik (betydningen
af et program) og kontrol (hvordan programmet udføres), hvilket gør logikpro-
grammering til et meget anvendeligt sprog hvad ang̊ar programanalyse.

I denne afhandling bliver logikprogrammering anvendt til at analysere pro-
grammer udviklet til indlejrede systemer. Et givet indlejret system modelleres
som en emulator skrevet i en variant af logikprogrammering kaldet constraint logic
programming (CLP). Emulatoren specialiseres med hensyn til et givet program,
hvilket resulterer i et nyt program i skrevet i sproget CLP der samtidig er isomorft
med programmet skrevet til det indlejrede system. Anvendes abstract interpreta-
tion baserede analysatorer p̊a det specialiserede program, kan resultater fra denne
analyse direkte overføres til den indlejrede program, da dette program og den
specialiserede emulator holdes isomorft.

To abstract interpretation baserede analysatorer for logikprogrammering er ud-
viklet i denne afhandling. Den første er en convex polyhedron analysator for CLP
programmer, der implementerer et sæt af widening-teknikker der giver forbedret
præcision af analysen. Den anden analysator er en type-analysator for logikpro-
grammering, der automatisk udleder en pre-interpretation fra et sæt af regulære
type-definitioner.

Sidst i afhandlingen vises det hvorledes en udvidelse af emulatorens semantik
kan benyttes til at opn̊a, for eksempel, en fuldautomatisk Worst Case Execution
Time analyse, ved at anvende det convex polyhedron baserede analyseværktøj p̊a
den udvidede og specialiserede emulator.

Alle analyseværktøjer udviklet i forbindelse med denne afhandling er gjort
tilgængelige online.
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Chapter 1

Introduction

Bugs in software can turn out to be costly. A well known example of this is the
bug in the control software used in Ariane 5’s first test flight in 19961. The Ariane
5 rocket is one of the European Space Agency’s launch vehicles. On its first flight a
software bug cause the rocket to explode just 40 seconds after lift-off. The value of
the rocket and its cargo was estimated to be around $500 million. An investigation
of the incident led to the discovery of a bug in a piece of code where a floating
point number was converted to a 16 bit signed integer. The code did not ensure
that the floating point number could be correctly represented as a 16 bit integer.
This incident lead to an increased support for research in the field of ensuring
reliability of critical systems.

1.1 Program analysis

The overall goal of this thesis is to present an approach to applying program analy-
ses to software developed for small low level hardware such as microcontrollers used
in pervasive computing. These devices are becoming embedded in more and more
products. Traditional software development generally tends to produce general
purpose and bloated software built from pre-written libraries. Software develop-
ers for pervasive software face different challenges. Typically these devices are
resource constrained; this could for example be limited memory capacity. Battery
lifetime of the device on which the program will be executed is an example of a
resource constraint that would typically not be considered in traditional software
development. Additionally, factors such as reliability, development cost and deve-
lopment time can be more constrained for pervasive software. If such a piece of
software will be included in an everyday product such as a clothing item, reliability
can become an important factor. Updating faulty software might not be possible,

1http://www.ima.umn.edu/~arnold/disasters/ariane5rep.html
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since production cost might favor a non-reprogrammable microcontroller. If the
item the pervasive system will be included in is a low cost item, allocating large
sums of man hours to develop and verify the software might prove too costly, both
in terms of money and time.

There is another distinct difference between traditional software development
and software development for pervasive system. Traditional, general purpose soft-
ware development has standardised on a few languages such as C/C++ and Java,
and some domain specific languages such as PHP and Perl for web based develop-
ment. On the other hand, in the world of microcontrollers each manufacturer has
its own assembly language and they typically produces a large variety of micro-
controllers having differently sized memory, different machine word size - typically
8, 16 or 32 bits - and different instruction sets; some microcontrollers may include
a multiplication instruction or even specialised instructions for Digital Signal Pro-
cessing, others may only provide addition, subtraction and bit manipulation. Pro-
gram analysers and other techniques for program analysis need only be developed
for one language, e.g. Java, to be useful for a large number of developers. On the
other hand software development tools and program analysers, to the extent they
exist for microcontrollers, tend to be product specific. For most series of micro-
controllers there exists a C-compiler, however typically only a subset of Ansi-C
is supported. Furthermore on the smaller microcontrollers the available resources
may be so limited that only assembly languages are an option. Where C is a typed
language that to some extent can assist the programmer in detecting type related
bugs, assembly languages offer no such techniques.

Assembly programmers can also take advantage of simple tricks to speed up
software development such as reusing old code. Reusable code tends to be over-
general and resource inefficient. Where code reuse may increase productivity of the
developers, it can lead to a waste of resources on the target system. If the program
environment is resource constrained, automatic tools such dead code analysis and
register remapping can be helpful for the programmers. Again such tools would
be specific to the particular flavor of assembly language used.

Development costs of analysis tools

While the European Space Agency may have the resources to develop analysis
tools tailored to their use, as happened in the Ariane 5 incident, smaller organ-
isations, e.g. developing pervasive systems, may not have the resources to start
from scratch and develop analysers for verifying their software. In that case some
general framework for applying analyses to a range of microcontrollers would be
appropriate.

2



Specification of
abstract machine

Object
Program

Interpret result
with respect to
object program

Integrated analyser

Figure 1.1: Overview of the analysis framework

Analysis using declarative languages

Most software, whether it is pervasive software or software for personal comput-
ers, games etc., is developed in imperative programming languages; in fact all of
the languages mentioned so far are imperative languages. Declarative languages
however are more suited for program analysis, specialisation and transformation.

The framework described here for analysing low level programs uses program
specialisation and transformation to create a high level declarative language equi-
valent of the low level assembly language program. This specialised program can
then be analysed using tools written specifically for the declarative language.

Ideally, once the framework is established, the analyser would require only a
specification of the target machine and an object program to analyse, to produce
analysis results that can be interpreted with respect to the object program. Fig-
ure 1.1 illustrates this.

The analyser would be constructed using well known program analysis and
specialisation techniques. The following mentioned techniques will be used to
construct the analyser:

Abstract Interpretation

Static Analysis is a technique used for acquiring information about a program’s
run-time behavior without actually executing it. The information obtained in

3



static analyses can either be used by other programming tools, such as a com-
piler, or the programmer can use the results to discover properties of the analysed
program.

A static analysis is generally not complete, since some program properties are
undecidable. The result of a static analysis is therefore a sound approximation of
the correct result. An approximation is an inexact representation of the correct
solution. A sound approximation contains all the correct results, in addition to the
(many) incorrect results. The sound approximation is sometimes also called a safe
approximation. Given a program, call it P , and suppose only the correct answers
to an analysis are in a set S, and given a set S ′ that is a safe approximation of S,
that is S ⊆ S ′, then any property that does not hold for all elements of S ′, does
not hold for all elements of S, and can therefore not be established by P . Hence
program behavior that can be excluded by a safe approximation, is excluded from
the (possibly uncomputable) correct behavior of P .

Abstract interpretation is a generic and established framework for static pro-
gram analysis. Normally a program is evaluated over a concrete domain, where a
typical concrete domain is a collection of machine words or floating point numbers.
In abstract interpretation a program is evaluated (or interpreted) over an abstract
domain, where the abstract domain will have better computational behavior than
the concrete domain. The abstract domain can contain symbolic values, such as
types found in programming languages, or possibly geometric shapes such as poly-
hedra. Results obtained for the abstract domain will be safe approximations of the
results that would have been obtained evaluating the program over the (possibly
uncomputable) concrete domain.

The Ariane 5 incident mentioned in the beginning led to one of the first exam-
ples of a large scale static code analysis using abstract interpretation [49].

Meta-programming

A meta-program is a program that has other programs as inputs. Using meta-
programs in program analysis is an old concept. Particularly in logic programming,
meta-programs have been used to analyse other logic programs. Using logic pro-
gramming based meta-programs to study other languages than logic programming
has also been studied in the past, but not to the same extent.

Program Specialisation and Transformation

Partial evaluation is a well established source code to source code program trans-
formation technique. Partial evaluation is often described as a technique used to
produce faster versions of a general purpose program. It is however also well known
that applying partial evaluation to interpreters will result in compiler generators.
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In other words partial evaluation is one method that can be used to translate an
object program written in one language to an equivalent program written in a
different language, by means of an interpreter.

1.2 Thesis Overview

Part I This part of the thesis will focus on analysing and specialising logic pro-
grams. Chapter 2 will introduce different flavors of logic programming that
will later be used as the target language of analyses, and analysis of logic pro-
grams based on pre-interpretations are introduced. Chapter 3 will introduce
abstract interpretation as a framework for program analysis. In Chapter 4
a classical abstract domain is described, namely the Convex Polyhedral Do-
main. An analyser for constraint logic programming is constructed, that will
later form part of the analyser for pervasive software. Chapter 5 describes
how pre-interpretations suitable for analysis of logic program can automati-
cally be constructed from regular type definitions; a tool for both deriving
these pre-interpretations and analysis based on these pre-interpretations is
described.

Part II In Chapter 6 a specific microcontroller used in pervasive applications is
chosen as a case study. An emulator for this case study microcontroller is
constructed. Existing general logic programming specialisation and analysis
tools, such as the constructed convex polyhedron analyser for constraint
logic programming are then applied to this emulator and a given object
program to be analysed. The results obtained are linked back to the object
program. The process is fully automatic once the emulator and analysis
tools are contructed, and a Web Interface is described, that demonstrates
that using logic programming as a meta-language for program analysis can
be kept transparent to the user of the tools.

1.3 Thesis Contributions

The work in this thesis was partly funded by the EU IST FET project Advanced
Specialization and Analysis for Pervasive Computing2 (ASAP) and Roskilde Uni-
versity. The ASAP project, the partners involved in the project and in particular
my supervisor John Gallagher, have influenced the topics, methods and tools used
in this thesis.

2http://clip.dia.fi.upm.es/Projects/ASAP/
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Convex Polyhedron Analyser for CLP. A Convex Polyhedron Analyser for
CLP programs has been implemented following a well known method for
constructing bottom-up analysers for logic programs. The polyhedra ope-
rations are implemented using a freely available programming library called
PPL3. The analyser implements a combination of different techniques for im-
proving the precision of the analysis such as delayed widening, widen up to
and a simple narrowing procedure. The resulting analyser is available online
and is the first publicly-available tool, to our knowledge, combining state-of-
the-art widening and narrowing procedures allowing experimentation with
novel ways of combining these techniques.

Pre-interpretations derived from regular type definitions. A method for
automatically deriving pre-interpretations from regular type definitions is de-
scribed. It is based on existing algorithms from the literature on Finite Tree
Automata theory. An optimised algorithm is described and implemented.
The technique developed here has been integrated in a fully automatic bind-
ing time analyser for Prolog programs. A type analysis tool based on this
method for deriving pre-interpretations and a few additional existing type
inference techniques have also been made available online.

Property Programming. Using recent results for solving Datalog programs us-
ing Binary Decision Diagrams, a method for specifying Control Flow and
Data Flow properties of abstract machines as Datalog rules is described.

Liveness analysis from redundant argument filtering. The connection be-
tween an existing method for transforming logic programs to remove re-
dundant predicate arguments and liveness analysis of specialised abstract
machines, is explained.

Analysing microcontrollers using CLP. A framework for applying CLP pro-
gram analysers to low-level hardware such as microcontrollers is described.
It is based on well founded techniques such as partial evaluation of inter-
preters and abstract interpretation. It is shown how a parametric Worst
Case Execution Time (WCET) analysis can automatically be derived for the
analysed program.

The following publications are a result of collaboration with my supervisor and
contributed to this thesis.

[1] Kim S. Henriksen and John P. Gallagher. Analysis and Specialisation of a
PIC processor. In Proceedings of the 2004 IEEE Conference on Systems,
Man and Cybernetics, The Hague, Netherlands, October 10-13 2004.

3http://www.cs.unipr.it/ppl/
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[2] Kim S. Henriksen and John P. Gallagher. Abstract Interpretation of PIC pro-
grams through Logic Programming. In SCAM’06: Proceedings of the Sixth
IEEE International Workshop on Source Code Analysis and Manipulation,
pages 184-196, Washington, DC, USA, 2006. IEEE Computer Society.

[3] Kim S. Henriksen and John P. Gallagher. A Web-based Tool Combining
Different Type Analyses. In W. Vanhoof and S. Muñoz-Hernandez, edi-
tors, WLPE-06: Workshop on Logic-Based methods in Programming Envi-
ronments: ICLP-06 Workshop, 2006.

[4] John P. Gallagher and Kim S. Henriksen. Abstract Domains based on Reg-
ular Types. In V. Lifschitz and B. Demoen, editors, Proceedings of the In-
ternational Conference on Logic Programming (ICLP’2004), volume 3132 of
Springer-Verlag Lecture Notes in Computer Science, pages 27-42, 2004.

[5] John P. Gallagher, Kim S. Henriksen and G. Banda. Techniques for scaling
up analyses based on Pre-Interpretations. In M. Gabbrielli and G. Gupta,
editors, Proceedings of the 21st International Conference on Logic Program-
ming, ICLP’2005, volume 3668 of Springer-Verlag Lecture Notes in Com-
puter Science, pages 280-296, 2005.

[6] S.-J. Craig, J. P. Gallagher, M. Leuschel and K. S. Henriksen. Fully Au-
tomatic Binding Time Analysis for Prolog. In Sandro Etalle, editors, Pre-
Proceedings, 14th International Workshop on Logic-Based Program Synthesis
and Transformation, LOPSTR 2004, Verona, August, 2004, pages 61-70.

[7] Kim S. Henriksen, G. Banda and John P. Gallagher. Experiments with a
Convex Polyhedral Analysis Tool for Logic Programs. In P. Hill and W. Van-
hoof, editors, WLPE-07: Workshop on Logic-Based methods in Programming
Environments: ICLP-07 Workshop, 2007.
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Part I

Analysis and Specialisation of
Logic Programs
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Chapter 2

Logic Programming

Throughout this thesis logic programming in one flavor or the other will be used.
This chapter should serve as an introduction to the terminology used when dis-
cussing logic programming.

Mathematical logic as a programming language emerged in the 1970s, mainly in
the fields of automatic theorem proving and artificial intelligence. Logic program-
ming belongs to the group of declarative languages. In the declarative languages
the programmer specifies what is supposed to be computed and not how it should
be computed. In logic programming languages, logic and control are separated.
The logic part defines what should be computed, where the control part defines
how it should be computed. This means a logic program can be given a model-
theoretic based semantics independent of what method would be used to solve (or
prove) the logic program.

Some logic programs may be written, or automatically generated using program
specialisation, that are in fact not meant to be executed - but only analysed. In
other words, their model theoretic semantics is more relevant than their procedural
semantics. For our purpose, logic programming will mainly serve as a language
for analysis of programs.

The typical incarnation of a “solver” for logic programming, is a Prolog (PRO-
gramming in LOGic) run-time system with an interpreter and/or compiler. Pure
Prolog is a purely logical language implementing a formal logic system of first
order Horn clauses. Prolog is an extension of pure Prolog including features such
as negation and arithmetics.

There are extensions of, as well as restrictions of, logic programming languages.
Constraint Logic Programming (CLP) is an extension of logic programming, where
relations in the form of constraints can be added to the logic program. This
increases the expressiveness of the language compared to pure logic programming.
The first formal framework for CLP was introduced by Jaffar and Lassez in their
paper published in 1987 [91]. A constraint on some variables in a program can

11



be viewed as a formula expressing which conditions must hold for these variables
(for example X + Y > 0 or X = Y + 1) . Prolog is a CLP language where the
constraints are embedded in the program as formulas over terms. The constraints
in CLP are evaluated over some fixed domain. If a particular domain is used it is
normally stated along with the acronym; for instance for CLP over real numbers
we would write CLP(R), for rational numbers CLP(Q), and for natural numbers
CLP(N ).

There is a restriction of logic programming called Datalog which will also be
referred to throughout this thesis. Datalog can be viewed as a subset of Prolog.
It is named after is origin in database theory, particularly deductive databases.
Datalog will be defined in the last section of this chapter.

Chapter Overview

Some notation and terminology used later in this thesis is established in this chap-
ter.

- Section 2.1 defines first order logic languages.

- Section 2.2.1 describes a bottom-up semantic framework based on pre-inter-
pretations1.

- Section 2.3 describes how the (goal independent) bottom-up based framework
can be used to simulate (goal dependent) top-down semantic frameworks.

- Section 2.4 introduces Datalog and stratifiable programs.

2.1 Definitions

In this section first order logic is defined. Definitions are mainly based on [112]
and [102] but syntax may differ.

Definition 1 (Alphabet). An alphabet consists of

- a possibly empty set of function symbols

- predicate symbols

- variables

- connectives (¬, ∧, ∨, ←, ↔)

1Chapter 5 will described how pre-interpretations can be automatically constructed from
Finite Tree Automata.
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- quantifiers (∀, ∃)

- punctuation symbols, such as brackets and comma

All functions and predicate symbols have an arity. The arity is a natural number,
possibly zero, indicating the number of arguments that the function takes. A func-
tion with arity of zero is also called a constant. A predicate with an arity of zero
is called a proposition.

For readability purposes, the following syntactical rules are followed to the
extent it is possible:

- Variables are denoted by upper case letters selected from the end of the
alphabet, for example X, Y , Z.

- Constants are denoted by lower case letters selected from the beginning of
the alphabet, for example a, b, c.

- Function symbols are denoted by lower case letters selected from the letter
f and the following letters, for example f , g, h.

- Predicates are denoted by lower case letters selected from the group of letters
beginning with p and forward, for example p, q, r.

Specifically for logic programs the following rules are applied

- quantifiers are omitted.

- the conjunction operator ‘∧’ is substituted by a comma.

- lists are written using either Prolog notation, such as [H|T ] and [ ], where
H is the head element of the list and T is the tail and [ ] is the empty list,
or if appropriate, the distinguished functor cons(H, T ) and nil will be used
in order to tell apart lists in different domains.

- we adopt the notion of don’t care from Prolog. A don’t care variable in
Prolog is an anonymous variable and is denoted ‘ ’. The value of a don’t
care variable can be any possible value that can occur in a given context.

If the particular denotation of a predicates arguments is irrelevant, the arity
is often written along with its name instead of its arguments, for instance the
predicate p(X, Y ) can be written as p/2.

13



Definition 2 (Terms). The set of terms over some alphabet is inductively defined
as:

- a variable is a term.

- a constant is a term.

- a function symbol f of arity n > 0 applied to the sequence t1, . . . , tn of n
terms, f(t1, . . . , tn) is also a term.

Definition 3 (Atom). The set of atoms over some alphabet is defined as:

- a proposition is an atom.

- a predicate symbol p of arity n > 0 applied to the sequence t1, . . . , tn of n
terms, denoted by p(t1, . . . , tn) is an atom.

Definition 4 (Ground). A term is said to be ground if it contains no variables
and similarly an atom is ground if it contains no variables.

Definition 5 (Formula). A formula over some alphabet is inductively defined as:

- an atom is a formula.

- if A and B are formulas then ¬A, A ∧ B, A ∨ B, A ← B, and A ↔ B are
also formulas.

- let X be a variable and F a formula, then ∀X F and ∃X F are also formulas.

Definition 6 (Literal). If A is an atom then the formulas A and ¬A are called
literals. A is called a positive literal and ¬A called a negative literal.

Definition 7 (Clause). A clause is a formula of the form ∀(H1 ∨ . . . ∨ Hm ←
B1 ∧ . . . ∧Bn) where m ≥ 0, n ≥ 0 and H1, . . . , Hm, B1, . . . , Bn are all literals.

- the left hand side of the formula, H1 ∨ . . . ∨ Hm is called the head of the
clause, and the right hand side is called the body of the clause.

- a Horn clause has at most one positive literal in the head of the clause.

- a normal program clause has an atom as a single head element H1.

- a definite program clause is a normal program clause where B1, . . . , Bn are
all atoms.
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- a fact is a program clause with an empty body; this is sometimes referred to
as a unit clause.

- and a goal is a clause with an empty head and a non-empty body.

A clause with only atoms containing no variables is also called a ground in-
stance.

Definition 8 (Program). A normal program is a set of normal program clauses.
A definite program is a set of definite program clauses.

The following notation rules for sets of symbols, terms over a set of symbols etc.,
will be used in the remaining part of this chapter:

- Σ denotes the set of function symbols including constants.

- Π denotes the set of predicate symbols including propositions.

- Var denotes the set of variables.

- Term denotes the set terms over an alphabet. TermΣ denotes the set of terms
over constants and functions symbols in a given alphabet, Σ.

- Atom denotes the set of atoms constructed from Π and Term.

Definition 9 (Pre-interpretation). Let L be a first order language. A pre-inter-
pretation of L consists of

1. a non-empty domain of interpretation D.

2. an assignment of an element in D for all constants in L.

3. an assignment of an n-ary function Dn → D to each n-ary function symbol
in Σ (n > 0).

More informally this can be described as mapping all constants (the 0-ary
functions) to an element in the supplied domain D, and set of mappings for all
functions f/n 7→ f̂n : D1 × . . .×Dn → D.

There exists a particular kind of pre-interpretation called the Herbrand pre-
interpretation, which will be used later in this chapter.

Definition 10 (Herbrand Universe and Base). The Herbrand Universe for the
language L is the set of all ground terms that can be formed from the function
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symbols including constants in Σ. The Herbrand Universe is denoted TermΣ. This
requires that Σ contains at least one constant.

The Herbrand Base, AtomH , of the language L, is the set of all ground atoms
that can be formed using predicate symbols from Π where its arguments are in the
Herbrand Universe TermΣ.

Definition 11 (Herbrand pre-interpretation). The Herbrand pre-interpretation
for a language L is the pre-interpretation defined by

1. The domain of the pre-interpretation is TermΣ

2. Constants in Σ are mapped to themselves in TermΣ

3. For all function symbols f/n and all terms t1, . . . , tn ∈ TermΣ, f applied to
t1, . . . , tn is mapped to f(t1, . . . , tn).

Definition 12 (Term assignment). Let J be a pre-interpretation of the language
L with a domain D, and let V be a mapping assigning each variable in L to an
element of D. A term assignment T V

J (t) is defined for each term t as follows:

1. T V
J (x) = V (x) for each variable x.

2. T V
J (f(t1, . . . , tn)) = f ′(T V

J (t1), . . . , T
V
J (tn)), (n ≥ 0) for each non-variable

term f(t1, . . . , tn), where f ′ is the function assigned by J to f .

Example 1. For a language with a set of function symbols {nil, cons( , )}, a
given domain D = {list, nonlist}, the pre-interpretation could be

nil = list

cons( , ) =


cons(nonlist, list) → list
cons(list, nonlist) → nonlist

cons(list, list) → list
cons(nonlist, nonlist) → nonlist


For the example term t = cons(X, cons(X, nil)) and assuming the mapping V =
{X 7→ nonlist} the term assignment would be

T V
J (t) = [nonlist|[nonlist|nil]] = [nonlist|list]→ list = list

Assigning domain elements from D to ground terms is sometimes referred to
as giving terms a denotation. The term in the example above, would have the
denotation list.
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Definition 13 (Substitution). A binding Xi/ti consists of a variable Xi and a term
ti with ti 6= Xi. A substitution θ is a finite set of bindings, θ = {X1/t1, . . . , Xn/tn},
where X1, . . . , Xn are distinct.

Definition 14 (Interpretation). An interpretation, denoted I, of a first order
language L consist of

1. a pre-interpretation J over domain D

2. for each n-ary predicate symbol in Π, a mapping, i.e. an n-ary relation

Dn → {true, false}

For an interpretation I of a language L with a variable assignment V , assigning
an element in the domain D of I to each variable in L, the truth values (true,false)
are assigned based on the following criteria:

- if the formula is an atom p(t1, . . . , tn) then the truth value is obtained by
calculating the value of p′(t′1, . . . , t

′
n) where p′ is the mapping assigned to p

by I and t′1, . . . , t
′
n are the term assignments T V

I (t1), . . . , T
V
I (tn).

- if the formula has the form ¬Q,Q ∧ R,Q ∨ R, Q → R or Q ↔ R then the
truth value is given by the following table:

Q R ¬Q Q ∧R Q ∨R Q→ R Q↔ R
true true false true true true true
true false false false true false false
false true true false true true false
false false true false false true true

- Formulas of the form ∃x Q are true if ∃d ∈ D such that Q is assigned the
truth value true with respect to I and the substitution V (x/d), where x is
substituted for d in V . Otherwise, Q is false.

- Formulas of the form ∀x Q are true if ∀d ∈ D then Q is assigned the truth
value true with respect to I and the substitution V (x/d), where x is substi-
tuted for d in V . Otherwise, Q is false.

Definition 15 (Model). A model of a formula (over a domain D) is an interpre-
tation in which the formula has the value true assigned to it.
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The concept of a model of a formula can be extended to sets of formulas. A
model of a set S of formulas is an interpretation which is a model for all formulas
in S. Two formulas are logically equivalent if they have the same set of models.
A formula Q is a logical consequence of a set S of formulas, if Q is assigned the
value true in all models of S; this is denoted S |= Q.

A model of P will be denoted M(P ) in this thesis. M may be super- or sub-
scripted to indicate over what domain the model is computed.

Definition 16 (Herbrand model). Any interpretation based on the Herbrand pre-
interpretation of a language L, is a Herbrand interpretation of L.

- A Herbrand model of a definite program P of the language L is any Herbrand
interpretation of L that is also a model of P .

- A Herbrand model H ⊆ AtomH for a program P is a least Herbrand model
if no other H ′ ⊂ H is also a Herbrand model of P .

The least Herbrand model captures the meaning of a definite program. It
contains all the atomic logical consequences of the program. A formula that is
true in the least Herbrand model is true in all Herbrand models.

2.2 Semantics of Definite Logic Programs

The semantics of a program is the meaning assigned to this program. For a definite
logic program the semantics is equivalent to the minimal Herbrand model for this
program. This is called the declarative semantics. It defines the set of atomic
logical consequences of the program. The declarative semantics can also be used
indirectly to capture the computational behavior of a program and a goal; i.e.
whether a goal succeeds or fails and what answer substitutions it returns. In this
thesis we use the declarative semantics as the basis for goal-independent (bottom-
up) and goal-dependent (top-down) analysis.

2.2.1 Bottom-up semantic frameworks

TP -semantics

The least Herbrand model can be obtained as the least fix point of the function TP

[149] defined next. The theoretical foundation of this semantics is based on among
other things, complete lattices and monotone functions over complete lattices. The
definition of these is postponed to the next chapter on abstract interpretation.
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The TP semantics can be considered a standard bottom-up semantics where
the meaning of the program P is defined to be the set of ground atoms implied
by the program. Variations of this semantics are frequently found in bottom-up
frameworks [18, 3, 40]. A transfer function TP from interpretation to interpre-
tation is defined. This transfer function is sometimes also called the immediate
consequence operator. It is defined as

TP : 2AtomH → 2AtomH

TP (I) =

{
H

∣∣∣∣ H ← B1, . . . , Bn ∈ ground(P )
∀i ∈ [1, . . . , n] : Bi ∈ I

}
M[[P ]] = lfp(TP )

where ground(P ) is the set of ground instances of clauses from P , and where lfp
denotes the least fix point. A fix point of a function is a point that is mapped to
itself by the function. Algorithm 1 outlines this. A fix point for this function is
calculated by initially applying the function to the empty interpretation, and then
iteratively applying it to itself until a fix point is reached. Another name for this
kind of semantics is fix point semantics.

Algorithm 1 Fix point iterations for transfer function TP

initialise:
i = 0; I0 = ∅

repeat
Ii+1 = TP (Ii)
i = i + 1

until Ii = Ii−1

The Herbrand pre-interpretation and least Herbrand model are essential to many
bottom-up analysis frameworks. Other pre-interpretations can however also be
useful in the context of abstraction.

Semantics parameterized by a pre-interpretation

We present first a few definitions from [112].

Definition 17 (Domain atom). Let J be a pre-interpretation of a language L,
with domain D, and let p be an n-ary predicate symbol from L. Then a domain
atom for J is any structure p(d1, . . . , dn) where di ∈ D, 1 ≤ i ≤ n.
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Let A be the atom p(t1, . . . , tn). Then the domain instance of A with respect
to J and V is the domain atom p(T V

J (t1), . . . , T
V
J (tn)). Denote by [A]J the set of

all domain instances of A with respect to J and some V .

In the interpretation given in Example 1 and for an atom p(nil), then [p(nil)]J
would be {p(list)}, and for the atom p(cons(X,Y )) the result would be

[p(cons(X, Y ))]J = {p(list), p(nonlist)}

The definition of domain instance extends naturally to formulas. In particular,
let C be a clause. Denote by [C]J the set of all domain instances of the clause
with respect to J .

The core bottom-up declarative semantics is parameterised by a pre-interpre-
tation of the language of the program.

Definition 18 (Core bottom-up semantics function T J
P ). Let P be a definite pro-

gram, and J a pre-interpretation of the language of P . Let AtomJ be the set of
domain atoms with respect to J .

T J
P : 2AtomJ → 2AtomJ

T J
P (I) =

 A′

∣∣∣∣∣∣
A← B1, . . . , Bn ∈ P
A′ ← B′1, . . . , B

′
n ∈ [A← B1, . . . , Bn]J

{B′1, . . . , B′n} ⊆ I


MJ [[P ]] = lfp(T J

P )

MJ [[P ]] is the minimal model of P with pre-interpretation J .

Example 2. Continuing the pre-interpretation given in Example 1, let

P =

{
p(nil) ←
p(cons(X, Xs)) ← p(Xs)

}
and let the interpretation be I = ∅. Then T J

P (I) = {p(list)}, since p(nil) ←
is a fact (has an empty body) and must be true in any interpretation and the
domain instances [p(nil) ←]J is {p(list) ←}. Re-iterating will produce the same
result and a fix-point is reached, so the minimal model of P with respect to the
pre-interpretation J is {p(list)}.

The concrete semantics will be defined next. It is based on the Herbrand
pre-interpretation described earlier.
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2.2.2 Concrete Semantics

The concrete semantics is a very precise semantics that closely describes the set
of all results that can possibly be obtained from a program. Here, the concrete
semantics will be based on the Herbrand pre-interpretation. This is obtained by
taking J to be the Herbrand pre-interpretation, which we call H. Thus AtomH is
the Herbrand base of (the language of) P and MH [[P ]] is the least Herbrand model
of P .

The least Herbrand model consists of ground atoms. In order to capture infor-
mation about the occurrence of variables, we extend the signature with an infinite
set of extra constants V = {v0, v1, v2, . . .}. The Herbrand pre-interpretation over
the extended language is called HV . The model MHV [[P ]] is our concrete semantics.

The elements of V do not occur in the program or goals, but can appear in
atoms in the minimal model MHV [[P ]]. Let C(P ) be the set of all atomic logical
consequences of the program P , known as the Clark semantics [33]; that is, C =
{A | P |= ∀A}, where A is an atom. Then MHV [[P ]] is isomorphic to C(P ). More
precisely, let Ω be some fixed bijective mapping from V to the variables in L. Let
A be an atom; denote by Ω(A) the result of replacing any constant vj in A by
Ω(vj). Then A ∈ MHV [[P ]] iff P |= ∀(Ω(A)). By taking the Clark semantics as
our concrete semantics, we can construct abstractions capturing the occurrence of
variables.

Example 3. Take a program containing a head-only variable, say P = {p(X) ←
true, p(a)← true}, and given the set of extra constants V = {v0, v1, v2, . . .}, then
the concrete semantics is MHV [[P ]] = {p(a), p(v0), p(v1), . . .}.

2.3 Goal dependent semantics

The previous section described semantics of logic programs focusing on models.
Such semantics are generally goal independent. The bottom-up semantics de-
scribed so far provides information about the success set of a program, that is, the
answers that can occur during evaluation of the program for a given predicate for
any supplied goal.

For many applications we are not interested in the whole program model, but
only in the computations particular to some goal(s).

Example 4. Take as an example a simple program;

p(X) ← q(X)
q(a) ←
q(b) ←
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For a goal ← q(Y ) the meaning of the predicate p(X) is no longer needed. For
a more specific goal, for instance ← q(b), the solution q(a) is no longer needed
either.

Where the bottom-up analysis would provide success patterns for the clauses in
a program, a top-down goal dependent analysis would provide information about
the call patterns of the program. The call patterns can provide a basis for program
specialisation techniques such as Partial Evaluation (see Section 6.3.1).

2.3.1 Query-Answer Transformation

A query-answer tranformation is a standard transformation technique that will
provide sound information about the queries or calls that can arise during top-
down evaluation of a particular goal. A query pattern provides information about
how a predicate will be used, such as how it may be instantiated prior to the
call of the predicate, in the program. Other names sometimes used for this pro-
gram transformation technique or related techniques, are magic set and Alexander
transformations [132, 9]. In [11] they are referred to as the Generalized Magic-sets
algorithms.

To begin with the magic set transformation was used on deductive database
queries written in Datalog [9] (see Section 2.4). It would allow the queries to
(automatically) be rewritten so they could be implemented bottom-up in a way
that would restrict the number of facts generated from the queries, making it
possible to implement more efficient joins. Later query-answer transformations
were adopted by the program analysis community [115, 141, 117, 35, 72, 61, 73].
A query-answer transformation tool will allow a bottom-up analyser to simulate
top-down goal-directed analyses.

A query-answer transformation is a source-to-source program transformation.
Given a program P and a goal G, the query-answer transformation derives a new
program P q

G, whose least model M [[P q
G]] contains those calls and answers needed in

a top-down left-to-right computation of P with respect to G. This is both more
efficient to compute and yield a better approximation of the part of M [[P ]] which
is relevant with respect to the supplied goal G [38]. It can however also lead to an
increase in the size of the program to be analysed; in the worst case the increase
is quadratic [37].

Example 5. Below is shown an example program along with its query-answer
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transformed version with respect to the query p(a).

p(X)← q, r(X) pa(X)← pq(X), qa, ra(X)
pq(a)←

q ← qa ← qq

qq ← pq( )
r(a)← ra(a)← rq(a)
r(b)← ra(b)← rq(b)

rq(X)← pq(X), qa

A more detailed description of how such a transformation can be implemented
is available in [38].

2.4 Datalog

Datalog programs are essentially Prolog programs where no function symbols have
an arity greater than zero, specifically meaning only constants appear in programs.
Lists are for instance not allowed in Datalog, since the cons function is binary. In
addition to this, range restrictions may be imposed. A clause, C, is said to be range
restricted if every variable occurring in the head of C also occurs in a positive literal
in the body of C. For our work we do not enforce the range restrictions.

Negation is allowed in stratifiable programs (called stratifiable negation). The
dependency graph for a program is a graph where each predicate has its own
node and where an edge exists for each rule from head to body predicates. If the
literal is negated then the corresponding edge is marked for instance negative. A
program is stratifiable if there are no cycles in the graph containing a negative
edge. Non-recursive programs are always stratifiable. The following program is
not stratifiable:

a ← b, c.
c ← ¬ b.
b ← a.

The dependency graph for the program above is show in Figure 2.1 on the next
page. The negative edge is marked with ‘÷’. The cycle {a, c, b} contains a negative
edge, hence the program is not stratifiable.

For stratifiable programs the program models are definable as fix point com-
putations. We do not go into detail here since we will not be concerned with
abstractions of the semantics. We will use a publicly available tool for compu-
ting the model of a stratified Datalog program. For programs with finite sets of
predicate and function symbols the model is always finite.

23



a

b c
÷

1

Figure 2.1: Dependency graph of a program that is not stratifiable



Chapter 3

Abstract Interpretation

The previous chapter on logic programming described semantic frameworks based
on computing fix points. Most program models are infinite, for example the TP

semantics in Section 2.2.1. lfp(TP ) cannot be computed, hence we need safe ap-
proximations that can be computed in reasonable time.

A static analysis of a program is a sound, finite and (usually) approximate
calculation of a program’s execution. Abstract interpretation [51] is a framework
for static analysis using sound approximations of the semantics of a computer
program, or more generally, discrete dynamic systems [47]. Cousot and Cousot
developed abstract interpretation in 1977 as a way of specifying and subsequently
validating static analyses. Prior to Cousot and Cousot, a similar technique was
invented by Peter Naur for checking ALGOL source programs for compatibility of
type identifiers [124]. He described the technique as a basic method for pseudo-
evaluation of the expressions of a program, proceeding like a run-time evaluation,
but operating on descriptions of the types and kinds of operands, rather than
actual values in the program. This could also be described as a partial execution
of the program, gaining information about the semantics of the particular program
without actually performing all the computations.

Abstract interpretation has since its introduction been an active field of re-
search, and it has gradually found new areas where it can be applied, such as types
in programming languages and constraint solving. A recent overview of abstract
interpretation is available in [48]. Abstract interpretation has been applied to a
wide set of programming languages, both imperative and declarative languages. It
was first introduced for logic programming by Mellish [116], Debray and Warren
[62] and Bruynooghe et al. [27, 24] who described an established framework for
abstract interpretation of logic programming.

An abstraction of a program can be used to simplify problems otherwise not
computable in realistic time, to a manageable problems that can be solved using
currently available computing resources in terms of computing time and storage.
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The abstraction should still maintain enough precision to be able to reason about
the analysed program from the results obtained. When an analysis otherwise
not computable in realistic time has been reduced to a simpler but computable
analysis, commonly, the results obtained in the simpler analysis is only an approx-
imation of the correct answer to the complex analysis. An approximation is an
inexact representation of the correct solution. A sound approximation, sometimes
also referred to as safe or over approximation, is a set of answers to the analysis
where all the correct answers are included in the approximation. The partial or-
dering relation v defined later, can informally be viewed as describing accuracy of
approximations. That is, if a v b then b is a safe approximation of a. If a v b v c
and b 6= c, then b is a more accurate approximation of a than the approximation
c, i.e. containing less incorrect answers.

An abstract operation in an abstract domain is a sound approximation of a
concrete operation in the concrete domain. The abstract operations can be coarse
enough to be computable and still precise enough to be useful in practice. Abstract
interpretation is based on monotonic functions over ordered sets, making it a good
theoretic foundation for reasoning about the soundness of the approximations.

Chapter Overview

- As is the case with many program analysis frameworks, the formal descrip-
tion of abstract interpretation relies on partially ordered sets (posets), com-
plete lattices and fix point computations. These are defined in Section 3.1.

- A key point in abstract interpretation is accelerating convergence to a fix
point. This is described in Section 3.2.

3.1 Posets, Lattices and Fix Points

Definition 19 (Partial order). A partial order over a set L, is a binary relation
v: L× L→ {true, false} which is reflexive, transitive and anti-symmetric:

• Reflexive: ∀l ∈ L : l v l

• Transitive: ∀l1, l2, l3 ∈ L : l1 v l2 and l2 v l3 ⇒ l1 v l3

• Anti-symmetric: ∀l1, l2 ∈ L : l1 v l2 and l2 v l1 ⇒ l1 = l2

Definition 20 (Partially ordered set). A partially ordered set is a set with an
associated partial ordering and its shorter name is a poset 〈L,v〉. An example of
such a poset could be the natural numbers ordered by the ≤ relation 〈N,≤〉.
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An upper bound of a subset A of L is an element l ∈ L such that ∀l0 ∈ A : l0 v l.
The least upper bound l of A is an element that for all upper bounds l0 of A satisfies
l v l0. Similarly a lower bound l ∈ L of A is an element such that ∀l0 ∈ A : l v l0.
The greatest lower bound l of A is an element that for all lower bounds l0 of A
satisfies l0 v l.

Definition 21 (Complete lattice). A complete lattice is a poset 〈L,v〉 if every
subset A of L has both a greatest lower bound (glb) and a least upper bound (lub).

The glb of a set A is denoted
d

A and are in some contexts called the meet
operator. The lub of A is denoted

⊔
A and will sometimes be referred to as the

join operator.
The least element of a lattice 〈L,v〉 is denoted ⊥ =

d
L and the greatest

element is denoted > =
⊔

L. The glb, lub, least element and greatest element can
be included in the tuple describing a complete lattice L, i.e. L = 〈L,v,

d
,
⊔

,⊥,>〉.
Particularly for abstract interpretation, the top element > is said to contain no

information. The partial order relation can be described as either denoting which
of two elements contains more information, are more defined or is a more precise
approximation. For example, for a v b the following statements are equivalent; a
contains more information than b, a is more defined than b and a is a more precise
approximation than b.

Definition 22 (Semi lattice). A semi-lattice is a poset 〈L,v〉 where for all subsets
A of L they are either all closed under meet,

d
A, or all closed under join,

⊔
A.

Which of the operators it is closed under is normally specified in the denotation
of the semi-lattice, for example L = 〈L,v,

d
〉.

Lattices are sometimes illustrated using Hasse diagrams. A line going upwards
from l1 to l2 means that l1 v l2. Figure 3.1 illustrates the partially ordered set
〈P({a, b, c}),⊆〉.

Definition 23 (Monotonic function). A function f is called monotonic if

∀l1, l2 ∈ L : l1 v l2 ⇒ f(l1) v f(l2)

Monotonic functions on ordered sets are order preserving functions. Intuitively
this requires for the function f to be monotonic, that if the input l1 is more defined
than l2, then the output f(l1) is also more defined than f(l2). The composition
of monotonic funtions is also monotonic; if f and g are monotonic functions, then
l1 v l2 ⇒ f(l1) v f(l2)⇒ g(f(l1)) v g(f(l2)).

Definition 24 (Fix point). A fix point of a function is a point that is mapped to
itself by the function.
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OO

⊥ = ∅

ffNNNNNNNNNNNN

OO 88pppppppppppp

Figure 3.1: Hasse diagram of the lattice 〈P({a, b, c}),⊆〉

Consider a monotonic function f : L→ L on a complete lattice
L = 〈L,v,

d
,
⊔

,⊥,>〉. A fixed point of f is an element l ∈ L such that f(l) = l.
The set of fixed points is denoted and defined as

Fix(f) = {l|f(l) = l}

The function f is reductive at l if and only if f(l) v l. The set of elements on
which f is reductive, is denoted and defined as

Red(f) = {l|f(l) v l}

Finally the function f is extensive at l if and only if l v f(l). The set of elements
on which f is extensive, is denoted and defined as

Ext(f) = {l|l v f(l)}

It follows from the definitions that Fix(f) = Red(f)
⋂

Ext(f); if f(l) v l and
l v f(l) holds, it implies f(l) = l.

Tarski’s fix point theorem [144] states the following:

Theorem 1. Let L be a complete lattice and f : L→ L be a monotonic function.
Then the set of fixed points, Fix(f) ⊆ L, is also a complete lattice.

Since a complete lattice cannot be empty, this guarantees the existence of at
least one fix point of f and even the existence of a least and greatest fix point.
The greatest lower bound of Fix(f) is denoted lfp(f), least fix point of f . Tarski’s
Theorem ensures [125]:

lfp(f) =
l

Fix(f) =
l

Red(f) ∈ Fix(f) ⊆ Red(f)
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A least upper bound of Fix(f) also exists in L and is denoted by gfp(f), greatest
fix point of f . This also follows from Tarski’s Theorem:

gfp(f) =
⊔

Fix(f) =
⊔

Ext(f) ∈ Fix(f) ⊆ Ext(f)

When lattice theory is used in the context of program analysis it usually in-
volves the construction of some sequence of elements of a complete lattice. Here a
sequence will be denoted (ln)n, where n ∈ N.

Definition 25 (Chain). For a partially ordered set L, a subset Y ⊆ L, is a chain
if

∀l1, l2 ∈ Y : (l1 v l2) ∨ (l2 v l1)

A sequence of elements, {ln|n ∈ N}, in L is an ascending chain if n ≤ m⇒ ln v lm
and descending chain if n ≤ m⇒ ln w lm.

Definition 26 (Ascending Chain Condition). A partially ordered set, L, satisfies
the Ascending Chain Condition if every ascending chain l1 v l2 v . . . of elements
in L is eventually stationary. The chain is stationary if there exists an n ∈ N such
that lm = ln for all m > n.

Definition 27 (Continuous functions between partially ordered sets). Let L be a
complete lattice, then a function f : L → L is continuous if for all Y ⊆ L, then⊔

f(Y ) = f(
⊔

Y ) holds.

In other words, continuous functions preserve limits. Continuity of a function also
implies monotonicity for this function. And if L is finite, monotonicity would also
imply continuity. In program analysis it is usually necessary to compute some fix
point of a monotonic function f : L→ L where L is a complete lattice. Typically
this is done by computing the limit of an ascending Kleene chain. The Kleene fix
point theorem [54] (Proposition 23) states:

Theorem 2. For any complete lattice L and any continuous function f : L→ L
the lfp(f) is the least upper bound of the ascending Kleene chain:

⊥ v f(⊥) v f(f(⊥)) v . . .

Often this property is expressed as a formula:

lfp(f) =
⊔
{f i(⊥)|i ∈ N}

If the chain stabilises it will stabilise to lfp(f); this occurs for continuous functions
f . For finite lattices this would also occur for the monotone functions. In abstract
interpretation the abstract domain over which the analysis is executed can be
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any kind of domain that can be described by a lattice. There are numerical
domains such as intervals, difference-bound matrices or convex polyhedra, and
there are symbolic domains such as types describing the set of values a variable
can be assigned or types describing states that a variable can be in (live, undefined,
constant etc.).

In particular, the numerical domains can be computationally expensive and
may not satisfy the ascending chain condition. Convergence of the fix point com-
putations can be enforced and accelerated. In this process precision is traded for
better computational properties. The next section describes this approach.

3.2 Accelerating convergence to fix point

For abstract interpretation frameworks the classical method for reaching a fix
point is based on widening [54]. Galois Connections (see Section 3.2.3) are used
to construct a set of approximate semantic equations expressing the semantics
of a given program over some abstract domain. Widening combined with Galois
Connections will ensure eventual termination of the fix point iterations over the
set of semantic equations.

3.2.1 Widening

Widening is a technique often used to approximate lfp(f ). Widening can be used
to construct chains that converge to a fix point much faster than the Kleene chain,
giving the particular abstract interpretation better behavior with regards to com-
puting time required for completion of the analysis. Widening will enforce stabi-
lisation of the fix point computations. The fix point obtained using widening will
be a safe approximation of lfp(f).

A new operator, called a widening operator, is constructed. How this operator
is constructed will affect the precision of the approximated lfp(f) and the compu-
tational cost of finding the approximation. There is usually a trade-off between
precision and efficiency in the process of accelerating the fix point computations
to convergence. Usually a widening operator that is quicker to reach convergence
will also result in a less precise result. Different widening operators can be applied,
even within the same analysis application [46], depending on whether precision or
speed is more important. The first widening operator was suggested by Cousot
and Halbwachs [57].

The principle behind the widening operator comes from the fact that any se-
quence of elements in a lattice L can be transformed into an ascending chain by an
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upper bound operator. An upper bound operator ť : L × L → L always returns
an element greater than its arguments; i.e. ∀l1, l2 ∈ L, l1 v (l1ťl2) w l2.

Given a total function φ : L×L→ L and a sequence of elements from L a new
sequence lφn can be defined as

lφn =

{
ln if n = 0

lφn−1 φ ln if n > 0

A widening operator belongs to the family of upper bound operators.

Definition 28 (Widening operator). An operator ∇ : L × L → L is a widening
operator if and only if

1. It is an upper bound operator

2. For all ascending chains (ln)n the ascending chain (l∇n )n satisfies the ascend-
ing chain condition

After the widening operator has been defined, the next step is to find a safe
approximation of lfp(f). This is done by calculating the sequence

fn
∇ =

{
⊥ if n = 0

fn−1
∇ ∇f(fn−1

∇ ) otherwise

This sequence will eventually stabilise at f(fm
∇ ) v fm

∇ for some m, and we take
lfp∇(f) = fm

∇ as the safe over approximation of lfp(f).

3.2.2 Narrowing

Narrowing is a technique designed to improve the precision of the approximation
of lfp(f) obtained in the widening step. If f(fm

∇ ) v fm
∇ holds, it follows from

the definition of the set of reductive elements, Red(f) = {l|f(l) v l}, that f is
reductive at fm

∇ , and from Tarski that lfp(f) =
d

Red(f) ∈ Fix(f). Narrowing is
defined as a descending chain fn(fm

∇ ) ∈ Red(f) ensuring lfp(f) v fn(fm
∇ ).

Definition 29 (Narrowing operator). An operator ∆ : L×L→ L is a narrowing
operator if and only if

1. ∀l1, l2 ∈ L : l1 v l2 ⇒ l1 v (l2∆l1) v l2

2. for all descending chains (ln)n the sequence (l∆n )n eventually stabilises

Once the narrowing operator has been defined, the next step is to construct
the descending chain:
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fn
∆ =

{
fm
∇ if n = 0

fn−1
∆ ∆f(fn−1

∆ ) if n > 0

The descending chain (fn
∆)n will stabilise to an overapproximation of lfp(f). It

it safe to impose a limit on the number of elements in this sequence. If condition
2 of Definition 29 is not satisfied for a given operator then it is safe to apply this
operator a fixed number of times, as long as condition 1 is satisfied.

3.2.3 Galois Connections

Computations on a lattice L can be costly and possibly infinite. One of the prin-
cipal ideas behind abstract interpretation is the substitution of the uncomputable
lattice L with a simpler lattice M . The elements in L will be mapped to elements
in M . Analysis will then take place on the lattice M . The simpler lattice will
generally be less expressive than the complex lattice, so a loss of precision will
occur when elements are mapped from L to M . Galois Connections are useful for
approximating one set of computations with another set of computations requiring
less time, resources etc. to solve. The result of the simpler set of computations
will be a safe approximation of the result of the set of complex computations, but
in general it will also be a less precise approximation.
An abstraction function is introduced to describe elements of L in terms of elements
in M :

α : L→M

Similarly a concretisation function is introduced to map the elements of M to
elements of L:

γ : M → L

The relationship between α and γ is formalised by Galois Connections.

Definition 30 (Galois Connection). 〈L, α, γ, M〉 is a Galois Connection between
the lattices 〈L,vL〉 and 〈M,vM〉 if and only if:

1. α : L→M is monotonic

2. γ : M → L is monotonic

3. ∀l ∈ L : γ(α(l)) wL l

4. ∀m ∈M : α(γ(m)) vM m

These restrictions guarantees an important property of the abstraction and
concretisation functions namely a safety property. For an element l ∈ L, going
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from lattice L to lattice M , m = α(l), m ∈ M and back, lα = γ(m), lα ∈ L, is
a safe approximation of l. It may be an over approximation where precision is
lost, but it will be a safe approximation, i.e. l vL lα. This property can also be
described more informally as preserving ordering between the two lattices; going
from one lattice to the other and back can never result in going downwards in the
lattices.

The partial ordering relation v over a set L can be extended to functions on
L;

F v F ′ ⇔ ∀x ∈ L : F (x) v F ′(x)

Approximation of L by M can then be extended to approximation of functions
on L by introducing functional abstraction and functional concretisation [50], with

Fα(m)
def
= α(F (γ(m)))

This definition of Fα gives the most precise possible abstraction of F . Any function
approximating Fα would suffice.

By proposition 30 in [54], if L is a poset, F is continuous and ⊥M = α(⊥L) then
lfp(F ) v γ(lfp(Fα)).

3.2.4 Systems of Semantic Equations

For a program P let N be the set of nodes (or program points) in the control
flow graph of P . Let us assume that computing the abstract interpretation of P
over some abstract domain is equivalent to find the least solution of a system of
semantic equations

X = F (X) ≡


x1 = f1(x1, . . . , xn)

...

xn = fn(x1, . . . , xn)

(3.1)

where each index i ∈ N = [1 . . . n] and each function fi : Ln → L is a monotone
function on a lattice L of abstract properties, for example could each function fi

be a sub-function computing the computational state at a specific program point.
Performing a program analysis usually involves computing a fix point of a set

of (recursive) semantic equations X = F (X) starting from an initial value ⊥, as
outlined in Section 3.1. These computations can be infinite, prohibitively expensive
to compute or perhaps the desired program property to analyse with respect to,
cannot easily be stated as formulas. In this situation Galois Connections can be
used to approximate computations on a concrete domain with computations on
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an abstract domain, replacing X = F (X) with X = Fα(X), for which a fix point
can be computed and for which the fix point on the abstract domain is a safe
approximation of a fix point in the concrete domain.

Chapter 2 introduced logic programming where the concrete semantics is based
on the Herbrand pre-interpretation. The next chapters will describe abstract inter-
pretation of logic programs. Galois Connections will map elements of the abstract
domain to sets of elements of the concrete domain.

Two specific abstract domains will be described; a symbolic (finite) domain
over pre-interpretations derived from regular type definitions (Chapter 5) and a
numerical (infinite) domain over convex polyhedra (Chapter 4). Infinite domains
may not satisfy the ascending chain condition hence widening will be required for
the convex polyhedron domain.

3.2.5 Combining Widening and Galois Connections

Galois Connections are used to construct semantic equations, X = F (X), and
fix point iterations are then used to solve these equations iteratively. Widening
can then be used to accelerate convergence to a fix point. The next section will
describe a technique for finding which equations widening should be applied to in
order to ensure convergence. Once a fix point has been reached, narrowing can be
used to refine the approximation of the least fix point.

3.2.6 Applying Widening

Much effort has gone into examining strategies for applying widening operators
in order to minimise loss of precision and minimise computational effort. Since
widening results in a loss of precision, usually these strategies will try to minimize
the number of times widening is applied in order to reach a fix point.

A chaotic iteration [52] over the semantic equations shown in Equation 3.1 is
an iteration of the system of equations where the iteration has been limited to
any subset of the equations in the system. Cousot and Cousot showed in [52, 45]
that any chaotic iteration method converges to the optimal solution, given fi is a
continuous function on a complete lattice. Any such strategy that takes advantage
of these two properties are generally referred to as chaotic iteration strategies.

Applying a chaotic iteration strategy to the system of semantic equations X =
F (X) would result in a finite sequence i1, . . . , im of elements in N , so that the
iterations xij = fij(x1, . . . , xn) ∈ X = F (X) for j ∈ {1, . . . ,m} would result in a
fix point solution to that particular system of equation. How a particular sequence
is derived would depend on what particular chaotic iteration strategy is used to
iterate over a given set of semantic equations. Of two different chaotic iteration
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strategies, the better strategy would provide a shorter sequence to iterate over (i.e.
smaller m).

To accelerate convergence to a safe approximation of the fix point for the equa-
tions, the widening operator is applied to a subset W ⊆ N of the equations.
Widening with respect to a set of widening points W is denoted and defined as:

Definition 31 (Widening with respect to W ). For the semantic equations, X =
F (X), with n = |X|, and for a set of widening points, W ⊆ {1, . . . , n}, and a
widening operator ∇, widening with respect to a set of widening points is denoted

X = X ∇W F (X)

where
xi = xi∇fi(x1, . . . , xn) for i ∈ W
xi = fi(x1, . . . , xn) otherwise

The dependency graph of the equations is a directed graph G = (N, E), where
N is a set of nodes, and E is a set of edges, with an edge (i, j) ∈ E, if fj depends
on its parameter xi. This graph will typically be closely related to the control flow
graph of the program P .

Introducing widening into the semantic equations generally results in a loss of
precision. One way of minimising this loss of precision is to find a good set of
widening points, W , as small as possible. When W is chosen such that every loop
in the dependency graph contains at least one element also in W , then any chaotic
iteration strategy will terminate with a safe approximation of lfp(f) [21].

The problem of finding the smallest set of nodes in a graph, such that all
loops contains a node in this set, is also called the Feedback Vertex Set. It is an
NP-complete problem and was in fact among the first problems shown to be NP-
complete. It is part of Richard Karp’s list of 21 NP-Complete Problems [95] from
1972. The definition of the problem is; given a directed graph G = (N, E) and a
positive integer k, is there a subset X ⊆ N with |X| ≤ k such that G \X is cycle
free? Exact computation of this problem for medium sized graphs can for instance
be solved using relational algebra [15].

Methods for finding good sets of widening points have previously been sug-
gested by, among others, François Bourdoncle who suggested methods based on
weak topological orderings [21], and Patrick Cousot who suggested a method for
finding loop head nodes [46]. Graphs can easily be constructed where both methods
suggested would provide a solution that is not optimal. Figure 3.2 on the following
page shows a graph where the optimal solution is a single node, here node 3. The
weak topological ordering method and the loop head nodes method would both
provide a solution containing two nodes, either W = {2, 3} or W = {3, 4}.
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Figure 3.2: Directed Graph with minimal W = {3}

In Section 4.3.5 we will present a new algorithm for computing widening points
and discuss its advantages.
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Chapter 4

Convex Polyhedron Analysis

Convex polyhedron analysis, first used by Cousot and Halbwachs [57], is an appli-
cation of abstract interpretation. The program to be analysed is interpreted over
an abstract domain of convex polyhedra. Operations in the program are approxi-
mated by operations on convex polyhedra. The convex polyhedral domain is not
finite so a method such as widening must be established for this particular analysis
to ensure termination.

A convex polyhedron analysis results in abstraction of the variables in a pro-
gram by a set of linear constraints relations among these variables. This has
been the basis of a variety of program analyses, including the field of logic and
constraint logic programming [12, 13], for instance for argument-size analysis,
time-complexity analysis and termination analysis [98]. In analysis of impera-
tive languages it has been used for purposes such as detection of overflows and
loop invariants.

In the context of logic programming, we wish to obtain an approximation of the
program model in which each n-ary predicate is approximated by an n-dimensional
polyhedron, representing some numerical description of its argument’s values.

For example, a termination analyser is used to determine whether a program
will definitely terminate or possibly not terminate. Termination analysis for logic
programs have been studied widely [63]. Different approaches have been suggested
and a large proportion of these rely on abstracting the programs using norms.

Definition 32 (Norm). A norm is a mapping ‖ . ‖: TermΣ → N.

Two classic norms are the list length norm [148] mapping lists to their length,
and the term size norm [118] counting the number of functors in a term. Only the
list length will be defined here.
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Definition 33 (List length norm). The list length norm, denoted ‖ . ‖l, is defined
as

‖ [t1|t2] ‖l = 1+ ‖ t2 ‖l for t1, t2 ∈ TermΣ

‖ t ‖l = 0 otherwise

Example 6. The append program and the abstracted program with the list length
norm applied is shown below.

append([ ],Xs ,Xs)← appendA(0,Xs ,Xs)←
append([X|Xs ],Ys , [X|Zs ])← appendA(1 + Xs ,Ys , 1 + Zs)←

append(Xs ,Ys ,Zs) appendA(Xs ,Ys ,Zs)

The convex polyhedron analyser would then be applied to the abstracted pro-
gram to find, for instance, the linear relations between the sizes of the arguments
of the program.

Chapter Overview

This chapter describes a convex polyhedron analyser for constraint logic programs.
The implementation of the analyser is based on the Parma Polyhedra Library.

- Section 4.1 defines convex polyhedra.

- Section 4.2 describes how convex polyhedra can serve as an abstract domain
for abstract interpretation.

- Section 4.3 describes an implementation of a convex polyhedron analyser for
constraint logic programs.

4.1 Convex Polyhedra

4.1.1 Definition of polyhedra

Polyhedra are geometric representations of linear systems of equalities and inequal-
ities. A convex polyhedron is a region of an n-dimensional space that is bounded
by a finite set of hyperplanes. The definition is:

Definition 34 (Closed Convex Polyhedron). The set P ⊆ Rn is a closed convex
polyhedron if either
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• it is the intersection of a finite family of closed linear halfspaces of the form
{x|ax ≥ c} where Rn is the n-dimensional vector space on real numbers, a ∈
Rn is a non-zero row vector, c ∈ R is a scalar constant and x = 〈x1, . . . , xn〉

• n = 0 and P = ∅

The set of all closed convex polyhedra on the vector space Rn is denoted CPn.

Certain constraint systems cannot easily be described using closed convex poly-
hedra, such as constraints partitioning the real numbers into disjoint sets. Accurate
descriptions would require the use of strict inequalities.

Example 7. The two branches of an if-then-else construct such as the one shown
below, cannot be distinguished using closed polyhedra.

if x ≥ 0 {. . .}
else {. . .}

For not necessarily closed convex polyhedra, strict inequalities are allowed.

Definition 35 (Not Necessarily Closed Polyhedron). The set P ⊆ Rn is a not
necessarily closed polyhedron (NNC polyhedron) if either

• it is the intersection of a finite family of open or closed linear halfspaces of
the form {x|ax ≥ c} or {x|ax > c} where Rn is the n-dimensional vector
space on real numbers, a ∈ Rn is a non-zero row vector, c ∈ R is a scalar
constant and x = 〈x1, . . . , xn〉

• n = 0 and P = ∅

The set of all NNC polyhedra on the vector space Rn is denoted Pn.

4.1.2 Representation of polyhedra

Every polyhedron P has a dual representation; a constraint representation and
a parametric representation consisting of a set of lines, rays, points and closure
points together called a generator system for a polyhedron. Only the constraint
representation will be defined here. A constraint in this context is a linear equality
or linear inequality. We denote sets of constraints using matrix notation. For the
constraints containing non-strict inequalities the notation isa1,1 . . . a1,n

...
...

am,1 . . . am,n


x1

...
xn

 ≥
 b1

...
bm

 or in short form Ax ≥ b
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 (x, y)
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 y ≥ 1

x ≥ 1
−x +−y > −5

 

y

x

P

Figure 4.1: Example NNC polyhedron with its constraint representation. The
dotted line illustrates the open edge produced by the strict inequality.

In this notation the non-strict inequality can be substituted for equalities or strict
inequalities. Each NNC polyhedron is the set of solutions to a constraint system.

P def
= {x ∈ Rn|A1x = b1, A2x ≥ b2, A3x > b3},

where ∀i ∈ {1, 2, 3}, Ai ∈ Rmi × Rn and bi ∈ Rmi and m1, m2, m3 ∈ N are the
numbers of equalities, inequalities and strict inequalities respectively. We use C to
denote the constraint representation of the polyhedron P :

P = con(C)

Figure 4.1 shows a polyhedron P ∈ CP2 with 3 vertices and its representation as
constraints.

4.1.3 Operations on polyhedra

For a convex polyhedron analysis of a program a few operations on polyhedra are
required. These operations are described next. They can be implemented for both
the constraint and parametric representation of polyhedra.

Intersection

The intersection of two polyhedra P1,P2 ∈ Pn is denoted P1 ∩ P2.
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Figure 4.2: Operations on convex polyhedra

Convex Hull

The convex polyhedral hull of two polyhedra P1,P2 ∈ Pn is denoted P1]P2, and it
is the smallest NNC convex polyhedron that contains both P1 and P2. The convex
hull is an upper approximation of union, since convex polyhedra generally are not
closed under union.

Figure 4.2(a) shows the intersection between two polyhedra, P1,P2 ∈ CP2, and
Figure 4.2(b) the convex hull of P1 and P2.

Emptiness

Given a set of constraints the polyhedral representation of this set may be empty
if the constraints are not satisfiable. For example the set {X < 0 ∧ Y < 0 ∧ Z >
0 ∧ Z = X + Y } of constraints is not satisfiable - the sum of two negative real
numbers can not be a positive real number. Checking satisfiability of a set of linear
constraints is decidable.

Inclusion

The convex polyhedron analysis proceeds as a fix point computation. Some mecha-
nism of establishing when convergence is reached is needed. This can be achieved
by checking inclusion between two polyhedra P1,P2 ∈ Pn, P1 is entailed by P2 if
P1 ⊆ P2. This is also decidable.

Projection

The projection operation returns the most precise polyhedron which does not de-
pend on a given dimension. Given an n-dimensional polyhedron P , the projection
P ′ = proj(P , j), will return the most precise polyhedron, P ′, of dimensions n− 1
that is entailed by P excluding its constraints on dimension j.
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Figure 4.3: Projection of P onto x

Depending on which programming language is being analysed, the program
constructs that will be approximated by a polyhedra can be objects such as func-
tion calls, loops etc. and specifically for constraint logic programs, the denotation
of a predicate with numeric arguments could be approximated by a polyhedron.
The dimension of the approximating polyhedron will be equivalent to the number
of variables occurring in that program construct. Some of these variables may have
a local context, i.e. they only occur in that particular program construct. For the
predicates in a logic programming the local context is a clause body. Any variable
occurring in the clause body but not in the clause head must be removed before
the predicate is given its denotation. This is where the projection operation is
applied.

A clause head can of course contain variables that do not occur in the body.
These variables will be unrestricted. Increasing the dimension of a polyhedron is
simpler than projecting dimensions out. In this situation no precision is lost, since
any polyhedron of dimension n has an exact representation as a polyhedron of
dimension n + 1.

Figure 4.3 illustrates a 2 dimensional polyhedron projected onto the x-axis.
The resulting polyhedron is an interval over x.

4.2 Convex Polyhedral Domain for Abstract In-

terpretation

This section describes how convex polyhedra can serve as an abstract domain for
the abstract interpretation of logic programs.

4.2.1 Partial Ordering on Polyhedra

Polyhedra can be partially ordered by set inclusion i.e. 〈Pn,⊆〉. We can add
intersection as the greatest lower bound (

d
), the convex polyhedral hull as the

least upper bound (
⊔

) and Rn as top element and ∅ as the bottom element; thus we
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have a complete lattice 〈Pn,⊆,∩,], ∅, Rn〉. This property makes convex polyhedra
a suitable domain for program analysis - in particular for abstract interpretation.

The polyhedron will provide an abstraction of each program point in the pro-
gram, where the definition of a program point would depend on the programming
language and the program analysis. For a logic program the program points would
be the predicates in that program.

The abstract domain is the set of mappings (Pred 7→ P) where an n-ary predi-
cate p ∈ Pred is mapped to an n-dimensional polyhedron P ∈ Pn. Inclusion is
used as the ordering over the mappings. For instance, for the mappings m1 and
m2 the ordering is

m1 v m2 ≡ ∀p ∈ Pred , m1(p) ⊆ m2(p)

For a finite set of predicates {p1, . . . , pk} we can represent the mappings as a tuple
of polyhedra 〈P1, . . . ,Pk〉. The concretisation function of the mapping m would
be defined as

γ(〈p1, . . . , pk〉) = {pi(t̄)|1 ≤ i ≤ k, t̄ ∈ Pi}
where t̄ denotes a point in the polyhedron Pi.

For implementation purposes we can also represent such a mapping as a set of
constrained atoms

p(x1, . . . , xn)← c(x1, . . . , xn)
where P = con(c(x1, . . . , xn)) for some n-dimensional polyhedron P

The abstract domain for a program would typically be a set, S, of polyhedra,
one element for each program point. The lattice structure is an extension of the one
defined above, for example 〈P1, P2, . . . , Pk〉 v 〈Q1, Q2, . . . , Qk〉 iff P1 ⊆ Q1 ∧ P2 ⊆
Q2 ∧ . . . ∧ Pk ⊆ Qk.

4.2.2 Widening for Convex Polyhedra

In the domain of convex polyhedra infinite ascending chains can occur, hence
the ascending chain condition is not satisfied. For program analysis purposes
some mechanism to accelerate convergence of the fix point computations may be
required to ensure termination. The most used mechanism for this is widening
[54], as described in Section 3.2.1. Widening in the convex polyhedra domain was
defined by Cousot and Halbwachs [57] and refined in Halbwach’s PhD thesis.

For P1 = con(C1),P2 = con(C2) ∈ Pn the widening P ′ = P1∇P2 is obtained by
assigning to P ′ = con(C ′) all the constraints of C1 excluding all the inequalities not
satisfied by C2. This meets both requirements for a widening operator: P1 ⊆ P2

and both are contained in P ′ and since |C ′| ≤ |C1| widening cannot be applied
indefinitely without converging.
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This widening operator is generally referred to as the standard widening and
few attempts have been made to improve the operator itself. Recently Bagnara et
al. [5] suggested a framework for constructing improved widening operators for the
convex polyhedral domain. Where the standard widening operator is restricted to
only looking at the constraint representation of a polyhedron, the new operators
can be based on both the constraint and the parametric representation. In short,
the method allows operators that otherwise do not meet the widening operator
criteria to be used, while still ensuring termination. The resulting widening ope-
rator is not guaranteed to be more precise than the standard widening but it is
never less precise.

Narrowing for Convex Polyhedra

Narrowing in the convex polyhedra domain has up until recently been an unex-
plored area [5, 55, 56], though it had previously been suggested that narrowing for
the convex polyhedral domain could produce more precision [12].

Strictly speaking a narrowing operator must ensure eventual stabilisation ac-
cording to the second requirement of Definition 29 on page 31. Quoting Cousot
and Cousot in [54]:

A simple narrowing is obtained by limiting the length of the decreasing
iteration sequence to some k ≥ 1 (experience shows that k > 1 often
brings no significant improvement).

This would indicate that it might be sufficient to look at the first requirement
of Definition 29, and settle for a relatively low number of iterations, ignoring the
convergence requirement.

We propose the use of the greatest lower bound (glb) as a simple narrowing
operator. For polyhedra the glb is the intersection operation. The use of the
intersection operator is safe, in the sense that it yields a safe approximation of the
least fix point but it does not guarantee convergence.

The glb operator, in this case intersection, is applied at each program point, p,
to the polyhedron derived from the widened fix point computations, Pp∇ , and the
polyhedron derived from applying the semantic transfer function f to the program
point p. If narrowing results in a more precise approximation for some program
point p, then the narrowing procedure may be reiterated to ensure that the most
precise approximation is used for narrowing at those program points that depends
on p in the call graph of the analysed program.

44



4.2.3 Other widening strategies

As mentioned earlier, few attempts have been made to introduce new widening
operators. Work has focused on different widening strategies for improving preci-
sion - or rather minimising loss of precision.

For the Convex Polyhedral domain a few improved widening strategies have
been proposed.

Delayed Widening

This technique is quite simple. The application of the widening operator is delayed
for a number of iterations. This will allow the analyser to build a set of more
explicit constraints to widen on [78] and produce more precise analysis results as
shown in [12].

Widening with thresholds/widening up-to

This technique was described for the interval domain in [16] and the convex poly-
hedral domain in [80]. In the interval domain variables in a program are abstracted
by a tuple [a, b] where a ≤ b indicating a lower and upper bound on values that
abstracted variables can have during execution of the program. The need for
this arose from the fact that narrowing for the interval domain would not recover
bounds on loop variables if the exit condition for the loop contained disequalities
A finite set of threshold values, T , including −∞ and +∞ are used to find better
approximations of lower or upper bounds, than simply −∞ and +∞. Widening
with thresholds for the interval domain is defined as

[a, b] ∇T [a′, b′] = [al, bh] where al =

{
a if a′ ≥ a

max{l ∈ T |l ≤ a′} otherwise

and bh =

{
b if b′ ≤ b

min{h ∈ T |h ≥ b′} otherwise

The set of thresholds may be derived from the analysed program itself [80] or
otherwise specified by the user.

We will implement this in the convex polyhedron analyser for constraint logic
programs described later. We suggest initially to derive the set of widening-up-
to constraints, which we will call the bounding constraints, from the analysed
program itself. For constraint logic programs, this set can easily be obtained for
each predicate in the program, by taking the convex hull of the polyhedra derived
from intersecting the constraints on the built-in arithmetic predicates occurring in
each clause body.

45



Definition 36 (Clause constraints). The set of clause constraints for a program
P is defined as:

CP =

 A← C

∣∣∣∣∣∣
A← B1, . . . , Bn ∈ P

C =
⋃ {

Blin

∣∣∣∣ i ∈ {1, . . . , n}
Blin = linearise(Bi)

} 
where linearise(B) returns the linear approximation of an atom B if B is a non-
linear built-in arithmetic predicate for which a safe linear approximation can be
supplied. Built-in linear predicates such as ‘+’ are not modified by this procedure.
If no linear approximation can be derived for the atom B it will be unconstrained
(i.e. the universe).

Definition 37 (Bounding constraints). The bounding constraints for a program
P is defined as:

C∇̂P =

{
p← C

∣∣∣∣ p ∈ ΠP

C =
⊎

p← C ∈ CP

}

Widening with Landmarks

The widening with landmarks [142] shares some common traits with widening with
thresholds. Where upper or lower bounds would be lost using standard widening,
they can in some cases be recovered using narrowing. The widening with landmarks
is a refinement of widening with thresholds, that will produce results precise enough
that narrowing would not be needed to recover lost bounds. This technique doesn’t
throw away constraints that are not satisfied when widened, such as the standard
widening does, but on the basis of these unsatisfiable constraints, it estimates
which constraint(s) to widen up-to, that would result in the least loss of precision.

Look-ahead widening

The lookahead widening [78] is a recent method. Two polyhedra are used for
abstracting each program point; a main and a pilot polyhedron. Widening and
subsequent narrowing are only performed on the pilot polyhedron. The program
is evaluated with respect to the main polyhedron, and program points that are
not reachable under the main polyhedron are ignored. Once the pilot stabilises it
is promoted to a main polyhedron and the program is reevaluated. This technique
tries to solve the situations where during a loop a variable may be either increasing
or decreasing. Widening in this situation may cause a loss of both upper and lower
bounds. The widening with threshold as described in [80] would infer widening
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thresholds for single variables. The look ahead widening would make it possible
to propagate upper and lower bounds expressed with more than one variable.

The next section describes our implementation of a NNC polyhedra based convex
polyhedron analyser for constraint logic programs.

4.3 Convex Polyhedron Analyser for CLP

For a convex polyhedron analyser a few polyhedra operations are required. These
are projection, emptiness checking, entailment testing, the forming of convex hulls
and some means of ensuring termination of analysis, typically widening. Program-
ming libraries implementing these operations are readily available.

4.3.1 Parma Polyhedra Library

The Parma Polyhedra Library (PPL) is a programming library targeted especially
at analysis and verification [8, 7]. It implements the operations needed for a convex
polyhedron analyser and it has interfaces for a variety of programming languages
including Ciao Prolog [29]. In addition it supports operations on not necessarily
closed polyhedra [6, 8].

It supports both the standard widening and the improved widening mentioned
in Section 4.2.2. They are called H79 and BHRZ03 in the PPL library.

The library is developed at the Department of Mathematics, University of
Parma, Italy and the School of Computing, University of Leeds, United Kingdom.
Development began in 2001 and the library is under further development.

Other libraries for manipulating polyhedra exist, such as the NewPolka library1.
This library has C and OCaml interfaces but no Prolog interface. It also has
some support for NNC polyhedra. The library is now integrated into the Apron
numerical abstract domain library2.

PolyLib3 is another library that has been around since 1993 and is also under
current development. This too is lacking a Prolog interface and support for NNC
polyhedra.

1http://pop-art.inrialpes.fr/people/bjeannet/newpolka/index.html
2http://apron.cri.ensmp.fr/library/
3http://icps.u-strasbg.fr/PolyLib/
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4.3.2 Semantics

This section will describe the semantics of the convex polyhedron analyser. To
begin with it might be helpful to understand the semantics before the implemen-
tation is described. A concrete semantics and an abstract semantics will be defined.
The concrete semantics is described similar to the TP semantics mentioned back in
Chapter 2. The concrete domain will be over the set of all formulas, Atom← Con,
where Con is a constraint system.

Definition 38 (Concrete Semantics). The immediate consequence operator is de-
fined as:

T CP : 2Atom←Con → 2Atom←Con

T CP (I) =


A← C

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

A← B1, . . . , Bn ∈ P
{A1 ← C1, . . . , An ← Cn} ∈ I
and ∃ substitution θ such that
mgu((B1, . . . , Bn), (A1, . . . , An)) = θ
C ′ =

⋃
i=1,...,n

{Ciθ}

C ′ 6≡ false
C = project(C ′,Var(C ′) \ Var(A))


MC[[P ]] = lfp(T CP )

It is assumed that all built-in constraint predicates are in I (for example X < Y :-

X < Y ∈ I). We also assume some adequate satisfiability and projection algorithm
for constraints appearing in the program exists. The set of constrained atoms
{〈B1 ← C1〉, . . . , 〈Bn ← Cn〉} is renamed apart. The domain of the interpretation
is the powerset of the set of facts of the form p(X1, ..., Xn) ← C, where p is a
predicate in P and C is a set of constraints over X1, ..., Xn.

The abstract semantics is defined next.
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Definition 39 (Abstract Semantics). Let T CP be the concrete semantics function,
then the abstract semantics of the program P is the fix point defined as

T P
P : 2Atom←Con → 2Atom←Con

T P
P (I) = I ] T CP (I)

MP[[P ]] = lfp(T P
P )

where the convex hull operator is extended to operate on constrained atoms.

The domain of the abstract semantics is the powerset of the set of facts of the
form p(X1, ..., Xn) ← Pn, where p is a predicate in P and Pn is a NNC convex
polyhedron.

As stated previously in Section 4.2.2, when the abstract domain does not satisfy
the ascending chain condition, as is the case for the convex polyhedral hull domain,
some method of accelerating the fix point computations is required, such as widen-
ing. The application of the widening operator occurs at a specific set of program
points, W , as outlined in Chapter 3. For a given set of widening points, W , a new
widening sequence is defined. And as also previously mentioned, precision can be
improved by delaying widening for d ≥ 0 steps. This can be incorporated in the
widening sequence.

Definition 40 (Delayed Widening Sequence). Let d ≥ 0 be the number of itera-
tions to delay widening, let W be the set of program points at which to widen, and
let T P

P be the abstract semantics function, then the delayed widening sequence is
defined as

S0 = ⊥
Si+1 = T P

P (Si) for i ≤ d
Si+1 = Si ∇W T P

P (Si) for i > d

The delayed widening sequence will reach a fix point after k iterations so Sk+1 =
Sk. The widening operator can be substituted with the widen-up-to operator,
using, for example, the constraint representation of the bounding polyhedron, P∇̂,
as the widening up to constraints.

The results of the widening sequence can be refined by applying a narrowing
operator. The narrowing sequence is defined as

Definition 41 (Narrowing sequence). Let Sk be the fix point of the delayed widen-
ing sequence after k iterations, and let l ≥ 0 be a given number of iterations to
narrow, then the narrowing sequence is defined as

N0 = Sk

Ni+1 = Ni ∩ T P
P (Ni) for i < l, i > 0
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The next section outlines the implementation.

4.3.3 Implementing the convex polyhedron analyser

Bottom up analysis

Our analyser is originally based on a bottom-up evaluator for logic programs,
developed by Codish and Søndergaard [36, 41]. The naive bottom up interpreter
is a small Prolog program, closely implementing the TP semantics described in
Section 2.2.1. An implementation of the bottom up evaluator is shown in Figure 4.4
on the facing page. It is assumed the program to be analysed is stored in facts
that have the form my clause(Head, Body). The analysis is initiated using the
proposition tp as goal. A fix point is reached when the call to tp terminates. The
model of the program is stored as facts of the form fact(Head).

The evaluator uses the built-in fail predicate to force reevaluation of a given
predicate until this predicate can no longer be proven. This evaluation strategy
is not an efficient strategy but it is simple to implement. In the naive bottom-up
evaluator the operator predicate attempts to prove some clause in the evaluated
program from the asserted facts. If a clause can be proven it is asserted as a fact.
The cond assert predicate checks if a facts is an instance of some existing fact; if
not, the fact is asserted and a flag is raised signifying that the program must be
reevaluated. An iteration terminates when no new facts can be asserted. If a flag
was raised a new iteration is computed. The program is evaluated iteratively until
a fix point is reached. A fix point is reached, when no new heads can be asserted
on some iteration.

Bottom up convex polyhedron analyser

For the convex polyhedron analyser the naive bottom up interpreter is modified
so each fact is associated with a polyhedron. Thus the predicate fact has two
arguments, an atom of the form p(X1, . . . , Xn) and a set of constraints C over
(some of) the variables X1, . . . , Xn.

To implement the (delayed) widening sequence two polyhedra are stored for
each predicate; the polyhedron obtained in the previous iteration (called oldfact)
and the polyhedron calculated in the current iteration (called newfact). The pro-
gram to be analysed is as before assumed to be asserted as facts of the form
my clause(Head, Body). The heads are assumed to be normalised, i.e. a head
is of the form p(X1, . . . , Xn) where X1, . . . , Xn are distinct variables. When the
program clauses are asserted the variables occurring in the clause heads are sys-
tematically renamed so first argument becomes X1, second argument is X2 and so
on. Any constraints appearing as an argument are replaced by an appropriately
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tp ← iterate.

iterate ← operator , fail .
iterate ← retract(flag), iterate.
iterate.

raise flag ← (flag → true; assert(flag)).

cond assert(F )← ¬(numbervars(F, 0, ), fact(F )),
assert(fact(F )), raise flag .

operator ← my clause(H, B), prove(B), cond assert(H ).

prove([ ]).
prove([true]).
prove([B|Bs])← fact(B), prove(Bs).

Figure 4.4: Naive bottom up evaluator for logic programs [41]

named variable, and the constraint is added to the clause body, for instance the
unit clause p(0) ← would be transformed into the clause p(X1) ← X1 = 0. Simi-
larly for variables appearing at more than one argument position, each occurrence
is renamed and the relationship between the renamed arguments are added to the
clause body, for example p(Y, Y )← becomes p(X1, X2)← X1 = X2.

Figure 4.5 on page 53 shows the modified bottom up interpreter implementing
the analyser. The convex polyhedron analyser differs from the naive evaluator in
the operator -predicate, the stored facts and the widening and narrowing steps,
plus the necessary polyhedron operations. The fix point is reached when an itera-
tion step does not result in any polyhedra not already included in the polyhedra
acquired in the previous iteration.

Solving clause bodies

The clause bodies can contain arithmetic expressions and calls to predicates de-
fined in the program itself (user defined predicates). The constraint on the user
defined predicates can be retrieved from the stored facts. The arithmetic expres-
sions can be substituted with equivalent constraints. Non-linear operators such as
multiplication must either be given a linear approximation or simply be ignored.
The linearisation procedure will be explained in Section 4.3.4.
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Projection on to clause head

The set of constraints for a given clause body is the union of the constraints on the
user defined predicates and the constraints from the linearised expressions. If this
set of constraints on the clause body is satisfiable, that is it forms a non-empty
polyhedron, the next step is to project the polyhedron onto the head of the clause.
This step is accomplished by the formPolyhedron/3-predicate in Figure 4.5 on the
facing page. Projection will, as described in Section 4.1.3, reduce the dimensions
of the polyhedron to the arity of the clause head. The PPL library provides this
functionality.

Forming convex hull of new and old polyhedron

If the “reduced” polyhedron is entailed by the polyhedron already associated with
the given predicate, no further steps are needed. The existing polyhedron will
in this case either be the polyhedron from the previous iteration or a polyhedron
derived in the current iteration for the same predicate. If it is not the case that
the new polyhedron is entailed by an existing polyhedron, then the convex hull
is formed between the existing convex polyhedron and the projected polyhedron.
The new convex polyhedron - P ′ = Pexisting ] Pnew - is associated with the given
clause head, replacing any existing polyhedron derived in the current iteration,
but does not replace the polyhedron obtained in the previous iteration. The step
is handled by the cond assert/2-predicate shown in Figure 4.5 on the next page.
The later widening step will need both the old polyhedron and the newly derived
polyhedron.

Widening step

In each iteration the constraints are widened to ensure termination of the analysis.
The analyser supports delayed widening, where widening is not applied until after a
specified number of iterations have been executed and different widening operators.

When all clauses have been processed widening is applied to the polyhedra
obtained in the previous iteration, stored in oldfact , and the polyhedra derived
in the current iteration, stored in newfact , i.e. P ′ = Pold∇WPnew. Widening
need not be applied to all predicates. In this case only a subset W of predicates
are marked as widening points. These predicates are chosen according to the
algorithm described later in Section 4.3.5. For those predicates chosen as widening
points, the resulting polyhedron P ′ replaces Pold and Pnew is discarded. For those
predicates not chosen as widening points, Pnew simply replaces Pold. Figure 4.8 on
page 55 shows this process. The predicate widenfacts/0 will apply the predicate
widenhead/1 to all widening points and move any asserted newfact/2 to oldfact/2.
The predicate widen/3 will apply the appropriate widening operator according to
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analyse← assert(flag(first)), iterate, narrowfacts .

iterate← my clause(H, B), operator(H, B), fail;
retractall(flag(first)).

iterate← widenfacts , reiterate.
iterate.

reiterate← flag( ), iterate.

operator(H, B)← (changed(B); flag(first)),
formPolyhedron(H, B,PH), cond assert(H,PH).

formPolyhedron(H, B,PH)← prove(B, C), linearise(C, Clin),
satisfiable(Clin,P), vardiff (H, Clin, Hdim), project(P , Hdim,PH).

prove([ ], [ ]).
prove([B|Bs], [C|Cs])← constraint(B, C), prove(Bs, Cs).
prove([B|Bs], Cs)← getoldfact(B, C1), prove(Bs, C2),

append(C1, C2, Cs).

getoldfact(B, C)← oldfact(B′, H), getConstraints(H, C ′), melt((B′, C ′), (B, C)).

fact(H,P)← newfact(H,P); oldfact(H,P).

cond assert(H,P)← ¬entailedby(H,P), existingPolyhedron(H,Pold),
convexhull(P ,Pold,Pnew), assert(newfact(H,Pnew), raiseflag(H).

existingPolyhedron(H,P)← retract(newfact(H,P)); oldfact(H,P).
existingPolyhedron( , empty).

entailedby(H,P)← fact(H,Pfact), entails(Pfact ,P).

Figure 4.5: Bottom up convex polyhedron analyser for logic programs
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constraint(X = Y, X = Y ).
constraint(X =:= Y,X = Y ).
constraint(X is Y,X = Y ).
constraint(X < Y, X < Y ).
constraint(X > Y, X > Y ).
constraint(X >= Y,X >= Y ).
constraint(X =< Y, X =< Y ).
constraint(X = Y, X = Y ).

constraint(X\ == Y, 0 = 0).
constraint(X = \ = Y, 0 = 0).
constraint(true, 0 = 0).
constraint(false, 1 = 0).

Figure 4.6: The constraint predicate turns body atoms into constraints. Here 0 = 0
denotes a constraint that will be ignored (always satisfied) and 1 = 0 denotes a
false constraint that can never be satisfied.

raise flag(F )← functor(F, Fn, N),
((nextflag(Fn/N)→ true); (assert(nextflag(Fn/N)))).

changed([ ])← fail.
changed([B|Bs])← flagset(B).
changed([B|Bs])← ¬flagset(B), changed(Bs).

f lagset(F )← functor(F, Fn, N), currentflag(Fn/N).

Figure 4.7: Control predicates flag which clauses must be reevaluated in the next
iteration and which clauses must be reevaluated in the current iteration. This
is used for the semi-naive optimisation strategy we have implemented. Between
iterations the nextflag-facts are retracted and asserted as currentflag-facts. In the
naive bottom-up evaluator every clause was reevaluated in every iteration so a
global flag would suffice. For the semi-naive strategy a flag must be maintained
for each clause.
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widenfacts ← widenpoint(H), newfact(H, ), oldfact(H, ),
widenhead(H), fail.

widenfacts ← retract(newfact(H,P)), retractall(oldfact(H, )),
assert(oldfact(H,P)), fail.

widenfacts .

widenhead(H)← retract(newfact(H,Pnew)), retract(oldfact(H,Pold)),
widen(Pnew,Pold,P ′), assert(oldfact(H,P ′)).

Figure 4.8: Widening in convex polyhedron analyser for logic programs.

the configuration of the analysis. For delayed widening, the procedure is extended
with a fact for each widening point containing a counter that would be decremented
each time widen/3-predicate is called until the counter reaches zero. The widening
operator will only be applied if the counter has reached zero for that widening
point.

Fix point detection

A new polyhedron will not necessarily be derived for all predicates. Those pred-
icates for which Pold was replaced by a new polyhedron are flagged as modified.
These flags served a dual purpose. They are used used both to detect when a fix
point is reached and for the particular iteration strategy we have implemented.
The iteration strategy will be described in Section 4.3.6.

Narrowing

When a fix point is reached, a number of narrowing iterations can be applied. This
is shown in Figure 4.9 on the next page. The number of narrowing iterations that
will be applied is specified before the analysis begins and stored as a fact. The
narrowfacts/0-predicate is then called the number of times specified.

4.3.4 Linear approximation

The polyhedral operations implemented using the PPL library take only linear
expressions as constraints, so each occurrence of a non-linear expression in a clause
body must be approximated by a linear expression before the PPL operations can
be invoked. Those expressions for which no linear approximation can be given,
are simply ignored. This is safe to do, but can lead to significant loss of precision
in the analysis. Linearising an expression is a recursive procedure, for example
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narrowfacts← my clause(H, B), narrowoperator(H, B), fail.
narrowfacts.

narrowoperator(H, B)← formPolyhedron(H, B,PH),
narrow cond assert(H,PH).

narrow cond assert(H,P)← existingWidenedPolyhedron(H,Pold),
intersect(P ,Pold,Pnew), retractall(oldfact(H, )),
assert(oldfact(H,Pnew).

existingWidenedPolyhedron(H,P)← retract(oldfact(H,P)).
existingWidenedPolyhedron( , empty).

Figure 4.9: Narrowing in convex polyhedron analyser.

linearise([ ], [ ]).
linearise([C|Cs], [C|C′s])← linearConstraint(C), !, linearise(Cs, C ′s).
linearise([C|Cs], [C ′|C ′s])← linearApproximation(C, C ′), !, linearise(Cs, C ′s).
linearise([ |Cs], C ′s)← linearise(Cs, C ′s).

linearConstraint(X = Y )← linearTerm(X), linearTerm(Y ).

linearTerm(X)← const(X), !.
linearTerm(X + Y )← linearTerm(X), linearTerm(Y ).

const(X)← number(X), !.
const(X)← var(X), !, fail.

linearApproximation(X = Y \/Z,X =< Y + Z)←!.

Figure 4.10: The linearise predicate will eliminate non-linear constraints from a
given list of constraints. Some non-linear constraints may be given a safe linear
approximation such as the boolean operator ‘OR’ (\/) shown in this figure. The
list of clauses shown here is only a small sample of the complete set of clauses in
the analyser.
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an operator such as ‘+’ or ‘−’ may only yield a linear result if both operands are
linear expressions themselves.

Equalities and inequalites

These are straightforward. The terms X is Y and X = Y both translate into the
constraints X = Y . Similarly for the inequalities, e.g. X >= Y translates into the
constraints X ≥ Y . Terms containing not-equals, e.g. X =\= Y are ignored since
they have no linear approximation.

The right hand side of the term contains the operators that must also be
approximated.

Approximation of arithmetic operations

For the arithmetic operations this is also straightforward. The addition and sub-
traction operations are both linear and e.g. X is Y + Z translates to X = Y +Z,
if both Y and Z themselves are linear expressions.

The multiplication operator can also be approximated by a linear constraint
if either both of the operands are constants, or if one operand is a constant and
the other operator is linear. So the term X is Y * Z translates into X = Y ∗Z if
either Y or Z (or both) are constant. The recursive evaluation of the expression
will ensure that the result is only linear if the non-constant operand is linear.

At present, expressions that are not linear are simply ignored, so that their
variables are completely unconstrained. Figure 4.10 on the facing page shows the
implementation of the linearise procedure.

4.3.5 Widening Points

For the convex polyhedral analyser for constraint logic programs we have con-
structed our own algorithm for finding widening points. A few properties differen-
tiate programs “in general” from the programs that will later be analysed using
the convex polyhedron analyser. Not all program will have a uniquely identified
“first” program point. This is for instance the case for logic programs.

The Control Flow Graph (CFG) of a program is a graph representation of
which program points are immediately reachable from any other program point.
Normally all components of this graph would be connected unless the program for
instance contains dead code. For a logic program the equivalent to a CFG is a
predicate call graph with a node for every predicate in the program and an edge
from the node for a predicate p to the node for a predicate q if there exists a clause
of p with a call to q in its body. For logic programs the goal may be the only
formula that connects parts of the program.
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Typically the predicate call graph for a logic program will contain many small
strongly connected components. Predicates are typically relatively small and di-
rectly recursive. Imperative programs on the other hand may contain fewer, larger
components; especially if for instance goto instructions are used.

Our algorithm must work for CFGs with more than one entry point and more
than one component. The last section of this thesis will describe assembler pro-
grams modelled as constraint logic programs; these logic programs will have a CFG
resembling that of an imperative language. It can be demonstrated that for these
programs, the depth first numbering, the retreating edges method and the strongly
connected component method suggested by Bourdoncle [21] all produce a higher
number of widening points. The convex polyhedron analyser will be applied to
these programs, in addition to being applied to more “traditional” CLP programs.
So our algorithm must provide a good set of widening points for both types of
programs.

Cut-loop algorithm for computing widening points

The Minimal Feedback Vertex Set problem deals with any directed graph, from the
sparsely connected to the densely connected graphs. The Control Flow Graphs
of typical programs will be sparsely connected graphs containing some, possibly
nested, loops. We will try to construct an algorithm of low complexity that will
produce sets of widening points that are smaller than or equal to those produced
by the simple retreating edges method of linear complexity described in [21]. A
spanning tree of a graph can be constructed by traversing the graph. During
traversal a retreating edge is found when an edge from a decendant to an ancestor
is encountered. By identifying the retreating edges in the CFG for a program, the
loops in the program are identified.

Definition 42. G = (N, E) is a directed graph with nodes N and edges E ⊆ N×N .

Definition 43. The set of immediate predecessors of a node n is denoted

Pred(n)
def
= {m|(m,n) ∈ E}

Definition 44. The set of immediate successors of a node n is denoted

Succ(n)
def
= {m|(n, m) ∈ E}

Definition 45. A path p from node n1 to nk is a sequence of nodes such that
(ni, ni+1) ∈ E for 1 ≤ i ≤ k − 1.

58



6 3

4

2

1
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Figure 4.11: Directed Graph with multiple entry nodes, e.g. {1, 6, 7}.

Definition 46. A loop l is a path [n1, . . . , nk] with k ≥ 1, where there exists an
edge (nk, n1) ∈ E.

The procedure is shown in Algorithm 2 on the next page. The graph is traversed
depth or breadth first from an entry node n1. The currently visited node is denoted
nc. A loop is detected if ∃ni ∈ [n1, . . . , nc] such that ni ∈ Succ(nc). The loop is the
path [ni, . . . , nc] which is a subset of the path [n1, . . . , nc]. These loops are stored
for later processing. The nodes are marked as visited when they are traversed. If
there are still unvisited nodes left in the graph upon completion of the traversal
of n1, a new entry node n1 is selected among the not yet visited nodes, and a new
traversal is started from this node.

When the traversals are completed, i.e. all nodes are marked visited, widening
points are selected from N , by choosing the node that cuts the highest number
of loops, and removing those loops that are now cut by a widening point. This
procedure continues until all loops are removed.

Applying this algorithm to the graph shown previously in Figure 3.2 on page 36
produces W = {3}. Figure 4.11 shows a graph that produces different results using
depth first numbering or retreating edge detection, depending on which node is
selected as the first entry node. Depth first numbering, with nodes chosen in
the order shown in the figure, would pick W = {1, 3, 4, 5}. The retreating edge
detection would pick W = {3, 4} or W = {4, 5} if traversal starts at either node
6 or 7. Out cut-loop algorithm would pick W = {1}, for any node chosen as the
entry node.
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Algorithm 2 Find widening points using cut-loops (not optimised)

Input: Graph G = (N, E)
Output: Wideningpoints W ⊆ N

Begin
loops = ∅
for n ∈ N

traverse(n, [ ]ancestors)
W = ∅
while loops 6= ∅

for n ∈ N
loopCount[n] = |{l|l ∈ loops, n ∈ l}|

candidates = {n ∈ N |loopCount[n] = maxj∈N(loopCount[j])}
select wp ∈ candidates
loops = loops \ {l ∈ loops|wp ∈ l}
W = W ∪ {wp}

End

traverse(n, nancestors) {
if visited(n,G) then

if n ∈ nancestors then
loop = path from n ∈ nancestors to head of nancestors

loops = loops ∪ loop
endif

else
markVisited(n, G)
for ns ∈ Succ(n, G)

traverse(ns, [n|nancestors])
endif
}
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4.3.6 Iteration Strategy

As previously stated any chaotic iteration strategy can be used to solve the system
of semantic equations, X = F (X), for monotone functions over complete lattices.
Bourdoncle suggested two strategies based on weak topological ordering. Both
of these strategies rely on an analysis of the control flow graph to determine the
components to iterate over, and once generated these components remain static.

This section will describe a dynamic iteration strategy inspired by work in
related fields dealing with some of the same problems - finding a fix point using
as few computations as possible. Which strategy is better can depend on which
problem is being solved [101].

The automatically generated logic programs derived from imperative assembly
languages, will contain long chains of mutually-recursive predicates. This would
result in a low number of strongly connected components in the Control Flow
Graph.

For handwritten logic programs on the other hand, the set of strongly connected
components would typically contain many small components. Each component can
be iterated over separately until a fix point is found for the component.

Applying iteration strategies based on dividing the program into components,
such as strongly connected components or weak topological orderings, might prove
less suitable for our use. If the program contains only a few large component,
iterating over an entire component may still be inefficient.

A näıve algorithm for solving a system of semantic equations as shown in
Equation 3.1 on page 33, would be to recompute all equations in every iteration.
The first observation would be that for the equations xi = fi() where fi has an
empty set of variables that it depends on, the function would return the same
result in every iteration. In the corresponding dependency graph for X = F (X)
these would be the nodes with an empty set of predecessors. A second observation
would be that for those functions fi where the set of arguments it depends on did
not change in the previous iteration, these functions would also return the same
result in the current iteration as it did in the previous iteration. Recomputing
these equations would be redundant. Restricting the set of equations to recompute
in each iteration to only those that depends on results that changed in previous
iteration, can be described as a semi naive optimisation strategy [146].

4.3.7 Narrowing

The simple narrowing method implemented does not guarantee that a fix point
is reached for the narrowing iterations. A limit on the number of iterations to
compute must be specified in advance. A narrowing iteration proceeds much like
a normal fix point iteration. The convex hull for each predicate is formed from the
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polyhedra approximating each clause body. In each clause body the intersection
of the polyhedra approximating the calls to user defined predicates is intersected
with the polyhedron approximating the built-in arithmetic predicates including
constraints that occurs in the clause. The resulting polyhedron for each predicate
is intersected with the polyhedron obtained after a fix point was reached. Primarily
this will recover lost upper or lower bounds.

4.3.8 Widen up to

To use widening up-to supported by the PPL library a set of constraints to widen
up-to must be supplied to the widening operator. This set of constraints can
easily be obtained from the bounding constraints obtained as described in Section
4.2.3. In the PPL library different versions of the widening up-to exists. One
is the “standard” widening up-to, called limited extrapolation and another is the
bounded extrapolation that includes a few “stop points” - {−2,−1, 0, 1, 2} - that
are selected as typical lower and upper bounds that can be recovered. These stop
points are hardcoded in the library4.

We have added the option to manually add these stop points to the pro-
gram. A special purpose predicate invariant/1 can be used to add one or more
stop points to widen up-to for a specific user defined predicate, for example
“invariant(p(I, J))← I =< 100.” will add a suggested upper bound of 100 to the
first argument of p/2. Some of these invariants may turn out to be invalid and
will be ignored by the the widening up-to operator. Once a fix point is found it
is easy to check which suggested invariants were valid. Simply form a polyhedron
from the invariant and check whether the fix point polyhedron obtained for the
user defined predicate polyhedron is entailed by the invariant polyhedron.

Example 8. The program shown in Figure 4.12 on the facing page is an example
of a program where widening would lose both upper and lower bounds, i.e. Y is
unconstrained. The simple narrowing can in this case only recover lower bound
for down(Y ) ← Y > 0, and upper bound for up(Y ) ← Y < 100. Widening up to
the bounding polyhedron results in the precise approximation down(Y )← 0 < Y <
101, but the approximation of up(Y ) remains the same, Y < 100. Adding stop
points, such as the ones built into PPL ({−2,−1, 0, 1, 2}) results in the precise
approximation for up(Y )← −1 < Y < 100.

The resulting approximation of the program is

up(Y ) ← −1 < Y < 100
down(Y ) ← 0 < Y < 101

4E-mail exchange with Roberto Bagnara revealed this; it is missing from the documentation
of the PPL library.
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up(50) ←
up(Y ) ← Y < 100, Y = Y1 + 1, up(Y1 )
up(Y ) ← Y =< 0, Y = Y1 − 1, down(Y1 )

down(Y ) ← Y >= 100, Y = Y1 + 1, up(Y1 )
down(Y ) ← Y > 0, Y = Y1 − 1, down(Y1 )

Figure 4.12: Simple program modelling up/down behavior of a variable.

The bounding constraints for the predicates are the following

C∇̂(up(Y )) = Y < 100

C∇̂(down(Y )) = Y > 0

4.3.9 Implementation details

The analyser is implemented in Ciao Prolog [29]. The script facility of Ciao allows
the program to be executed from a command line. The specific version of the
PPL library used is version 0.9. The input program must be a CLP(N ) program
containing only numerical terms. An example of such a program is shown in
Example 6 on page 38.

4.3.10 Comparison with existing analysers

A convex hull analyser for CLP(R) was reported in [12, 14]. This analyser was
compared with a previous analyser, selecting the tricky test cases for comparison.
The results from their analyser was reported as fractions, making them easier to
read, e.g. 0.666667x ≤ y∧y ≤ 1.5x is reported as 2

3
x ≤ y, y ≤ 3

2
x. Output from our

analyser will be rewritten for easy comparison between the two analysers. Both
analysers support delayed widening but only our analyser supports the simple
narrowing. Results will be reported for “best” configuration.

The results reported by Benoy and King in their LOPSTR’96 article [12] were
also reported in Benoy’s PhD thesis [14] with a few modifications. A few redundant
constraints were eliminated and what appears to be a typo was fixed - for the perm
program, the constraints for the del were reported as z = y + 1, but it should be
z = y−1. Comparison will therefore be made with the results from Benoy’s thesis.

For our analyser, the selected widening operator is specified along with the
number of iterations that widening is delayed (d) and the number of narrowing
iterations (n).
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Table 4.1 shows the first set of results. Our Convex Polyhedron Analyser is
abbreviated CPA. For all programs we obtain equally precise approximations. For
the last program, split, we eliminate the redundant constraint 0 ≤ y. Also note
that this is an example of a program where delayed widening is needed. Table 4.2
shows the last set of results for comparison.
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Figure 4.13: Selecting analysis parameters

4.3.11 Web Interface

A web interface has been added to the convex polyhedron analyser. The purpose
of the interface is to demonstate the facilities of the analyser and to allow quick
analysis of programs. The analyser by Benoy and King used in the previous
section for comparison was not available for experimentation. As a result the
comparison of the analysers have only been based on the relatively small set of
example programs used for the Benoy and King analyser. A publicly available
version of the analyser will allow other researchers to easily compare results for
specific test programs between analysers.

The tool is built on PHP and XML. The tool has two pages; a front page where
the programmer can upload a program for analysis and select analysis parameters
and a result page where the analysis results are shown. A screen shot of the front
page is shown in Figure 4.13. A test program, the append program with list length
norm applied, has been selected.

Figure 4.14 shows the result page for the append program. The constraints are
shown after a fix point is found using widening to accelerate convergence, and the
constraints are shown after narrowing has been applied.

Demonstration of tool is available online at
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Figure 4.14: Displaying analysis result

http://wagner.ruc.dk/CHA/

The design of the web interface originates from WebLogen5 [106], a web in-
terface for the Logen program specialiser by Michael Leuschel at Heinrich-Heine-
Universität Düsseldorf, with whom we have cooperated in developing the web
interface for the ASAP online tools6.

5http://www.stups.uni-duesseldorf.de/~pe/weblogen/
6http://www.stups.uni-duesseldorf.de/~asap/asap-online-demo/
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Chapter 5

Type Analysis Tool for Logic
Programming

Types are widely used in programming languages. Generally speaking types are an
abstraction of a program’s meaning. Associating a particular type with a particular
program construct is a way of describing which values can possibly occur and which
values can definitely not occur in that program construct.

At the top level, types in programming languages come in two flavors. First
there are the prescriptive types that are supplied by the programmer as a partial
specification of the intended meaning of the program. Secondly there are the
descriptive types which are derived from the program itself and approximate the
actual meaning of that particular program.

The prescriptive types are present in most modern languages and their use
enhances programmer productivity and the quality and efficiency of the developed
software. Typed programs can be type checked - in a sense checked for consistency
with the intended meaning. Type errors can be flagged to the programmer if the
written program code is not consistent with the supplied type specifications.

Descriptive types can be used in both typed and untyped programming lan-
guages. Although there is not the same notion of “badly typed” programs with
respect to descriptive types, they can, like the prescriptive types, be used to detect
errors in programs. Descriptive type languages can describe values that are some-
times not expressible in prescriptive type languages. These features sometimes
allow more precise assignment of types than is possible with prescriptive types.

Chapter Overview:

The description of types in this chapter is based on regular type rules.

- Section 5.1 gives a short introduction to notation and definitions.
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- Section 5.2 gives an introduction to Finite Tree Automata (FTA).

- Section 5.3 describes FTAs as abstract domains for abstract interpretation
of logic programs.

- In Section 5.4 a method for building analysis domains from any FTA on a
given program’s signature will be described. This method is based on the
transformation of the FTA to a pre-interpretation for the program. From
the programmer’s point of view, the type specifications remain regular ex-
pressions that are easy to handle.

- An improved algorithm for determinising types is described in Section 5.5.

- Examples of applications for the deterministic regular types is given in Sec-
tion 5.6.

- Implementation issues relating to applying the derived pre-interpretation to
program analysis is described in Section 5.7.

- Experiments with the improved determinisation algorithm are described in
Section 5.8.

- At the end of this chapter a tool for applying inferred types prescriptively
will be described.

5.1 Regular Type Definitions

Logic programming languages are in general untyped. Exceptions exist such as
Mercury [143]. Type related programming errors in typed languages can be flagged
at compile time, informing the programmer of the error without the need for
executing the program. For an untyped logic language such as Prolog this is not
possible, which leads to many type related bugs during development of Prolog
programs [81]. A classic Prolog example is the append program.

Example 9. The typical implementation for appending lists in Prolog is shown
below.

append([],Ys,Ys).
append([X|Xs],Ys,[X|Zs]) :-

append(Xs,Ys,Zs).

The goal append([ ], foo, foo) would succeed though this behavior would not be
expected since the term foo is not a list. A more proper definition of append would
be something like the following.
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append([],Ys,Ys) :- list(Ys).
append([X|Xs],Ys,[X|Zs]) :-

append(Xs,Ys,Zs).

list([]).
list([ |Ys]) :- list(Ys).

A typed logic program consists of a logic program, a type definition and a
predicate signature for each predicate in the program. The predicate signature
declares a type for each argument of each predicate. Given such a typed logic
program a type checker can verify whether the program is well-typed or not. It
is well-typed if the actual parameters passed to the predicates are instances of
the predicate signature [25, 88]. Inferring types for a logic program boils down to
deriving this typed logic program. Commonly, inferred types are less precise than
declared types.

Types can be specified using regular type rules.

Definition 47 (Regular Type Rule). Let Σ be a set of function symbols where
every symbols is assigned an arity n ∈ N0. A regular type rule for a type t is
defined by

t −→ f1(t1,1, . . . , t1,n1); . . . ; fm(tm,1, . . . , tm,nm)

where fi ∈ Σ for 1 ≤ i ≤ m and ni is the arity of fi and for 1 ≤ j ≤ ni, ti,j is
itself a regular type.

Example 10. The list type would be defined using regular type rules, as;

list −→ [ ]; [any|list]
where any is the type containing all terms.

This particular definition of lists is not parametrised. Such types are commonly
referred to as monomorphic types. Polymorphic types allow variables to occur as
parameters to a type definition, where the variables are universally quantified over
the defined types.

Example 11. The parametrised type rule for lists would be the following.

list(X) −→ [ ]; [X|list(X)]

Suppose a type for integers was also given, int, then the type list(int) would denote
a list of integers and list(list(int)) would denote a list of lists of integers.

The monomorphic types are less descriptive than the polymorphic types. In
this chapter we focus on the less descriptive monomorphic types. We will also
focus on types that are approximations of the minimal model of a program, rather
than well-typings.
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Figure 5.1: Overlapping regular types

Using types for detecting faults in the program, such as predicates that have no
solutions, requires precise type definitions. More complex or elaborate types than
the ones mentioned so far can be written, but these types will not necessarily lead
to more precise analysis results if the types overlap. Example 12 will illustrate
this.

Example 12. An example regular type definition for lists of anything, lists of only
‘a’s and lists of only ‘b’s could look like this:

list −→ [ ]; [any|list]
alist −→ [ ]; [ta|alist]
blist −→ [ ]; [tb|blist]
ta −→ a
tb −→ b
any −→ a; b; [ ]; [any|any]

Precision is lost when elements occur in more than one type. This is perhaps
better illustrated in a Venn diagram as shown in Figure 5.1. The element ‘[a]’
occurs in both the set alist and the set list, and ‘[b]’ occurs in both blist and list.
This can lead to situations where a list containing only ‘a’s is not distinguished
from the more general list containing anything, including ‘a’s.

Regular types are in general easy to write down, but this is however not the
case with writing disjoint regular types. It would be possible to write a regular
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Figure 5.2: Disjoint regular types

type definition for Example 12 that would distinguish between a list of anything
and a more specific list of only ‘a’s. These specifications would however not be
easy to write down manually and changes and additions to the specifications could
require major (and error prone) rewrites.

Deterministic Regular Types

In this Chapter deterministic regular types1 are introduced and a method for trans-
forming overlapping regular types to a set of disjoint regular types is given. The
type specification from Example 12 would be transformed into the types shown in
Figure 5.2. There are now 4 types with new names: the type list− (alist ∪ blist)
should read “contained in the original type list but at the same time not contained
in either alist or blist”. The type list∩alist∩blist should read “contained in both
list, alist and blist”. This particular type contains the element ‘[ ]’.

There is a well established connection between regular types and finite tree au-
tomata (FTA). Roughly speaking FTAs are specifications of regular types. The
described method in this chapter will use a standard algorithm from tree automa-
ton theory to transform some programmer supplied regular type definitions into a
set of disjoint types that can be used for analyses.

1More precisely, bottom-up deterministic regular types
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5.2 Tree Automata

Tree automata are “machines” that recognise terms. During the 1980s tree au-
tomata appeared as an approximation of programs on which fully automated tools
could be used. New results were obtained in areas like properties of programs,
type systems and rewriting systems with automata.

Terminology

Let Σ be a set of function symbols. Each function symbol in Σ has a rank (arity)
which is a natural number. Whenever we write an expression such as f(t1, . . . , tn),
we assume that f ∈ Σ and has arity n. We write fn to indicate that function
symbol f has arity n. If the arity of f is 0 we often write the term f() as f and
call f a constant. Σ0 is the set of all constant symbols.

The set of ground terms (or trees) TermΣ associated with Σ is the least set
containing the constants and all terms f(t1, . . . , tn) such that t1, . . . , tn are elements
of TermΣ and f ∈ Σ has arity n. More formally the set is defined by:

- Σ0 ⊆ TermΣ and

- if n ≥ 1, f ∈ Σn and t1, ..., tn ∈ TermΣ, then f(t1, ..., tn) ∈ TermΣ

Example 13. Let Σ = {cons( , ), nil, a}. Here ‘cons’ is a binary function symbol,
‘nil’ and ‘a’ are constants. A example of a term in TermΣ could be the following:
cons(a, cons(a, nil)). This can be represented in a graphical way by a tree structure
as shown in Figure 5.3.

cons/2

cons/2a

a nil

�
�

��

Q
Q

QQ

�
�

��

Q
Q

QQ

Figure 5.3: The term cons(a, cons(a, nil)) represented as a tree.

Finite tree automata provide a means of finitely specifying possibly infinite
sets of ground terms, just as finite automata specify sets of strings. A finite tree
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automaton (FTA) is defined as a quadruple 〈Q, Qf , Σ, ∆〉, where Q is a finite set
called states, Qf ⊆ Q is called the set of accepting (or final) states, Σ is a set of
ranked function symbols and ∆ is a set of transitions. Each element of ∆ is of the
form f(q1, . . . , qn)→ q, where f ∈ Σ and q, q1, . . . , qn ∈ Q.

FTAs can be “run” on terms in TermΣ; a successful run of a term and an FTA,
is one in which the term is accepted by the FTA. When a term is accepted, it is
accepted by one or more of the final states of the FTA. Different runs may result
in different accepting states. At each step of a successful bottom-up run, some
sub-term identical to the left hand side of some transition, is replaced by the right
hand side, until eventually the whole term is reduced to some accepting state.
Implicitly, a tree automaton R defines a set of terms, that is, a tree language,
denoted L(R), as the set of all terms that it accepts.

5.2.1 Tree Automata and Types

An accepting state of an FTA can be regarded as a type. Given an automaton
R = 〈Q,Qf , Σ, ∆〉, and q ∈ Qf , define the automaton Rq to be 〈Q, {q}, Σ, ∆〉. The
language L(Rq) is the set of terms corresponding to type q. We say that a term is
of type q, written t : q, if and only if q ∈ L(Rq).

A transition f(q1, . . . , qn)→ q, when regarded as a type rule, is usually written
the other way around, as q → f(q1, . . . , qn). Furthermore, all the rules defining
the same type, q → R1, . . . , q → Rn are collected into a single rule of the form
q → R1; . . . ; Rn. When speaking about types we will usually follow the type nota-
tion, but when discussing FTAs we will use the notation for transitions, in order
to make it easier to relate to the literature.

Example 14. Let

Q = {listnat, nat}
Qf = {listnat}

∆ =


[ ] → listnat

[nat|listnat] → listnat
0 → nat

s(nat) → nat


The type listnat is the set of lists of natural numbers in successor notation; the
type rule notation is

listnat −→ [ ]; [nat|listnat]
nat −→ 0; s(nat)
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Example 15. Let

Q = {zero, one, list0, list1}
Qf = {list1}

∆ =



[ ] → list1
[one|list1] → list1

[zero|list0] → list1
[ ] → list0

[zero|list0] → list0
0 → zero

s(zero) → one


This would be written in type notation as

list1 −→ [ ]; [one|list1]; [zero|list0]
list0 −→ [ ]; [zero|list0]
zero −→ 0
one −→ s(zero)

The type list1 is the set of lists consisting of zero or more elements s(0) followed
by zero or more elements 0 (such as [s(0), 0], [s(0), s(0), 0, 0, 0], [0, 0], [s(0)], . . .).
This kind of set is not normally thought of as a type, indicating that the use of
FTAs to describe types gives added expressiveness.

5.2.2 Deterministic and Non-deterministic Tree Automata

There are two notions of non-determinism in tree automata: bottom-up and top-
down. Computations can start at the leaves and work upwards (a bottom-up
tree) or computations can start at the root and work downwards (top-down trees).
They are equivalent with respect to the languages they recognise, but top-down
deterministic automata are strictly less powerful than non-deterministic automata.
As far as expressiveness is concerned, we can therefore limit our attention to FTAs
in which the set of transitions ∆ contains no two transitions with the same left-
hand-side - these are the bottom-up deterministic finite tree automata. For every
FTA R there exists a bottom-up deterministic FTA R′ such that L(R) = L(R′).
The sets of terms accepted by states of bottom-up deterministic FTAs are thus
disjoint.
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5.2.3 Completeness

An automaton R = 〈Q, Qf , Σ, ∆〉 is called complete if for all n-ary functions f ∈ Σ
and states q1, . . . , qn ∈ Q, it contains a transition f(q1, . . . , qn) → q. We may
always extend an FTA 〈Q, Qf , Σ, ∆〉 to make it complete, by adding a new state
q[ to Q. Then add transitions of the form f(q1, . . . , qn)→ q[ for every combination
of f and states q1, . . . , qn (including q[) that does not appear in ∆. A complete
bottom-up deterministic finite tree automaton, in which every state is an accepting
state, partitions the set of terms into disjoint subsets (types), one for each state.
In such an automaton q[ can be thought of as the error type, that is, the set of
terms not accepted by any other type.

Example 16. Let Σ = {[ ], [ | ], 0}, and let Q = {list, listlist, any}. We define
the set ∆any, for a given Σ, to be the following set of transitions:

{f(
n times︷ ︸︸ ︷

any, . . . , any)→ any |fn ∈ Σ}

Let

Qf = {list, listlist}

∆ = ∆any ∪


[ ] → list

[any|list] → list
[ ] → listlist

[list|listlist] → listlist


The type ‘list’ is the set of lists of any terms, while the type ‘listlist’ is the set

of lists whose elements are of type list (which includes listlist).

The automaton is not bottom-up deterministic; for example, three transitions
have the same left-hand-side, namely, [ ] → list, [ ] → listlist and [ ] → any.
So for example the term [[0]] is accepted by the states list, listlist and any. A
determinisation algorithm can be applied, yielding the following:

q1 corresponding to the type any ∩ list ∩ listlist

q2 to the type (list ∩ any)− listlist

q3 to any − (list ∪ listlist)
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Thus q1, q2 and q3 are disjoint. The automaton is given by

Q = {q1, q2, q3}
Σ = as before

Qf = {q1, q2}

∆ =



[ ] → q1 [q1|q1] → q1

[q2|q1] → q1 [q1|q2] → q2

[q2|q2] → q2 [q3|q2] → q2

[q3|q1] → q2 [q2|q3] → q3

[q1|q3] → q3 [q3|q3] → q3

0 → q3


The determinisation algorithm for this example will be discussed in more detail in
Section 5.4.

An FTA is top-down deterministic if it has no two transitions with both the same
right-hand-side and the same function symbol on the left-hand-side. Top-down
determinism introduces a loss in expressiveness. It is not the case that for each
FTA R there is a top-down deterministic FTA R′ such that L(R) = L(R′). Note
that a top-down deterministic automaton can be transformed to an equivalent
bottom-up deterministic automaton, as usual, but the result might not be top-
down deterministic.

Typical type notations are restricted to the top-down deterministic FTAs. Al-
lowing the use of arbitrary FTAs provides more expressiveness than typical type
notations.

Example 17. Take the automaton from Example 15. This is not top-down deter-
ministic due to the presence of transitions [one|list1] → list1 and [zero|list0] →
list1. No top-down deterministic automaton can be defined that has the same
language. Thus the set accepted by list1 could not be defined as a type, using type
notations that require top-down deterministic rules (see for instance [121, 154]).

Example 18. We define the set ∆any as before. Consider the automaton with
transitions ∆any ∪ {[ ] → list, [any|list] → list}. This is top-down deterministic,
but not bottom-up deterministic (since [ ] → list and [ ] → any both occur). De-
terminising this automaton would result in one that is not top-down deterministic.

Further details on FTAs and their properties and associated algorithms can be
found elsewhere [42].
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5.3 Abstract Domains based on FTAs

Logic programs were defined in Chapter 2 along with pre-interpretations and con-
crete semantics. This section covers abstract interpretation, defined in Chapter 3,
for logic programs.

5.3.1 Abstract Interpretation of Logic Programs

Since abstract interpretation can be viewed as a “pseudo-evaluation” of a program,
abstract interpretation for logic programming often follows the top-down fashion
an actual evaluation of a logic program would follow [24]. Chapter 2 outlined
a bottom-up analysis framework based on pre-interpretations. The bottom-up
abstract interpretation frameworks for logic programming were first formalised by
Marriott and Søndergaard [114].

In the next section we define the connection between the bottom-up pre-interpretation
based framework and abstract interpretation.

Bottom-up Abstract Interpretation Framework

Consider a concrete domain D describing a set of computational states associ-
ated with a program P . This could be the set of interpretations over some pre-
interpretation such as the Herbrand pre-interpretation. Assume D is a complete
lattice ordered under some partial ordering vD and that a transfer function TP

defined on D exists. The computational behavior of P can be characterised by a
solution to the (recursive) equation I = TP (I). The tuple 〈D,vD, TP 〉 defines the
standard fix point semantics for the program P . The computations in this case
can be infinite and therefore not useful for static program analysis.

A non-standard abstract fix point semantics for P can be defined over an
abstract (not necessarily finite) domain, ordered under some partial ordering and
with an abstract transfer function - 〈Dα,vDα , Tα

P 〉. If each of these elements are
designed properly, the abstract fix point semantics would be solvable for P but at
the expense of precision; the result would not be exact, but a safe approximation.

Extending this to pre-interpretations, we can define a concretisation function
next. The abstract domain Dα with respect to some pre-interpretation J , is a set
of atoms, p(d1, . . . , dn), where p is an n-ary predicate symbol and di ∈ Dα with
0 ≤ i ≤ n. The abstract domain with respect to some pre-interpretation J will be
denoted AtomJ .

Definition 48 (Concretisation function). Let P be a program with signature Σ.
Let J be any pre-interpretation and let HV be the Herbrand pre-interpretation
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extended over a finite or infinite set of extra constants V = {v0, v1, . . .} not in Σ
capturing occurrences of variables. Let AtomJ be the set of domain atoms with
respect to pre-interpretation J . The concretisation function γ : 2AtomJ → 2AtomHV

is defined as:

γ(S) =
{

A
∣∣ [A]J ⊆ [[S]]

}
MJ [[P ]] is an abstraction of the atomic logical consequences of P , in the following

sense.

Proposition 1. Let P be a program with signature Σ, and V be a set of constants
not in Σ (where V can be either infinite or finite). Let HV be the Herbrand
interpretation over Σ∪V and J be any pre-interpretation of Σ∪V. Then MHV [[P ]] ⊆
γ(MJ [[P ]]).

Thus, by defining pre-interpretations and computing the corresponding least
model, we obtain safe approximations of the concrete semantics.

5.3.2 Correspondence of FTAs and Pre-Interpretations

A pre-interpretation of a language’s underlying signature, Σ, is equivalent to a
complete bottom-up deterministic FTA over Σ. Any FTA can be turned into a
complete bottom-up deterministic FTA; and how to do this is described in a later
section. This principle can be used to construct pre-interpretations from any given
FTA.

For a pre-interpretation with a finite domain D over a signature Σ, it defines
a complete bottom-up deterministic FTA over the same signature, as follows.

1. The domain D is the set of states of the FTA.

2. Let f̂ be the function Dn → D assigned to f ∈ Σ by the pre-interpretation.
In the corresponding FTA there is a set of transitions f(d1, . . . , dn)→ d, for
each d, d1, . . . , dn such that f̂(d1, . . . , dn) = d.

5.4 Deriving a Pre-Interpretation from a Regu-

lar Type Definition

The analysis framework for logic programming based on pre-interpretations is out-
lined briefly. The bottom-up declarative semantics (see Section 2.2) describes the
model of a program. The previous section described how a bottom-up abstract
interpretation framework can be based on (bottom-up) deterministic FTAs lead-
ing to a safe approximation of the concrete semantics. The next step is to derive,
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from a programmer supplied regular type definition, a pre-interpretation which in
turn can be used to compute a model of a given program. The following sections
describe how the regular type definition is transformed into a pre-interpretation,
first using a textbook algorithm, then using a novel and more efficient algorithm.
Then a known method for computing the model of a program with respect to
a pre-interpretation, based on abstract compilation, is outlined. A more efficient
method for computing the model of programs where abstract compilation have
been applied is then described. This method is based on Datalog and a BDD-
based approach to computing the model of a Datalog program.

5.4.1 Textbook algorithm for determinising Finite Tree Au-
tomata

An algorithm for transforming a non-deterministic FTA (NFTA) to a deterministic
FTA (DFTA) is presented in [42]. The algorithm is shown here as Algorithm 3, in
a modified version that is more suitable for implementation.

Algorithm 3 NFTA to DFTA - rewritten textbook algorithm

input: NFTA R = 〈Q, Qf , Σ, ∆〉
begin

Set Qd to ∅
Set ∆′d to ∅
repeat

Set ∆d = ∆′d
for each fn ∈ Σ

for each choice s1, . . . , sn ∈ Qd

for each 〈q1, . . . , qn〉 ∈ s1 × ...× sn

s = {q ∈ Q|f(q1, . . . , qn)→ q ∈ ∆}
if s 6= ∅ then

Set ∆′d = ∆′d ∪ {f(s1, . . . , sn)→ s}
Set Qd to Qd ∪ {s}

end if
end for each

end for each
end for each

until ∆′d = ∆d

Set Qdf
to {s ∈ Qd | s ∩Qdf

6= ∅}
output: DFTA Rd = 〈Qd, Qdf

, Σ, ∆d〉
end
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Description of determinisation algorithm

The algorithm transforms the NFTA from one that operates on states, to one that
operates on sets of states from the NFTA. The NFTA allowed multiple occurrences
of the same state on the left hand side of a transition. In the DFTA, which is the
output of the algorithm, all reachable states in the NFTA are contained in sets
that makes up the new states - these are contained in the set Qd. A state in the
NFTA can occur in more than one state in the DFTA. Potentially every non-empty
subset of set of states of the NFTA can be a state of the DFTA.

The sets in Qd and the new set of transitions, ∆d, are generated in an iterative
process. In an iteration of the process, a function f is chosen from Σ. Then a
number of sets, s1, . . . , sn corresponding to the arity of f , is selected from Qd - the
same set can be chosen more than once. The cartesian product is then formed,
(s1×· · ·×sn), and for each element in the cartesian product, q1, . . . , qn, such that a
transition f(q1, . . . , qn)→ q exists, q is added to a set s. When all elements in the
cartesian product have been selected, the set s is added to Qd if s is non-empty and
not already in Qd. A transition f(s1, . . . , sn)→ s is added to ∆d if s is non-empty.

The algorithm terminates when Qd is such that no new transitions are added.
Initially Qd is the empty set, so no set containing a state can be chosen from Qd

and therefore only the constants (0-ary functions) can be selected.

Example 19. In Example 16 a non-deterministic FTA is shown;

Σ = {[ ]0, [ | ]2, 00}
Q = {list, listlist, any}

∆ = ∆any ∪


[ ] → list

[any|list] → list
[ ] → listlist

[list|listlist] → listlist


A step by step application of the algorithm follows:

Step 1: Qd = ∅, ∆d = ∅. Choose f as a constant, f = [ ]. Now s =
{q ∈ Q | [ ] → q ∈ ∆} = {any, list, listlist}. Add s to Qd and the transition
[ ]→ {any, list, listlist} to ∆d.

Step 2: Choose f = 0. Now s = {q ∈ Q | 0→ q ∈ ∆} = {any}. Add s to Qd

and the transition 0→ {any} to ∆d.

Step 3: Choose f = [ | ], s1 = s2 = {any, list, listlist}. Now s = {q ∈ Q |
∃q1 ∈ s1,∃q2 ∈ s2, [q1 | q2] → q ∈ ∆} = {any, list, listlist}. Add s to Qd and the
transition [{any, list, listlist} | {any, list, listlist}]→ {any, list, listlist} to ∆d.
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Step 4: Choose f = [ | ], s1 = s2 = {any}. Now s = {q ∈ Q | ∃q1 ∈
s1,∃q2 ∈ s2, [q1 | q2] → q ∈ ∆} = {any}. Add s to Qd and the transition [{any} |
{any}]→ {any} to ∆d.

Step 5: Choose f = [ | ], s1 = {any}, s2 = {any, list, listlist}. Now
s = {q ∈ Q | ∃q1 ∈ s1,∃q2 ∈ s2, [q1 | q2]→ q ∈ ∆} = {any, list}. Add s to Qd and
the transition [{any} | {any, list, listlist}]→ {any, list} to ∆d.

Step 6: Choose f = [ | ], s1 = {any, list, listlist}, s2 = {any}. Now
s = {q ∈ Q | ∃q1 ∈ s1,∃q2 ∈ s2, [q1 | q2]→ q ∈ ∆} = {any}. Add s to Qd and the
transition [{any, list, listlist} | {any}]→ {any} to ∆d.

Step 7 to 11: No new sets added to Qd. New transitions added:
[{any, list} | {any, list}] → {any, list}

[{any, list} | {any, list, listlist}] → {any, list, listlist}
[{any, list, listlist} | {any, list}] → {any, list}

[{any} | {any, list}] → {any, list}
[{any, list} | {any}] → {any}

Resulting DFTA:

Σ = {[ ]0, [ | ]2, 00}
Qd = {{any, list, listlist}, {any}, {any, list}}
Qdf

= {{any, list, listlist}, {any, list}}

∆d =



[ ] → {any, list, listlist}
0 → {any}

[{any, list, listlist} | {any, list, listlist}] → {any, list, listlist}
[{any} | {any}] → {any}

[{any} | {any, list, listlist}] → {any, list}},
[{any, list, listlist} | {any}] → {any}

[{any, list} | {any, list}] → {any, list}
[{any, list} | {any, list, listlist}] → {any, list, listlist}
[{any, list, listlist} | {any, list}] → {any, list}

[{any} | {any, list}] → {any, list}
[{any, list} | {any}] → {any}


The states in Qd are equivalent to the states q1, q2, q3 in Example 16. q1 is equi-

valent to the type any∩list∩listlist represented in Qd as the set {any, list, listlist},
q2 is equivalent to the type (list∩ any)− listlist represented by the set {any, list}
and finally q3 is equivalent to the type any− (list∪ listlist) represented by the set
{any}.

In a naive implementation of the algorithm, where every combination of argu-
ments to the chosen f would have to be tested in each iteration, the complexity lies
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in forming and testing each element in the cartesian product, for every combina-
tion of states in Qd. It is possible to estimate of the number of operations required
in a single iteration of the process, where an operation is the steps necessary to
determine whether f(q1, . . . , qn) → q ∈ ∆. Since ∆ is static, an operation can be
considered to be of constant time. The number of operations can be estimated by
the formula #op = (s ∗ e)a, where s is the number of states in Qd, e is the number
of elements in a single state in Qd (possibly an estimate) and a is the arity of the
chosen f . Every time a state is added to Qd, an iteration in the algorithm will
require additional operations. Worst case is if the algorithm causes an exponential
blow-up in the number of states [42].

The algorithm does not necessarily return a complete DFTA. The procedure
described previously in Section 5.2.3 could be applied to complete the DFTA. An
alternative solution is to add the standard transitions ∆any to the input NFTA as
shown in Example 19. The resulting DFTA will then be complete.

5.5 Efficient determinisation

The determinisation algorithm described in this section generates an automaton
whose transitions are represented in product form, which is a more compact form
leading to a correspondingly more efficient determinisation algorithm.

5.5.1 Product representation of sets of transitions

The main differences from the textbook algorithm is the form of the output, and
in the explicit use of indices for efficient searching of the set of transitions. A
product transition is of the form f(Q1, . . . , Qn) → q where Q1, . . . , Qn are sets
of states and q is a state. This product transition denotes the set of transitions
{f(q1, . . . , qn) → q | q1 ∈ Q1, . . . , qn ∈ Qn}. Thus

∏
i=1...n |Qi| transitions are

represented by a single product transition.

Example 20. The transitions of the DFTA generated in Example 16 can be re-
presented in product transition form as follows;

∆′ =



[ ] → q1

0 → q3

[{q1, q2, q3}|{q3}] → q3

[{q1, q2}|{q2}] → q2

[{q1, q2}|{q1}] → q1

[{q1, q2, q3}|{q1}] → q2


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Thus 4 product transitions replace the 9 transitions for [ | ] shown in Example 16.
There are other equivalent sets of product transitions, for example;

∆′ =



0 → q3

[{q1, q2}|{q3}] → q3

[{q3}|{q3}] → q3

[{q1, q2}|{q2}] → q2

[{q3}|{q2}] → q2

[{q1, q2}|{q1}] → q1

[{q3}|{q1}] → q2

[ ] → q1



5.5.2 A Determinisation Algorithm Generating Product
Form

The algorithm developed in this section is based on the classical text-book algo-
rithm as described in Section 5.4. It differs firstly by introducing an index structure
to avoid traversing the complete set of transitions in each iteration of the algo-
rithm, and secondly by noting that the algorithm only needs to compute explicitly
the set of states of the determinised automaton. The set of transitions can be
represented implicitly in the algorithm and generated later if required from the
determinised states and the implicit form. However, in our approach the implicit
form is close to product transition form and we will use this form directly. Hence,
we never need to compute the full set of transitions and this is a major saving of
computation. Let 〈Q,Qf , Σ, ∆〉 be an FTA. Consider the following functions.

qmap∆ : (Q× Σ×N )→ 2∆

qmap∆(q, fn, j) = {f(q1, . . . , qn)→ q0 ∈ ∆ | q = qj} for 1 ≤ j ≤ n

Qmap∆ : (2Q × Σ×N )→ 2∆

Qmap∆(Q′, fn, j) =
⋃
{qmap∆(q, fn, j) | q ∈ Q′}

states∆ : 2∆ → 2Q

states∆(∆′) = {q0 | f(q1, . . . , qn)→ q0 ∈ ∆′}

fmap∆ : Σ×N × 22Q → 22∆

fmap∆(fn, j,D) = {Qmap∆(Q′, fn, j) | Q′ ∈ D} \ ∅, for 1 ≤ j ≤ n

C : 2Q

C = {{q | f 0 → q ∈ ∆} | f 0 ∈ Σ}
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F∆ : 22Q → 22Q

F∆(D′) = C ∪ {states∆(∆1 ∩ · · · ∩∆n) | fn ∈ Σ,
∆1 ∈ fmap∆(fn, 1,D′),
. . . ,
∆n ∈ fmap∆(fn, n,D′)} \ ∅

The subscript ∆ is omitted in the context of some fixed FTA. The function qmap∆

is an index on ∆, recording the set of transitions that contain a given state q at
a given position in its left-hand-side. Qmap∆ is the same index lifted to sets of
states.

The complexity of the naive textbook algorithm lies primarily in the inner
most loop where all combinations of each argument of a given functor must be
searched for in the set of transitions. For functors with a high arity, FTAs with
many transitions and states, this gives an explosion in the number tests in each
iteration of the algorithm.

The improved algorithm computes in advance for each functor and each argu-
ment of the functor the set of transitions where this functor and this particular
instance of an argument of this functor is found. This eliminates the need for
traversing the set of transitions for each functor and each combination of argu-
ments in each iteration of the algorithm.

The improved algorithm further eliminates the need for examining all possible
combinations of arguments for each functor by solving each argument separately.
For each argument the set of possible transitions to examine can be found in the
set of pre-computed transitions for each functor. The solution is the intersection
of the sets of states for each argument.

The algorithm finds the least set D ∈ 22Q
such that D = F(D). The set D is

computed using fix point iterations as shown in Algorithm 4.

Algorithm 4 Fix point iterations

initialise:
i = 0; D0 = ∅

repeat
Di+1 = F(Di)
i = i + 1

until Di = Di−1

It can be shown that the sequence D0,D1,D2, . . . increases monotonically (with
respect to the subset ordering on 22Q

) and clearly there exists some i such that
Di−1 = Di since Q is finite.
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Example 21. Consider the following regular types (FTA transitions), in which
each transition has been labelled to identify it conveniently. We have Q = {any, list}
and ∆ = {t1, . . . , t5}.

t1 : [ ]→ list t4 : [any|any]→ any
t2 : [any|list]→ list t5 : f(any, any)→ any
t3 : [ ]→ any

The qmap function is as follows:

qmap(list, cons, 1) = ∅ qmap(list, cons, 2) = {t2}
qmap(list, f, 1) = ∅ qmap(list, f, 2) = ∅
qmap(any, cons, 1) = {t2, t4} qmap(any, cons, 2) = {t4}
qmap(any, f, 1) = {t5} qmap(any, f, 2) = {t5}

There is only one constant, [ ], and hence C = {{any, list}}. Initialise D0 = ∅;
the iterations of the algorithm produce the following values.

Step 1: D1 = F (D0) = F (∅)
fmap(f, 1, ∅) = Qmap(∅, f, 1) = qmap(∅, f, 1) = ∅
fmap(f, 2, ∅) = Qmap(∅, f, 2) = qmap(∅, f, 2) = ∅
fmap(cons, 1, ∅) = Qmap(∅, cons, 1) = qmap(∅, cons, 1) = ∅
fmap(cons, 2, ∅) = Qmap(∅, cons, 2) = qmap(∅, cons, 2) = ∅
F (∅) = {{any, list}} ∪ ∅ \ ∅ = {{any, list}}

Step 2: D2 = F (D1) = F ({{any, list}})
fmap(f, 1, {{any, list}}) = Qmap({any, list}, f, 1) =

qmap(list, f, 1) ∪ qmap(any, f, 1) = {{t5}}
fmap(f, 2, {{any, list}}) = Qmap({any, list}, f, 2) =

qmap(list, f, 2) ∪ qmap(any, f, 2) = {{t5}}
fmap(cons, 1, {{any, list}}) = Qmap({any, list}, cons, 1) =

qmap(list, cons, 1) ∪ qmap(any, cons, 1) = {{t2, t4}}
fmap(cons, 2, {{any, list}}) = Qmap({any, list}, cons, 2) =

qmap(list, cons, 2) ∪ qmap(any, cons, 2) = {{t2, t4}}
F ({{any, list}}) = {{any, list}} ∪ states({t5}) ∪ states({t2, t4}) =
{{any, list}} ∪ {{any}} ∪ {{any, list}} = {{any, list}, {any}}

The third step results in no new elements added to D3, hence at this step the fix
point is reached; the short version is:

87



1. D1 = {{any, list}}

2. D2 = {{any, list}, {any}}

3. D3 = D2

The determinised automaton can be constructed from the fix point D and
Qmap. The set of states Q is D itself. The set of final states is

Qf = {Q′ | Q′ ∈ Q, Q′ ∩Qf 6= ∅}

The set of transitions is

{fn(Q1, . . . , Qn)→ states(Qmap(Q1, f
n, 1) ∩ · · · ∩ Qmap(Qn, f

n, n)) |
fn ∈ Σ, Q1 ∈ Q, . . . , Qn ∈ Q}

The transition for each constant f 0 is f 0 → {q | f 0 → q ∈ ∆}. Continuing
Example 21, we obtain

[ ] → {any, list}
[{any} | {any}] → states(Qmap({any}, cons, 1) ∩

Qmap({any}, cons, 2))
→ states({t2, t4} ∩ {t4})
→ {any}

[{any, list} | {any}] → states(Qmap({any, list}, cons, 1) ∩
Qmap({any}, cons, 2))

→ states({t2, t4} ∩ {t4})
→ {any}

[{any}|{any, list}] → states(Qmap({any}, cons, 1) ∩
Qmap({any, list}, cons, 2))

→ states({t2, t4} ∩ {t2, t4})
→ {any, list}

[{any, list}|{any, list}] → states(Qmap({any, list}, cons, 1) ∩
Qmap({any, list}, cons, 2))

→ states({t2, t4} ∩ {t2, t4})
→ {any, list}

(continues on the next page)
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f({any}, {any}) → states(Qmap({any}, f, 1) ∩ Qmap({any}, f, 2))
→ states({t5} ∩ {t5})
→ {any}

f({any, list}, {any}) → states(Qmap({any, list}, f, 1) ∩ Qmap({any}, f, 2))

→ states({t5} ∩ {t5})
→ {any}

f({any}, {any, list}) → states(Qmap({any}, f, 1) ∩ Qmap({any, list}, f, 2))

→ states({t5} ∩ {t5})
→ {any}

f({any, list}, {any, list}) → states(Qmap({any, list}, f, 1) ∩
Qmap({any, list}, f, 2))

→ states({t5} ∩ {t5})
→ {any}

There are nine transitions in this small example. As we will see we can also
obtain a more compact representation as a set of product transitions.

5.5.3 Implementation of the Algorithm.

The function qmap is computed once at the start of the algorithm in time O(|∆|),
and it can be stored as a hash-table, which allows the computation of qmap(q, f, j)
in constant time. The value of Qmap(Q′, f, j) can thus be computed in O(|Q|).
states(∆′) can be computed in O(|∆|) after construction of a suitable index to the
transitions.

The function fmap is maintained as a table, called ftable. As described above,
the algorithm computes a sequence ∅, F(∅), F2(∅), . . . , where Di = Fi(∅). Let Di

and Di+1 be successive values of the sequence. At the i+1th stage of the algorithm
values of the form fmap(f, j,Di+1) are computed for each f and j. We use the
property that fmap(f, j,Di+1) = fmap(f, j,Di)∪ fmap(f, j, (Di+1 \ Di)). The table
entry ftable(fn, j) holds the values of fmap(f, j,Di) on the ith iteration of the
algorithm. Hence on the next iteration only the new values of fmap, that is,
fmap(f, j, (Di+1 \ Di)), need to be added to ftable(f, j).

The evaluation of the function F can also be optimised taking into account the
newly computed values of fmap. Assuming the existence of the ftable, define a
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function F′ as

F′(Dnew) = {states(∆1 ∩ · · · ∩∆n) | fn ∈ Σ,
∆1 ∈ ftable(fn, 1),
. . . ,
∆j ∈ fmap(fn, j,Dnew),
. . . ,
∆n ∈ ftable(fn, n),
1 ≤ j ≤ n} \ ∅

Thus for each tuple ∆1, . . . , ∆n, at least one component of the tuple must be
chosen from Dnew, ensuring that each tuple ∆1, . . . , ∆n needs to be considered
only once for each fn during the execution of the algorithm. After performing
these optimisations the algorithm can be summarised as shown in Algorithm 5.

Algorithm 5 Efficient NFTA to DFTA

D = C; Dnew = D;
for fn ∈ Σ

for j = 1 to n
ftable(fn, j) = ∅

endfor
endfor
repeat
Dold = D;
for fn ∈ Σ
for j = 1 to n

ftable(fn, j) = ftable(fn, j) ∪ fmap(fn, j,Dnew)
endfor

endfor
D = D ∪ F′(Dnew);
Dnew = D \ Dold

until Dnew = ∅

5.5.4 Complexity

For each fn ∈ Σ, the computation time is dominated by the number of tuples
Q1, . . . , Qn that have to be considered during the computation of F. This is∏

i=1...n |fmap(f, i,D)|. The maximum size of |fmap(f, i,D)| is the number of pos-
sible right-hand-sides in the determinised transitions for a f , say kf . This is 2Q

in the worst case, but in practice it is often much smaller. Experiments with the
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algorithm were published in [74]. The number of tuples is in fact closely related
to the set of product transitions generated as shown next.

Let fn ∈ Σ and let D be the set of sets of states computed as the fix point in
the algorithm. Then the set of product transitions for fn (n > 0) is

{f(fmap−1(∆1, f
n, 1), . . . , fmap−1(∆n, f

n, n))→
states(∆1 ∩ · · · ∩∆n) | ∆1 ∈ fmap(fn, 1,D), . . . , ∆n ∈ fmap(fn, n,D)}

where
fmap−1(∆′, fn, i) = {Q′ | Qmap(Q′, fn, i) = ∆′, Q′ ∈ D}

fmap−1(∆′, fn, i) can be computed and stored during the evaluation of
fmap(fn, i,D). For the example above, the final values of the fmap function are

fmap(cons, 1,D) = {{t2, t4}} fmap(cons, 2,D) = {{t2, t4}, {t4}}
fmap(f, 1,D) = {{t5}} fmap(f, 2,D) = {{t5}}

The values of fmap−1 are:

fmap−1({t2, t4}, cons, 1) = {{any, list}, {list}}
fmap−1({t2, t4}, cons, 2) = {{any, list}}
fmap−1({t4}, cons, 2) = {{any}}
fmap−1({t5}, f, 1) = {{any, list}, {list}}

From these values we obtain the following product transitions (including the tran-
sition for the constant [ ]).

[{{any}, {any, list}}|{{any, list}}] → {any, list}
[{{any}, {any, list}}|{{any}}] → {any}

f({{any}, {any, list}}, {{any}, {any, list}}) → {any}
[ ] → {any, list}

The two states {any} and {any, list} denote non-lists and lists respectively. The
determinised automaton is a pre-interpretation over this two-element domain.

5.6 Application of deterministic regular types

In this section we look at examples involving types and modes, mixed with other
types. The usefulness of this approach in a Binding Time Analysis (BTA) for
off-line partial evaluation will be shown. We also illustrate the applicability of the
domains to model-checking.

We assume that Σ includes one special constant v (see Section 2.2.1). The
standard type any is assumed where necessary (see Example 16), and it includes
the rule v → any.
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5.6.1 Definition of Modes as Regular Types

The mode of a predicate in a logic program indicates how its arguments will be
instantiated when that predicate is called. The modes of a program represents
statements about all computations that are possible from it. For example, in
Prolog there is no notion of input/output arguments to a predicate, as there is for
instance in the programming language C where an argument of a function can be
declared as either call by value or call by reference [96]. If some arguments would
be detected to be consistently input or output for some predicate, these arguments
would have a mode.

Instantiation modes can be coded as regular types. The set of ground terms
over a given signature, for example, can be described using regular types, as can
the set of non-ground terms, the set of variables, and the set of non-variable terms.
The definition of the types ground (g) and variable (var) are

g = 0; [ ]; [g|g]; s(g)
var = v

Using the determinisation algorithm, we can derive other modes automatically.
For these examples we assume the signature Σ = {[ ]0, [ | ]2, s1, 00} though clearly
the definitions can be constructed for any signature. Different pre-interpretations
are obtained by taking one or both of the modes g and var along with the type
any, and then applying the determinisation procedure. The various choices are
summarised in Figure 5.4.

The result of computing the least model of the naive reverse program shown
in Figure 5.5 is summarised in Figure 5.6. The following abbreviations are used:
ground=g, variable=v, non-ground-non-variable=ngnv, non-ground=ng, and non-
variable=nv. A variable such as X in the abstract model indicates any element of
the abstract domain for that model. If the same variable occurs more than once
in the same predicate instance it further indicates that these arguments must be
the same element.

The analysis based on g and any is equivalent to the well-known Pos abstract
domain [114], while the analysis based on g, var and any is the fgi domain dis-
cussed in [71]. The presence of var in an argument indicates possible freeness, or
alternatively, the absence of var indicates definite non-freeness. For example, the
answers for rev are definitely not free, the first argument of app is not free, and if
the second argument of app is not free then neither is the third. Such dependencies
allow accurate propagation of binding time information.

Combining Modes with Other Types

Consider the usual definition of lists, namely list −→ [ ]; [any|list]. Now compute
the pre-interpretation derived from the types list, any and g. Note that the types
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Input FTA States Transitions

g,var,any

[ ] → {any, g}
[{any}| ] → {any}

[{any, var}| ] → {any}
[ |{any}] → {any}

[ |{any, var}] → {any}
[{any, g}|{any, g}] → {any, g}

s({any}) → {any}
s({any, var}) → {any}

s({any, g}) → {any, g}
0 → {any, g}

g,any

[ ] → {any, g}
[{any}| ] → {any}
[ |{any}] → {any}

[{any, g}|{any, g}] → {any, g}
s({any}) → {any}

s({any, g}) → {any, g}
0 → {any, g}

var,any

[ ] → {any}
[ | ] → {any}
s( ) → {any}

0 → {any}

Input FTA states Output FTA states Corresponding modes
g, var, any {any,g}, {any,var}, {any} ground, variable,

non-ground-non-variable
g, any {any,g}, {any} ground, non-ground
var, any {any,var}, {any} variable, non-variable

Figure 5.4: Mode pre-interpretations obtained from g, var and any

rev([ ], [ ]). app([ ], Y s, Y s).
rev([X|Xs], Zs)← app([X|Xs], Y s, [X|Zs])←

rev(Xs, Y s), app(Y s, [X], Zs). app(Xs, Y s, Zs).

Figure 5.5: Naive Reverse program
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Input types Model
g, v, any {rev(g, g), rev(ngnv, ngnv),

app(g, var, ngnv), app(g,X, X), app(ngnv, X, ngnv)}
g, any {rev(g, g), rev(ng, ng),

app(g,X, X), app(ng, X, ng)}
var, any {rev(nv, nv),

app(nv,X, X), app(nv,X, nv)}

Figure 5.6: Abstract Models of Naive Reverse program

Input types Disjoint types Model
list, g, any {any, ground, list} = gl, {rev(gl, gl), rev(ngl, ngl),

{any, list} = ngl, app(gl,X,X), app(ngl, ngnl, ngnl),
{any, ground} = gnl, app(ngl, gl, ngl), app(ngl, ngl, ngl),
{any} = ngnl app(ngl, gnl, ngnl)}

Figure 5.7: Abstract Models of Naive Reverse program with types list, g and any

list, any and g intersect. Figure 5.7 shows the set of disjoint types (corresponding
to ground lists, non-ground lists, non-ground-non-lists and ground non-lists) and
the corresponding abstract model.

5.6.2 Infinite-State Model Checking

The following example [135, 32] is a simple model of a token ring transition system,
shown in Figure 5.8. A state of the system is a list of processes indicated by 0
and 1 where a 0 indicates a waiting process and a 1 indicates an active process.
The initial state is defined by the predicate gen/1 and the predicate reachable/1
defines the reachable states with respect to the transition predicate trans/2. The
required property is that exactly one process is active in any state. The state space
is infinite, since the number of processes (the length of the list) is unbounded.
Hence finite model checking techniques do not suffice. The example was used in
[32] to illustrate set constraint techniques for infinite-state model checking.

We define simple regular types defining the states. The set of “good” states
in which there is exactly one ‘1’ is the type goodlist. The type zerolist is the set
of list of zeros. (Note that the same information was provided in [32], but added
as clauses to the program. It was also necessary to give an explicit definition of a

94



gen([0, 1]). trans1([0, 1|T ], [1, 0|T ]). trans(X, Y )←
gen([0|X])← gen(X). trans1([H|T ], [H|T1])← trans1(X, Y ).
reachable(X)← trans1(T, T1). trans([1|T ], [0|T1])←

gen(X). trans2([0], [1]). trans2(T, T1).
reachable(X)← trans2([H|T ], [H|T1])←

reachable(Y ), trans2(T, T1).
trans(Y, X).

Figure 5.8: Token ring

“bad” state, which is not needed here.)

zero −→ 0
one −→ 1

goodlist −→ [zero|goodlist]; [one|zerolist]
zerolist −→ [ ]; [zero|zerolist]

Determinisation of the given types along with any results in five states representing
disjoint types: {any, one}, {any, zero}, the good lists {any, goodlist}, the lists of
zeros {any, zerolist} and all other terms {any}. We abbreviate these as one, zero,
goodlist, zerolist and other respectively. The least model of the above program
over this domain is as follows;

gen(goodlist),
trans1(goodlist, goodlist),
trans1(other, other),
trans2(other, other),
trans2(goodlist, other),
trans2(goodlist, goodlist),
trans(goodlist, goodlist),
trans(other, other),
reachable(goodlist)

The key property of the model is the presence of reachable(goodlist) (and the
absence of other atoms for reachable), indicating that if a state is reachable then it
is a goodlist. Note that the transitions will handle other states, but in the context
in which they are invoked, only goodlist states are propagated.

In contrast to the use of set constraints or regular type inference to solve this
problem, no goal-directed analysis is necessary. Thus there is no need to define an
“unsafe” state and show that it is unreachable.
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5.6.3 Program Specialisation

In offline partial evaluation, as also described later in Chapter 6, there are two
stages. A Binding Time Analysis (BTA) stage where data is marked static or
dynamic indicating whether data is available at specialisation-time or not until
run-time, and a specialisation stage where code in the program to be specialised,
is either residualised or evaluated depending on the result of the Binding Time
Analysis.

Binding Time Analysis for Prolog

Until recently no fully automated binding time analysis existed for Prolog [58].
This meant programmers would have to manually annotate programs, deciding
which program construct would be safe to evaluate and which would have to be
residualised. This is a process requiring considerable expertise to perform correctly
while still producing good specialisation results. To make offline partial evaluation
for logic programming useful in general, an automated BTA is required. A binding
time analysis takes a program and a description of the input that will be available
at specialisation time, and generates the annotations that will guide the partial
evaluator during the specialisation phase. The BTA will assign binding types and
clause annotation to the supplied program. A short description of these follows.

Binding Types and Annotations

Arguments of the predicates in the program are assigned a binding type by means
of a filter declaration. A binding type describes the structure of the argument in
terms of its static and dynamic components. The basic binding types are

• static: the argument is definitely known at specialisation time

• dynamic: the argument might be unknown at specialisation time

In addition to the filter declarations, a set of clause annotations must also be
supplied to the partial evaluator. The clause annotations determines how calls in
the clause body should be treated during specialisation. The basic clause annota-
tions are

• memo: calls that should not be unfolded, but generalised calls, that are
based on the supplied filter declaration, should be generated in the residual
program

• unfold: calls that should be unfolded at specialisation time, under the con-
trol of the partial evaluator
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• call: fully evaluate the call

• rescall: the call is left unmodified in the residual program

The algorithm for performing offline partial evaluation based on these annotations
is described in [107].

Constructing a fully automatic binding time analysis poses a few challenges
however. At first, the distinguishing of only static and dynamic binding types
was introduced with functional languages. For logic programming the separation
between fully known data and completely unknown data does not suffice. Data
that is only partially instantiated occurs frequently at run-time in logic programs.
Not using this information would prevent specialisation of many programs. This
can be illustrated using list structures. A particular list could be [A, B, C], and
though the content of the elements in this list may be dynamic at specialisation
time, the structure may be static - in this case the list has a fixed length of
3. Simply annotating a list-argument with the type dynamic would prevent the
specialiser from unfolding static list structures at specialisation time.

One issue that must be resolved before an automated BTA can be constructed,
is the creation of a set of “richer” binding types than just static and dynamic.

Regular Binding Types

Three instatiation modes can be defined for variables in a logic program; static
(a ground term), nonvar (non-variables) and dynamic (any term). These can be
described as regular types for a given signature.

Example 22. For Σ = {[ ]0, [ | ]2, s1, 00, v0} the regular type rules would be

static −→ 0; [ ]; [static|static]; s(static)
nonvar −→ 0; [ ]; [dynamic|dynamic]; s(dynamic)

dynamic −→ 0; [ ]; [dynamic|dynamic]; s(dynamic); v

Description of data structures can be added to these regular type definitions. For
instance the rules for lists would be defined as

list −→ [ ]; [dynamic|list]

Figure 5.9 shows how these types overlap.

These type rules overlap and terms like [0, 0] would be recognised by all three
modes and by the definition of lists. Determinising the types in Example 22 would
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(b) List (c) Static (d) Var

(e) Nonvar
(a) Dynamic

(f)

Figure 5.9: Example of binding types for offline partial evaluation

yield the result

0 −→ {dynamic, nonvar, static}
[{dynamic}|{dynamic}] −→ {dynamic, nonvar}
[{dynamic}|{dynamic, list, nonvar}] −→ {dynamic, list, nonvar}
[{dynamic}|{dynamic, list, nonvar, static}] −→ {dynamic, list, nonvar}
[{dynamic}|{dynamic, nonvar}] −→ {dynamic, nonvar}
[{dynamic}|{dynamic, nonvar, static}] −→ {dynamic, nonvar}
[{dynamic, list, nonvar}|{dynamic}] −→ {dynamic, nonvar}
[{dynamic, list, nonvar}|{dynamic, list, nonvar}] −→ {dynamic, list, nonvar}
[{dynamic, list, nonvar}|{dynamic, list, nonvar, static}] −→ {dynamic, list, nonvar}
[{dynamic, list, nonvar}|{dynamic, nonvar}] −→ {dynamic, nonvar}
[{dynamic, list, nonvar}|{dynamic, nonvar, static}] −→ {dynamic, nonvar}
[{dynamic, list, nonvar, static}|{dynamic}] −→ {dynamic, nonvar}
[{dynamic, list, nonvar, static}|{dynamic, list, nonvar}] −→ {dynamic, list, nonvar}
[{dynamic, list, nonvar, static}|{dynamic, list, nonvar, static}] −→ {dynamic, list, nonvar, static}
[{dynamic, list, nonvar, static}|{dynamic, nonvar}] −→ {dynamic, nonvar}
[{dynamic, list, nonvar, static}|{dynamic, nonvar, static}] −→ {dynamic, nonvar, static}
[{dynamic, nonvar}|{dynamic}] −→ {dynamic, nonvar}
[{dynamic, nonvar}|{dynamic, list, nonvar}] −→ {dynamic, list, nonvar}
[{dynamic, nonvar}|{dynamic, list, nonvar, static}] −→ {dynamic, list, nonvar}
[{dynamic, nonvar}|{dynamic, nonvar}] −→ {dynamic, nonvar}
[{dynamic, nonvar}|{dynamic, nonvar, static}] −→ {dynamic, nonvar}
[{dynamic, nonvar, static}|{dynamic}] −→ {dynamic, nonvar}
[{dynamic, nonvar, static}|{dynamic, list, nonvar}] −→ {dynamic, list, nonvar}
[{dynamic, nonvar, static}|{dynamic, list, nonvar, static}] −→ {dynamic, list, nonvar, static}
[{dynamic, nonvar, static}|{dynamic, nonvar}] −→ {dynamic, nonvar}
[{dynamic, nonvar, static}|{dynamic, nonvar, static}] −→ {dynamic, nonvar, static}
[ ] −→ {dynamic, list, nonvar, static}
s({dynamic, list, nonvar}) −→ {dynamic, nonvar}
s({dynamic, list, nonvar, static}) −→ {dynamic, nonvar, static}
s({dynamic, nonvar}) −→ {dynamic, nonvar}
s({dynamic, nonvar, static}) −→ {dynamic, nonvar, static}
v −→ {dynamic}

The process of obtaining the set of deterministic types is fully automatic. They
are derived from the programmer specified types. The deterministic types can
then be used to propagate more precise binding types, describing which types
of terms can arise at which argument position for a given predicate. The term
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[0, 0] that for the regular type description, could be interpreted as either static,
dynamic, list or nonvar, can for the deterministic type description only be con-
sidered {dynamic, list, nonvar, static}; the informal interpretation would be that
the term [0, 0] is definitely a list and definitely static (in addition to being defini-
tely dynamic and nonvar) and definitely not var. Another interpretation of the
deterministic types for this particular example could be

- {dynamic, nonvar} is equivalent to the type of a term that is non-ground,
non-variable and non-list. In Figure 5.9 these elements would be in the subset
denoted (e).

- {dynamic, list, nonvar} is equivalent to the type of terms that are non-
ground lists. These would be in the subset denoted (b).

- {dynamic, nonvar, static} is equivalent to the type of terms that are ground
non-lists. This would be the subset denoted (c).

- {dynamic, list, nonvar, static} is equivalent to the type of terms that are
ground lists. This would be the subset denoted (f).

In addition to this new “richer” set of binding types, two other issues must be
resolved before an automated BTA can be constructed; the binding types must
be propagated through the program to be specialised and some method must be
established to ensure termination of the later specialisation step. The complete
procedure is described in [58]. For the termination problem, this is handled using
a convex hull abstraction of the argument size relationships, similar to the process
described in Chapter 4.

The automated BTA has been integrated in the Logen [107] specialiser for logic
programs. The specialiser is available at the URL

http://www.stups.uni-duesseldorf.de/∼pe/weblogen/

5.7 Implementation issues

The analyser based on deterministic regular types has two main components; the
first component is the determinisation algorithm that takes the supplied type defi-
nition and produces a pre-interpretation and the second component calculates the
least model of the supplied program for analysis and computes the least model
with respect to the pre-interpretation derived by the first component.

Both an implementation of the textbook algorithm for determinising an NFTA
(Algorithm 3 on page 81) and an implementation of the efficient determinisation

99



algorithm (Algorithm 5 on page 90) has been implemented. Both implementations
follow the outlined algorithms.

The calculation of the least model can be computed based on, for example, John
Gallagher’s Bottom-Up Toolkit [69] and a logic program transformation technique
called abstract compilation (described in the next section). Additionally a BDD
and Datalog based approach to computing least models with respect to a pre-
interpretation is described.

5.7.1 Abstract Compilation of a Pre-Interpretation

The idea of abstract compilation was introduced first by Debray and Warren [62].
Operations on the abstract domain are coded as logic programs and added (or
compiled) directly to the target program, which is then executed according to
standard concrete semantics. The reason for this technique is to avoid some of the
overhead of interpreting the abstract operations.

Abstract compilation introduces a new binary predicate ‘→’ representing the
pre-interpretation directly into the program P to be analysed. P is transformed
through an iterative process. In each iteration, each clause of the program is
transformed by replacing non-variable terms occurring in the clause, of the form
f(X1, . . . , Xm) where X1, . . . , Xm (m ≥ 0) are variables, by a fresh variable U
and adding the atom f(X1, . . . , Xm) → U to the clause body. We stop iterating
when the only non-variables in the clause occur in the first argument of →. The
transformed program is denoted P̄ .

When a specific pre-interpretation J is added to P̄ , the result is a domain
program for J , called P̄ J . Clearly P̄ J have a different language than P , since the
definition of ‘→’ contains elements of the domain of the interpretation. It can
easily be shown that the minimal Herbrand model of P̄ J (restricted to the original
program predicates) is isomorphic to MJ [[P ]]. An example of the domain program
for append and the pre-interpretation for variable/non-variable is shown in Figure
5.10.

Computing the least model

The least model MJ [[P ]] = lfp(T J
P ) is obtained by computing lfp(TP̄ j), and then

restricting to the original predicates in P discarding the ‘→’ predicates introduced
by the abstract compilation.

5.7.2 Computing Models of Datalog Programs

Performing an analysis based on pre-interpretations is equivalent to computing the
minimal Herbrand model of a (definite) Datalog program [147]. A definite Datalog
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The append program:

append([ ],Xs ,Xs)←
append([X|Xs ],Ys , [X|Zs ])← append(Xs ,Ys ,Zs)

The append program transformed using abstract compilation:

append(U,Xs ,Xs) ← [ ]→ U
append(U,Ys , V ) ← append(Xs ,Ys ,Zs),

[X|Xs ]→ U,
[X|Zs ]→ V

A var/nonvar domain:

D =



v → var
[ ] → nonvar

[nonvar|nonvar] → nonvar
[var|nonvar] → nonvar
[nonvar|var] → nonvar

[var|var] → nonvar


The model of the append program over the var/nonvar domain:

{append(nonvar, nonvar, nonvar), append(nonvar, var, var),
append(nonvar, var, nonvar)}

Figure 5.10: Example of a domain program for the append program, and the
domain var/nonvar.
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program is a set of Horn clauses containing no function symbols with arity greater
than zero. The Herbrand models of such programs are finite.

In the abstract domain programs defined in Section 2.2.1, a pre-interpretation
was represented by a set of facts of the form

(f(d1, . . . , dn)→ d)← true

Although there are function symbols occuring in such facts, we can easily represent
the facts using a separate predicate for each function symbol; say pref is the
relation corresponding to f . Then all atoms of form f(d1, . . . , dn) → d would be
represented as the function-free atom pref (d1, . . . , dn, d) instead. Since function
symbols occur nowhere else in the abstract domain program, we are left with a
Datalog program.

Efficient techniques for computing Datalog models have been studied exten-
sively in research on deductive database systems [147], and indeed, many tech-
niques (especially algorithms for computing joins) from the field of relational
databases are also relevant. In the logic programming context, facts contain-
ing variables are also allowed; tabulation and subsumption techniques have been
applied in a Datalog model evaluation system for program analysis [59].

The analysis method based on pre-interpretations is of course independent of
which technique is used for computing the model of the Datalog program. Having
transformed the analysis task to that of computing a Datalog program model, we
are free to choose the best method available. Recent methods allow very large
Datalog programs to be solved [152].

Computing Datalog models using BDDs

Here Binary Decision Diagrams (BDDs) and a tool for solving Datalog programs,
based on BDDs are introduced.

Boolean functions

Definition 49 (Boolean Domain). A Boolean domain B is a 2-element set, whose
elements are interpreted as logical values, typically B = {0, 1} or B = {false, true}.
A Boolean variable ranges over a Boolean Domain.

Definition 50 (Boolean Function). A Boolean function is a function of the form
f : B × . . .×B 7→ B, where B is a Boolean Domain.

A Boolean function of arity n is typically written as a propositional formula
over a set of variables x1, . . . , xn.
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Example 23. Take the Boolean function logical and defined as {〈0, 0〉 7→ 0, 〈0, 1〉 7→
0, 〈1, 0〉 7→ 0, 〈1, 1〉 7→ 1}. This function will be written as x1 ∧ x2.

Definition 51 (Boolean Valued Function). A function f : D1 × . . . × Dn 7→ B
where Di, i ∈ [1, . . . , n] is an arbitrary domain, and B is a Boolean domain, is
called a Boolean valued function.

Binary Decision Diagrams

Definition 52 (Binary Decision Diagram). A Binary Decision Diagram (BDD)
is a rooted Directed Acyclic Graph (DAG) that satisfies the following properties

1. the internal nodes of the graph are labeled by variables

2. the leaves are labelled by the Boolean constants 0 and 1

3. every internal node has exactly two children with edges to these labelled 0
and 1

The BDD is called ordered if different variables occurs in the same order on all
paths from the root. It is called a Reduced Ordered BDD (ROBDD) if any isomor-
phic subgraphs are merged and any node with isomorphic children are eliminated.
Ordered Binary Decision Diagrams are a canonical and efficient way of representing
and manipulating Boolean functions [28]. The ordering used on the enumerating
variables determines how efficient the representation is. Some Boolean functions
have BDDs of exponential size.

The domains that represent pre-interpretations are usually not Boolean do-
mains. Boolean valued functions over these domains would not in general be
Boolean functions. Only the Boolean functions have a direct representation as a
BDD. However a Boolean valued function over a finite domain can be represented
by a Boolean function that in turn has a BDD representation. This method is
described next.

Let Rn be an n-ary relation over a finite domain D, with D containing m
elements. Then suppose Rn must be represented as a Boolean function. The m
elements in D can be encoded using k = dlog2(m)e bits. So n.k Boolean variables
are introduced;

x1,1, . . . , x1,k, x2,1, . . . , xn,1, . . . , xn,k

A tuple (d1, . . . , dn) ∈ Rn is then a conjunction

x1,1 = b1,1 ∧ . . . ∧ xn,k = bn,k (5.1)

where bi,1, . . . , bi,k is the encoding of di for 1 ≤ i ≤ n.
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A relation R : D1 × . . . ×Dn over a finite domain D, can be represented as a
Boolean valued function, f : D1× . . .×Dn 7→ {0, 1}, such that (d1, . . . , dn) ∈ R⇔
f(d1, . . . , dn) = 1 and (d1, . . . , dn) /∈ R ⇔ f(d1, . . . , dn) = 0. A finite relation can
therefore also be represented as a disjunction of conjunctions of the form shown
in Equation 5.1.

BDDs allow very large relations, translated in this way into Boolean formulas,
to be represented compactly (though variable ordering is critical, and there are
some relations that admit no compact representation).

The possibility of using Boolean functions to represent finite relations was
exploited in model-checking [34].

BDD-Based Deductive DataBase - bddbddb

John Whaley has developed a BDD based solver for Datalog programs, called
bddbddb [153]. This tool computes the model of a Datalog program, and provides
facilities for querying Datalog programs. It is written in Java and can link to
established BDD libraries using the Java Native Interface (JNI).

Any programs written in Datalog in this thesis or any experiment performed on
Datalog program, is solved using bddbddb linked to the BuDDy package [110]. We
wrote a front end to translate our abstract logic programs and pre-interpretations
into the form required by bddbddb.

In a BDD-based evaluation of a Datalog program, the solution of each predi-
cate is thus represented as a Boolean formula (in BDD form) and the relational
operations required to compute the model can be translated into operations on
BDDs. For example, if we are solving the conjunction

p(A, B), q(B, C)

we take the Boolean formulas representing the current solutions of p and q, say Fp

and Fq and build a new BDD representing the formula

Fp ∧ Fq ∧ x2,1 = y1,1 ∧ . . . ∧ x2,k = y1,k

where
x1,1, . . . , x1,k, x2,1, . . . , x2,k and
y1,1, . . . , y1,k, y2,1, . . . , y2,k

are the Boolean variables representing the respective arguments of p and q.
Representing and manipulating Boolean formulas is a very active research field

and there are other techniques besides BDDs that are competitive. In logic-
program analyses, multi-headed clauses have demonstrated good performance when
compared to BDDs, for example [90].

104



5.7.3 From Product Representations to Datalog

The determinisation algorithm in Section 5.5 returns transitions in product form.
Though this saves computation, we still need to represent the product form as a
Datalog program, so that we can exploit techniques such as BDD-based evaluation
of the model (see Section 5.7.2).

Consider a product transition f({a, b}, {c, d, e}) → q. As before, we can in-
troduce a predicate for each function to replace the arrow relation, obtaining
pref ({a, b}, {c, d, e}, q). To represent this as a clause we could write the following.

pref (X, Y, q)← member(X, [a, b]), member(Y, [c, d, e]).

To convert to Datalog we need only introduce a specialised member predicate for
each set that occur as an argument in a product transition. In the above case we
obtain:

pref (X, Y, q)← m1(X), m2(Y ). m2(c)← true.
m1(a)← true. m2(d)← true.
m1(b)← true. m2(e)← true.

As a further optimisation, if some product transition has for some argument a set
containing all of the determinised states, we may simply replace that argument
by an anonymous variable (a “don’t care” argument). Also, singleton sets {q}
can be replaced by q instead of introducing a deterministic member call. For
the transitions produced from Example 21, the set of determinised states was
{{any}, {any, list}}. (We can write these states as constants q1, q2 respectively).
The product transitions are

[{q1, q2}|{q2}] → q2

[{q1, q2}|{q1}] → q1

f({q1, q2}, {q1, q2}) → q1

[ ] → q2

The Datalog program is thus

precons( , q2, q2)← true.
precons( , q1, q1)← true.
pref ( , , q1)← true.
prenil(q2)← true.

5.8 Experiments

We now summarise the analysis procedure. The procedure takes two inputs: a
program P to be analysed and a set of regular type definitions R expressing term
properties of interest. The procedure then follows these steps.
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1. Augment the types with a standard type any over the signature of the pro-
gram, and determinise yielding transitions Rd in product form.

2. Transform P to an abstract domain program Pa (using flattened predicates
pref to denote the pre-interpretation of function f as explained in Section
5.7.3).

3. Transform Rd to a suitable Datalog representation Rdat, again using the
pref representation, together with the specialised member predicates for the
product transitions (and optionally introduce don’t care arguments).

4. Transform Pa∪Rdat to the syntax required by bddbddb and compute its least
model.

All experiments report in this section has been carried out on a machine
equipped with an Intel Xeon E5355 2.66 GHz quad core processor, 8 GB of me-
mory and a 64-bit version of Debian Linux install. The determinisation algorithm
is implemented in Ciao Prolog and the bddbddb tool is implemented in Java using
the supplied JFactory BDD library.

5.8.1 Experiments on determinisation

Figure 5.11 shows a few experimental results just illustrating the effect of the
determinisation algorithm. For each input FTA, the table shows the number of
states Q and transitions ∆, followed by the number of states in the output DFTA,
Qd. Three measures of the set of transitions are shown. First the total number of
transitions ∆d, followed by the size of the set of product transitions generated by
the algorithm ∆Q. Thirdly we show the size of another set of product transitions
∆dc that is generated by locating “don’t care” arguments. The final column is the
time in seconds to compute the product form ∆dc (which is almost identical to the
time to compute ∆Q).

The most important observation is the significant reduction in size of ∆Q and
∆dc compared to ∆d. Note also that the set of states in the DFTA can actually
be less than the set of states in the input FTA, as in the dnf example. This is
because, as is typical in automatically generated FTAs, there are many equivalent
states in the input, and this redundancy is removed in the DFTA.

The input FTAs are chr, a set of regular types for analysing a CHR transition
system; dnf, the regular type inferred automatically by the abstract interpretation
over DFTAs described in [75]; mat1, a set of types for an offline binding time
analysis of a matrix transposition program; mat2, the regular types from Example
16 augmented by two extra function symbols; ring, the regular types describing
states in the token-ring analysis problem (Section 5.6.2); pic, a set of regular types
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FTA DFTA
Name Q ∆ Qd ∆d ∆Q ∆dc msecs
chr 21 84 46 216192 262 252 20.9
dnf 104 791 57 6567 168 141 59.7
mat1 6 10 6 39 8 8 0.2
mat2 3 8 3 12 9 7 0.1
ring 5 12 5 30 14 11 0.1
pic 8 270 8 4989 274 268 1.7
aquarius 4 1866 5 9993536 4131 1760 67.7
chatparser 4 656 5 86803 695 433 6.7

Figure 5.11: Determinisation results for improved algorithm. Timing results are
reported in milliseconds and they are obtained using the built-in timing features
of Ciao Prolog.

expressing properties of a PIC processor emulator (described later in Chapter 6);
aquarius, the Aquarius compiler described in [151] and chatparser, part of a set
of benchmark programs for the Aquarius compiler.

Comparison with the Timbuk tool

Timbuk [77] is a publicly available toolkit for manipulating tree automata2. The
tool is implemented in the OCaml programming language. Figure 5.12 on the
following page shows timing results for Timbuks’ implementation of a determini-
sation algorithm. According to the author of the Timbuk tool the implementation
follows the textbook algorithm. The tool have no built-in option for timing the
algorithm so the reported figure are rough measures.

5.9 Type Analysis Tool

A type analysis tool has been developed that uses the deterministic regular types.
The type analysis tool includes three main type analysis engines:

Domain model: Given a program and a regular type, the tool computes the least
model with respect to the pre-interpretation derived from the type. A BDD-
based solver can be optionally used to compute the model, giving greater
scalability (at the cost of some pre-processing).

2http://www.irisa.fr/lande/genet/timbuk/
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Name Timbuk
chr stack overflow
dnf stopped after 5 minutes
mat1 instantly
mat2 instantly
ring instantly
pic 20 secs
aquarius stack overflow
chatparser 7 seconds

Figure 5.12: Timing results for Timbuk’s determinisation algorithm. If Timbuk
returned a result in a second or less it is reported as instantly. If no result was
reported after 5 minutes the tool was interrupted. Timbuk failed with a stack
overflow error for some of the test cases.

Two existing type analysis tools that complements the first tool have additionally
been added to the tool kit.

Well-typing: Given a program, the tool computes types and predicate signa-
tures that are a well-typing for the program. This tool was developed by
Bruynooghe, Gallagher and Van Humbeeck [25].

NFTA: Given a program, the tool computes a regular type (non-deterministic
finite tree automaton) that represents an over-approximation of the least
model of the program. This tool was developed by Gallagher and Puebla
[75].

These tools are all goal-independent but we have implemented goal-dependent
analyses using query-answer transformations (see Section 2.3).

5.9.1 Domain Model

The analysis is based on given regular types as described previously in this chapter.
First we look at an example.

Example 24. A Prolog program for transposing matrices.

transpose(Xs,[]) :-

nullrows(Xs).

transpose(Xs,[Y|Ys]) :-

makerow(Xs,Y,Zs),

transpose(Zs,Ys).
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makerow([],[],[]).

makerow([[X|Xs]|Ys],[X|Xs1],[Xs|Zs]) :-

makerow(Ys,Xs1,Zs).

nullrows([]).

nullrows([[]|Ns]) :-

nullrows(Ns).

As this program is intended to manipulate matrices of unknown type, we define
the following types matrix, row and dynamic, expressed as an FTA using the
notation selected for the analysis tool.

[ ] -> matrix.
[row|matrix] -> matrix.
[ ] -> row.
[dynamic|row] -> row.

Our intention is to analyse the transpose program in order to discover whether the
program’s arguments have the expected types. Note that the above FTA is not
bottom-up deterministic since there are two transitions with left hand side equal
to [ ]. Determinisation of this FTA together with the rules defining dynamic for
the program’s signature, yields the following states and type rules (assuming that
the signature is {[ | ]2, [ ]0, 00, s1}).

[ ] -> {dynamic,matrix,row}
[{dynamic,matrix,row}|{dynamic,matrix,row}] -> {dynamic,matrix,row}
[{dynamic,row}|{dynamic,matrix,row}] -> {dynamic,matrix,row}
[{dynamic}|{dynamic,matrix,row}] -> {dynamic,row}
[ |{dynamic,row}] -> {dynamic,row}
[ |{dynamic}] -> {dynamic}
0 -> {dynamic}
s({dynamic}) -> {dynamic}

These rules define an abstraction over the domain elements {{dynamic, row},
{dynamic,matrix, row}, {dynamic}}, which represent the following sets of terms.

• {dynamic,matrix, row}: the set of terms that are in all the types matrix,
row and dynamic. {dynamic,matrix, row} is equivalent to matrix since
matrix is a subset of both row and dynamic.
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Figure 5.13: The main tool interface showing a program and type ready for analysis

• {dynamic, row}: the set of terms that are in the types row and dynamic
but not in matrix, that is, it is the set of lists whose elements are not all
lists.

• {dynamic}: the set of terms that are in dynamic but not in the other types.

These three types are disjoint and complete; every term is in exactly one of
these types. We can now compute the minimal model of a program based on
this DFTA. In the model of this program over the domain {{dynamic, row},
{dynamic,matrix, row}, {dynamic}} defined above, the transpose predicate has
the model

transpose({dynamic,matrix, row}, {dynamic,matrix, row})

indicating that it can only succeed with both arguments matrix. Figure 5.13
displays a screenshot of the tool, showing the transpose program, and the regular
type defining matrix and row.

Figure 5.14 shows the results of computing the domain model, for the transpose
predicate. The model of the predicate appears when the mouse is moved over the
symbol to the left of the head of a clause for transpose. Note that for brevity
the domain elements are numbered and a key is given alongside the predicate’s
model. Also, the type dynamic is omitted since it intersects with every other type,
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Figure 5.14: Displaying the model of the transpose predicate

hence the type [ ] mentioned in Figure 5.14 is in fact the type {dynamic}. If any
predicate has an empty model, then the heads of its clauses are highlighted in red.

Modes as regular types

The type dynamic depends on the signature of the program. We call such types
contextual types [76]. Other contextual types are those defining the set of ground
terms (called static) or non-variables terms (called nonvar). We assume that the
signature contains some constant $VAR that does not appear in any program or
query. The rules for contextual types are generated automatically by the system for
the given program’s signature, and the user does not in fact see these rules at all.
The rules defining static are all those of the form f(static, . . . , static) → static
for each function f in the signature apart from $VAR, while the rules defining
nonvar are all rules of the form f(dynamic, . . . , dynamic) → nonvar for each
function f in the signature apart from $VAR. The rules for dynamic do include
a rule $VAR → dynamic, and thus the types static and nonvar are not identical
to each other or to dynamic. A type var can also be defined using the single type
rule $VAR → var.

In the tool, the user can select one or more of the standard types static, nonvar
and var and add them to the types to be used for analysis. (The type dynamic is
always included automatically, to ensure that the types are complete).

Using these “standard” types, the tool can be used to perform the classic
mode analyses described in Section 5.6.1; only e.g. g is now called static. The
naive reverse program is one of the analysis tool’s example programs. Selecting
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Figure 5.15: Displaying a well-typing of the transpose program

this program and the standard types static, var and nonvar and then computing
the domain model, would yield the results for the g, v, any abstract model shown in
Figure 5.6 on page 94. User defined types can be added manually allowing the user
to combine the standard types with e.g. a type definition for lists so ground lists
can be distinguished from non-ground lists, and list terms can be distinguished
from non-list terms.

Computing a Well-Typing

This tool, developed by M. Bruynooghe, J. P. Gallagher and W. Van Humbeeck
[25], derives from a supplied untyped program a typed program, or more pre-
cisely the type definition and predicates making the untyped program well-typed.
The tool derives polymorphic types which are more expressive than monomor-
phic types. The types are automatically generated from scratch. Experimental
evaluation of the tool have shown that for certain applications such as termina-
tion analysis, the derived types provides termination conditions as good as those
obtained using user declared types.

The result of applying this tool to a program is displayed in the type window
on the right hand side of the screen (an example is shown in Figure 5.15). The
types are parametric. Note that the types inferred for the transpose program are
in effect the types matrix and row defined earlier, except that there is a type
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parameter representing the type of the elements of the rows. Recall that a well-
typing does not necessarily represent a safe approximation of the success set of the
given program. It only gives types that consistently indicate the way in which the
predicates are actually called in the program. As we will discuss in Section 5.9.3
the well-typing can be checked to see whether it is also a safe approximation. Note
that there is some duplication in the types; for example t3 and t4 are renamings
of each other, as are t1 and t5. The determinisation algorithm described in this
chapter could be used to identify and eliminate these duplicates. This has not
been implemented though.

Computing a Non-Deterministic Regular Type Approximation

The third analysis method is the computation of a non-deterministic finite tree
automaton that over-approximates the least model of the given program. This
method is described in [75]. The generated types tend to be complex and difficult
to read. The most interesting information is usually the emptiness of a type. As
with the well-typing, the result is displayed in the type window, and can then be
converted to a regular type and used to build a domain model. Conversion to
regular type form in this case is simple, as the inferred types are already regular
type rules. We just need to remove the rules defining the types of the predicates
(which will be recomputed during the domain model construction).

5.9.2 Goal-Dependent Type Analysis

Transformations to allow goal-dependent analysis using a goal-independent ana-
lysis tool are well known (see Section 2.3). The common feature of these trans-
formations is the definition of “query predicates” corresponding to the program
predicates. The variant we use in the tool constructs a separate query predicate
for each body literal in the program. A similar transformation was described in
[73]. Programs derived from a query-answer transformation can be hard to read.
To make the analysis results easier to read the tool will display the models of the
query-predicates at the corresponding body calls in the original program. An ex-
ample is shown in Figure 5.16. When the mouse is moved over the symbol to the
left of each body call, the query patterns for that call are displayed, along with a
key to the determinised types, as before.

5.9.3 From Descriptive to Prescriptive Types

As mentioned earlier, a descriptive analysis such as the well-typing or the NFTA
analysis constructs types automatically. Apart from providing documentation
about the program predicates, these types can be used for prescriptive analysis
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Figure 5.16: Displaying query patterns

where types have to be provided. In [25] the types were used to generate type-
based norms for termination analysis. In the present context, the inferred types
can be input to the domain model tool. The main reason for doing this is to
generate more precise information about failure and dead code in the program.
Consider the naive reverse program. The well-typing analysis informs us that
both arguments of reverse are lists, but we do not know whether this is a safe
approximation.

A goal-independent NFTA analysis of the same program gives the information
that the second argument of reverse is approximated by dynamic. By taking the re-
sult of either of these analyses and using it as the regular type in the domain model
tool, we can verify that the second argument of reverse is indeed approximated by
the type list. (We would get the type presented with some system-generated type
name such as [ ]→ t1, [dynamic|t1]→ t1 which we would have to recognise as list.
Recognition of standard regular types is already performed by the CiaoPP analysis
tool [86] and might be added to our tool in the future). This allows us to detect
as ill-typed any call to reverse whose second argument is typed by a non-list.

As can be seen in Figure 5.15, the tool offers the possibility of using the inferred
well-typings or NFTA analysis results to construct regular types. In the case of
well-typing rules this just involves replacing the parameters by dynamic, which
involves a loss of precision. The NFTA types can be used directly with minor
syntactic changes. The regular types can then be used to build a domain model,
as in Section 5.9.1.

NFTA types tend to be large and complex with much redundancy in the form
of multiple occurrences of the same type with different names. So far, the most
likely uses of NFTA analysis is to find useless clauses, dead-code, failing calls and
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such like. Determinisation and computation of a domain model can enhance the
ability to search for such anomalies. An example is provided by the tokenring.pl
program on the sample program menu, that is an implementation of the token
ring transition system described in Section 5.6.2. An NFTA analysis yields types,
but every predicate has a non-empty type. If the derived types are converted to
a regular type and a domain model is computed, then the fact that unsafe/1 has
an empty type is detected. The BDD-based domain-model tool is required to get
this result; the NFTA type rules are complex and the determinised automaton has
111 distinct states.

5.9.4 Features of the Implementation

The Type Analysis Toolkit consists of a back-end and a front-end. The back-end
consists of the analysis programs themselves, and the front-end is a user friendly
web-interface for those tools. The web-interface serves as a demonstration of the
techniques developed in this chapter. It allows readers to verify the results on their
own. And finally it allows for future comparison with other type analysis tools
without the need for other researchers to install specific software packages on their
own machines.

Back-end

There are currently three tools in the back-end: the domain-model analyser, the
polymorphic type analyser and the NFTA analysis tool - all written in Prolog. The
particular Prolog system we are using is the Ciao Prolog Development System3.

Initially the back-end tools were developed independently and were intended
to be executed within a Prolog environment. They have been modified to allow
them to be compiled into two separate command line tools. It is also possible to
use the Ciao-shell environment for running the back-end tools from the command
line. This method does not require compilation of the tools, but it comes with a
performance penalty. Table 5.1 shows the analysis time for a few select programs;
the append program, Leuschel and Massart’s model checker for CTL formulas
[108], and the token ring program mentioned earlier in Section 5.9.3. The table
compares a compiled version of the Domain Model (DM) program to a version
of DM executed in the Ciao-shell environment. For larger programs the penalty
of using Ciao-shell may be insignificant, but for smaller programs the compiled
version is significantly faster.

The tools were also modified to read their input and write output to files to
simplify the development of the web interface. The output from the polymorphic

3http://clip.dia.fi.upm.es/Software/Ciao/
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Program No. Clauses Compiled DM Ciao-shell DM
append.pl 2 0.4 3.7
tokenring.pl 20 0.9 3.5
ctl.pl 27 3.7 7.3

Table 5.1: This shows the analysis time in seconds for a few programs containing
from 2 to 27 clauses with respect to the regular type definition of lists

type analyser is plain text. This output will be read by the domain model tool.
The output from the domain model tool will be parsed by the front-end, so we
decided to format this output in XML. The result from the domain model tool
is a term containing the analysed program with clause heads and clause bodies
annotated with the query and answer patterns. The terms containing the models
resulting from the analysis can be quite large. This term is not a syntactically
correct Prolog program, and we have therefore written our own Prolog module
to handle the output of terms in an XML structure. Tools for outputting and
analysing Prolog code in XML exist [140], but at the moment we only need to
separate clauses and calls from annotations when presenting the analysis results
in HTML.

Front-end

The invoking of the back-end tools and the presentation of the analysis results
are handled by the front-end. The front-end has two main parts; a page with a
form to be filled in by the user, where the user uploads, types in or selects one
of the supplied example programs and types, and a presentation page where the
analysis results are displayed. The front-end is built on the Apache webserver, the
PHP scripting language and libxml and libxslt. The design of the pages is inspired
by other online analysers for logic programming developed in the context of the
Framework 5 ASAP project4.

The PHP language allows us to create dynamic pages in which, for example,
buttons can be removed from the input-form if they do not apply to the current
input given. It also enables us to execute the command line analysis tools and
run the output through XSLT. XSLT provides a convenient way of automatically
transforming the XML output into HTML that can be displayed in a browser.
Depending on whether the analysis is performed with or without a query, the
appropriate XSL style sheet is applied to the analyser output.

4
http://www.clip.dia.fi.upm.es/ASAP/
http://www.stups.uni-duesseldorf.de/∼pe/weblogen/
http://www.stups.uni-duesseldorf.de/∼asap/asap-online-demo/
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Selection of Program and Analysis Method

An example of the input page is shown in Figure 5.13. On the left side of the
screen the user can either paste in a program to be analysed, select one of the
example programs or upload a local file containing a program. On the right side of
the screen, the user can supply the type, again either from a local file, by selecting
one of the provided type definitions or by typing directly into the panel. At the
bottom of the screen are the options to either run the Polymorphic Type Analyser,
the Domain Model Analyser or the NFTA analysis on the given program. In the
case of the Domain Model, the Prolog implementation or the BDD-based tool
bddbddb can be selected. If the Polymorphic Type Analyser or the NFTA analysis
is used, the result is shown to the right. A new option to convert to regular type
will appear.

Display of Analysis Results

An example of the output page is shown in Figure 5.14. The analysed program is
shown annotated with answer patterns and if a query was supplied to the analysis,
also a query pattern for the calls in the body of the program clauses.

Placing the mouse over either of the annotations will show a small window with
the actual patterns.

Should a clause have an empty answer pattern it will be coloured red to indicate
that it is dead code. If a query was given to the analyser, the code is considered
dead with respect to that particular query pattern.

Calls in the body of a query having an empty call pattern are similarly high-
lighted in red. These are calls that are redundant; they and the calls to their right
in the clause can safely be “sliced” from the program, since they are not invoked
in the computation of the given query.

The analysis toolkit called Tattoo – Type Analysis and Transformation Tool
– is available online. To try it out, visit the URL

http://wagner.ruc.dk/Tattoo/

117





Part II

Analysis of a PIC processor
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Chapter 6

Analysing Abstract Machines via
Logic Programming

In this chapter we look at constraint logic programming as a tool for analysing
other languages, including descriptions of abstract machines and programs for such
machines. A specific abstract machine will be selected as a case study, however
the method described is not specific to this particular example.

The method described here relies on some existing techniques used in pro-
gram analysis and specialisation, such as meta-programming, partial evaluation
and static analysis. Previous chapters described symbolic and numerical analysis
tools and techniques for logic programming. These will be applied here.

A meta-program is a program that has other programs as inputs. In this
chapter programs will be manipulated, transformed and analysed, hence meta-
programming becomes a central concept. In the context of logic programming,
meta-programming has been studied and applied to a variety of languages, espe-
cially logic programming itself, since Prolog programs can be represented directly
as terms in Prolog (e.g. see description of naive bottom-up interpreter for logic
programs in Chapter 4). Using logic programming based meta-programs to study
languages other than logic programming has also been studied in the past, but
not to the same extent; examples such as [127, 133, 87] have used CLP to analyse
imperative programming languages.

Partial evaluation is a program specialisation technique that can be used for
such purposes as, but not limited to, generating more efficient programs and auto-
matic generation (compilation) of interpreters. It is the latter property of partial
evaluation we will make use of.

Finally static analysis, i.e. techniques for deriving information about a pro-
gram’s run-time behavior without actually executing the program, will be used
not only to analyse the CLP program representing the original abstract machine
program (which will be called the object program), but also to facilitate the specia-
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lisation steps needed to derive this CLP program from the original object program.
The general framework for static analysis, namely abstract interpretation, has pre-
viously been used in combination with partial evaluation, leading to more effective
specialisation [93, 103, 129]. The general purpose of program analysis is to de-
termine properties of the analysed program. We will be analysing CLP programs
that represent programs written in a different language. However from the ana-
lyser’s point of view the analysed program is “just” another CLP program that
should be analysed as any other program would be analysed. In the context of ab-
stract interpretation any of the abstract domains available for CLP analysis could
potentially be applied to the derived CLP program.

6.1 Method Overview

The process of analysing an object program via CLP has two basic steps. Step 1 is
to derive from an object program P written in a language L, and a meta-program
M designed to “emulate” parts of or the complete semantics of L, a specialised
program MP . The object program and the specialised program can be considered
isomorphic if there is a one to one mapping between program points of the object
program P and program points of the specialised CLP program MP . Then Step 2
of the process, applying an analyser to MP , should provide results that would also
hold for the object program P . Finally the analysis results obtained from analysing
the derived program MP must the related to the original object program P . An
overview is shown in Figure 6.1.

Chapter Overview

- Section 6.2 describes the PIC microcontroller that will be used as a case
study and how it is modeled in CLP.

- Section 6.3 describes how partial evaluation can be used to generate CLP
programs that are equivalent to a given PIC program.

- Section 6.4 describes a Datalog based approach to flow analyses and how
liveness analysis results can be obtained using a logic program based program
transformation method.

- Section 6.5 applies the convex polyhedron analyser to the specialised emu-
lator.

- Section 6.6 shows how an instrumentation of the emulator results in a para-
metric Worst Case Execution Time analysis.
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Figure 6.1: Overview of specialisation and analysis process

6.2 PIC Case Study

As a case study for an example abstract machine we have chosen a PIC microcon-
troller. PIC is the name of a family of microcontrollers manufactured by Microchip
Technology. They are all based on a Harvard architecture, where the data memory
is separated from program memory, in contrast to the von Neumann architecture
where data and program is located in the same memory pool. Among other things
the Harvard architecture does not allow for self modifying code. The different
models of microcontrollers in the PIC family differs in the size of the data words
(8 or 16 bits), the size of data and program memory and what additional instruc-
tions they may implement in addition to the basic set of PIC instructions; such
additional instructions are e.g. a multiplication instruction. The PIC microcon-
trollers are used in a variety of devices. Lately the PIC family of microcontrollers
have been used in wearable computing, due to its low power consumption [123].

The specific model chosen is the 16F84 [120], an 8 bit processor that has 35
single word instructions, 1024 words of program memory, 68 bytes of data memory,
an accumulator (in PIC terms called a working register), an eight-level deep hard-
ware stack and two I/O ports. Additionally there is 64 bytes of eeprom memory
that can only be accessed through the hardware registers. The hardware registers
contains an 8 bit timer, some status flags and serves as access to the I/O ports.
The hardware registers are located at the low 15 registers ordered by memory
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address. The data registers follows after the hardware registers in the memory
addess space. From the programmer’s point of view, there is no difference between
the hardware registers and the data registers.

6.2.1 Test case programs

The Mobile and Wearable Computing Group at University of Bristol, United King-
dom, uses the PIC microcontroller for their wearable applications. They have
provided us with three test case programs:

Compass This program provides an interface to a compass, detecting which di-
rection the wearer is facing. This program has 141 instructions.

Accelerometer A program providing an interface to an accelerometer that can
be used for e.g. counting the number of steps the wearer takes. This program
has 215 instructions.

GPS This will let the PIC microcontroller interface to a GPS receiver, so the exact
location of the wearer can be determined. This program has 400 instructions.

These 3 programs will be used primarily when evaluating the method described in
this chapter.

6.2.2 Modeling a PIC microcontroller

The semantics of the PIC microcontroller is implemented in CLP by means of an
emulator, in which the PIC is modelled as a state transition system. The state
contains the values of the data registers, the accumulator, the program counter, the
stack and the eeprom. The emulator is given an initial state, a program to emulate
and possibly some environment data, for instance external input on the input port.
Each instruction will, when executed on a given state, produce a new state. The
emulator works by executing machine instructions from the supplied PIC program
one at a time, each time altering the state according to the instruction at the
current program point. The design of the emulator emphasises semantic clarity
rather than efficiency.

Small step semantics

When the semantics of a program statement in one language is modelled in another
language, it can be described using an operational semantics where the “valid” in-
tepretation of a program statement is described in a sequence of computational
steps. This operational semantics can be divided into the small step semantics and
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the big step semantics [139, 126]. The small step semantics describes step-by-step
how to evaluate an expression and arrives at a final state value. It gives a clear def-
inition of the order of execution of individual computational steps and is therefore
commonly found in the context of modeling concurrency or programs designed to
run forever. It may describe the computational steps at an unnecessarily detailed
level however.

The big step semantics describes an entire transition from expression to final
state value. It describes how overall results are obtained, avoiding unnecessary
steps. In some situations this may be a more natural way of describing an opera-
tional semantics for a given programming language.

Defining the operational semantics of a programming language of interest, by
providing a state transitional system, can be traced back to [128]. This method
has previously been used in studying relations between programs, e.g. determining
bisimulation between state transition system. An informal description of bisimu-
lation would be to say that two systems are bisimular if they match each other’s
moves.

Modeling the hardware registers of the PIC, e.g. such as capturing exact timing
information, would require detailed description of each instruction. This makes
the small step semantics more relevant for modeling our PIC case study.

6.2.3 A CLP emulator for PIC programs

The PIC emulator is implemented in Prolog. A predicate called execute con-
tains the main loop that executes each instruction. For readability purposes the
arguments containing state information have been shortened to just StateIn and
StateOut. A state is a grouping of lists and values combined by the functor state;
state(Regs,PC,Acc,Stack), where the argument Regs contains the state of the
data memory, the PC is the program counter, Acc is the accumulator and Stack is
a list containing the present stack information.

execute(Prog,StateIn,Environment) :-
fetchinst(Prog,PC,I,R1,R2),
execInst(I,R1,R2,StateIn,StateT),
simulatehw(StateT,StateOut,Environment,NewEnvironment),
execute(Prog,StateOut,NewEnvironment).

There exists an execInst clause for each machine instruction in the PIC pro-
cessors’ instruction set. The argument named Environment contains external data
such as values assigned to the processors’ hardware input port. This argument can
be left uninstantiated. A short explanation of the calls follows

- fetchinst/5 will fetch the instruction from the program memory that the
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program counter points to. R1 and R2 will be instantiated to the instructions’
arguments.

- execInst/5 will execute the fetched instruction with its arguments on the
current machine state producing a new (temporary) machine state.

- simulatehw/4 will simulate internal and external hardware behavior of the
processor e.g. increasing the timer appropriately to the executed instruction
and assigning data to the hardware input port. This will produce a new
machine state and a new environment state.

A few examples are shown next.

Example 25. The instruction addwf adds the content of the accumulator to a
register. The first argument (here Arg1) is the register number and the second
argument will, for this instruction, determine the destination of the result. If it is
‘0’ the result is stored back in the accumulator, and if the argument is ‘1’ the result
is stored back in register R1. The instruction is only shown for the case where the
second argument is ‘0’. An almost identical clause exists for the second case.

execInst(addwf,Arg1,0,
state(RegIn,Stack,PC,Acc),
state(RegOut,Stack,PCOut,AccOut)) :-

retrievedata(PC,RegIn,Ru1,Arg1,X),
intAdd(Wt,X,Acc),
reduceBits(Wt,AccOut),
intShiftR(C,Wt,8),
updateZeroBit(PC,Ru1,Rt,AccOut),
updateCarryBit(PC,Rt,RegOut,C),
PCOut is PC + 1.

A short description of the calls in the clause body is appropriate

- The retrievedata/5 call fetches the value of register given in Arg1

- intAdd/3 adds the value to the accumulator

- reduceBits/2 ensures the result is an 8 bit value

- instShiftR/3 is in this case used to calculate the carry bit, but also imple-
ments the bit-shift-right operation

- updateZeroBit/4 and updateCarryBit/4 updates the zero bit and the carry
bit in the machine status register
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Using user defined predicates for arithmetic operations makes it easier to change
how they are emulated. For now, no requirement is imposed on how the values of
the element in the machine state are represented; most naturally it would be an
integer value, but it could also be a list of 8 boolean values representing an 8 bit
integer.

Instructions with no arithmetic or boolean operations are much simpler.

Example 26. The goto instruction needs no clause body; the first argument R1
is copied to the PC in the new state.

execInst(goto,Arg1, ,state(R,S,PC,Acc),state(R,S,Arg1,Acc)).

The implementation of the emulator in this fashion is not efficient, but it is
however a generic approach. The instruction set and the state information can
easily be changed to emulate other processors or abstract machines.

Register State

The data and hardware registers are stored in a single list. The precise content of
this list depends on which approach is followed when the emulator is specialised
and analysed. The content of this list can simply be a pair of the register number
and the current value in the register, for example [RegNr-Value|Regs].

6.3 Specialising the emulator

Writing generalised software usually means trading efficiency for clarity of code.
In some cases program specialisation techniques are not used for efficiency rea-
sons. Some techniques have other interesting properties; partial evaluation can for
instance be used for compiler generation.

6.3.1 Partial Evaluation

Programs that are purposely written to be highly general are typically also highly
parameterised. Applying the program to a set of similar problems would often
result in some of the parameters being constant for all input problems, and some
of the parameters would differ from problem to problem. Partial evaluation [83] is
a source-to-source program transformation technique that exploits the knowledge
of some parameters to a program being constant (static) for all sets of input data.
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The input that can vary is also called dynamic input. The static input is gene-
rally speaking the input which is known before the program execution, while the
dynamic input is the data that is not known until program execution.

If running the program on a full set of input is called a full evaluation of the
program, running the program on a set of partially known input would then be
called a partial evaluation of the program. The static input would be the known
part of the input data, and the dynamic input would be the unknown part of the
input.

Given a program P and a set of static input data S, a partial evaluation of P
with respect to S would result in a new program PS, the residual program, that
for the same dynamic input D, would produce the same output as P with inputs
S and D. The process is illustrated in Figure 6.2 below. A partial evaluator is a
program that performs partial evaluation, and in this example an evaluator could
for instance be an interpreter.

P S D

Evaluator

O

(a) Normal Evaluation

P S

Partial
Evaluator

PS

(b) Partial Evaluation

PS D

Evaluator

O

(c) Evaluation of Speciali-
sed Program

Figure 6.2: Partial Evaluation Overview. P = Program, S = Static input, D =
Dynamic input, O = Output and PS = residual program

A partial evaluator can be viewed as a mix between an interpreter and a com-
piler. It interprets code in P depending on static data and generates code in PS

for code in P depending on dynamic data.
Assuming we have a partial evaluator available, we can apply this to a simple

program to illustrate what a resulting residual program could look like. A typical
example used to illustrate partial evaluation, is the power function, power(x, y) =
xy, implemented as a recursive program. If y is even, the result is the square of
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x
y
2 , and if y is odd the result is x ∗ xy−1.

Example 27. The power function could be implemented in Prolog in the following
manner:

power( ,0,1).
power(X,Y,Z) :-

even(Y), Yh is Y / 2,
power(X, Yh, Zr), Z is Zr * Zr.

power(X,Y,Z) :-
odd(Y), Yp is Y - 1,
power(X, Yp, Zr), Z is X * Zr.

even(X) :- X > 0, 0 is X mod 2.
odd(X) :- X > 0, 1 is X mod 2.

If we make Y static (known at specialisation time) and X and Z dynamic, and
we partially evaluate1 with respect to e.g. Y = 5, we obtain the following residual
program:

/* power(A,5,B) :- power 5(A,B). */
power 5(A,B) :-

C is A*1,
D is C*C,
E is D*D,
B is A*E.

The recursive calls have been unfolded and all operations only dependent on static
input, have been pre-computed.

In the context of logic programming, partial evaluation is often referred to
as partial deduction [100]. This is used to distinguish between partial evaluation
for pure logic programming, where it is referred to as partial deduction, and logic
programming with non-logical features such as asserts and cuts, where it is referred
to as partial evaluation.

6.3.2 Strategies for Partial Evaluation

Under normal evaluation of a program, all input is available at every program
point. During partial evaluation, all, some or none of the input will be available.

1In this example WebLogen, a partial evaluator for Prolog has been used.
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How the partial evaluator decides which program constructs can be evaluated and
which must be residualised, is a complex process. There are two main strategies
for performing partial evaluation - online and offline partial evaluation. In online
partial evaluation the decision between evaluating or residualising code in P is
taken at specialisation time. In offline partial evaluation these decisions are made
based on results obtained from a Binding Time Analysis (BTA) performed prior
to specialisation.

To begin with, all partial evaluators were online evaluators [92]. When partial
evaluation was investigated with regard to its use as a program generator tool,
offline implementations were required to allow, for instance, for self application of
partial evaluators; when a partial evaluation is applied to itself with an interpreter
as static input, the result is a compiler. Applying partial evaluation to an inter-
preter with a source program for that interpreter as static input, it results in a
new version of the source program, implemented in the language of the interpreter.
For our purpose partial evaluation is used for specialisation of interpreters, hence
offline partial evaluation will be the most relevant.

Online partial evaluation

Online partial evaluators make the control decisions during the specialisation
phase. The control decisions will divide the program constructs into those that
can be evaluated at specialisation time and those for which residual code must be
generated. A program loop is a typical example of a construct that can result in
infinite unfolding. Size reduction based on norm sizes is an example of a technique
that can be applied to detect safe and unsafe unfoldings.

Offline partial evaluation

In this method of performing partial evaluation, the decision between evaluating
program constructs or residualising those constructs is taken offline; meaning in a
separate phase before actual specialisation occurs. There are two phases in offline
partial evaluation.

1. Binding-Time Analysis: In this first phase of the process, the programmer
supplies a specification of which parameters will be static and which will
be dynamic. The partial evaluator will separate program constructs into
two categories; those that can be fully evaluated and those that must be
residualised. The specification is usually a number of annotations for the
constructs in the program.

2. Specialisation: In this second phase, the programmer supplies the actual
static input, and the partial evaluator will now follow the guidelines from
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Binding Time
Analysis

Annotation Offline Partial
Evaluator

PS

Figure 6.3: Offline Partial Evaluation Overview. P = Program, S = Static input
and PS = residual program

the annotated program, and based solely on these annotations, will separate
the program constructs into those that can be fully evaluated and those for
which code must be generated and included in the residualised program.

Figure 6.3 gives an overview of the process; after offline specialisation the resi-
dual program PS can be evaluated as shown previously in Figure 6.2(c). With this
type of partial evaluation the programmer has more control over which program
constructs are residualised and which are eliminated through evaluation. The fact
that offline partial evaluation does not depend on actual static input, but only
an annotation describing which input will be static at specialisation time, can be
an advantage of this technique over its online counterpart. Once the annotations
have been generated for specialising P with respect to S1, the same annotations
can be used to specialise P with respect to S2 providing S1 and S2 have the same
specifications of static and dynamic input, but only differs in the actual values of
the static input. This can greatly speed up the specialisation process if P must be
specialised for multiple sets of input data.

Strictly speaking online partial evaluation is more powerful than offline partial
evaluation for several reasons [82], one being that it makes control decisions based
on the actual static input fed to the partial evaluator. In logic programming data
can be partially instantiated. For instance a list can contain 3 uninstantiated
elements, [X,Y, Z], making the list partially static and partially dynamic. An
online specialiser might decide that unfolding this list would be safe. For an offline
specialiser the same list would be considered dynamic and therefore not safe to
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unfold. Extending the binding types to a richer domain than the static/dynamic
domain, as also described in Section 5.6.3, is one method that can be used to
strengthen offline partial evaluation.

6.3.3 Partial evaluation of interpreters

Efficiency improvements is not the only application of partial evaluation. The
three Futamura projections [68] can be used to

1. achieve compiling by specialising an interpreter

2. generate compilers by self-application

3. generate compiler generators by double self-application

It is the first Futamura projection, specialising interpreters, we will make use
of. This is a key application of partial evaluation. In this situation the interpreter
is the program that will be specialised, the object program is the static input and
the call that begins the execution of the object program in the interpreter, is the
dynamic input. The result is a version of the interpreter that is less general in the
sense that it no longer interprets any object program, but only the object program
it was specialised with respect to.

The specialised interpreter will in general be more efficient in terms of run-time
behavior.

Particularly offline partial evaluation has proven to be very useful for speci-
alising interpreters [104]. To specialise our PIC emulator we will use the Logen
[107] offline partial evaluator for logic programs developed by Michael Leuschel
and Jesper Jørgensen.

Specialising the PIC emulator

To use an offline partial evaluator to specialise the emulator described in Section
6.2.3 poses one problem that must be solved; it must be possible to determine the
program counter (PC) statically. In all PIC instructions, with the exception of
the call and return instructions implementing subroutines, the PC is calculated
in the individual instructions. This calculation of the next PC is only possible
during specialisation, if the PC is static. When a subroutine is invoked by a call-
instruction, the program point following the call-instruction is pushed onto a
stack. Upon exit from the subroutine by a return-instruction, the stack is popped
and control is returned to the program point at the top of the stack. There may
be several calls to the same subroutine at different program points. Hence the
next instruction to be executed after a return-instruction is not in general known
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at specialisation time. This can result in total loss of specialisation following a
return-instruction.

For now we assume that a set of facts exists, that describes the control-flow of
the program, i.e. which program points can follow a given program point. These
facts are of the form nextInstr(PC,PCnext). How these facts can be obtained
from a Control Flow Analysis is described later in Section 6.4.

The emulator is specialised with respect to a given program and a set of control-
flow facts. The PIC program, the control-flow facts and any environment data
supplied are static inputs. In the execute-loop, everything is unfolded except the
loop itself. Every execInst is unfolded completely; arithmetic operations can be
annotated as rescall, which will preserve the call in the residual program. Arith-
metic operations on elements in the machine state are generally marked rescall,
with exceptions such as the program counter. In the later analysis step where a
CLP analyser will be applied to the residual program, the analysis will be based
on those rescall’ed arithmetic operations.

The return-instruction is unfolded with respect to the nextInstr/2-facts.
The stack content will not be known at specialisation time, but the unfolding
of the nextInstr/2-fact will ensure that control flow is returned to any possible
instruction that could occur at the top of the stack, at that particular return-
instruction. The implementation of the return-instruction is shown below.

execInst(return, , ,
state(RegIn,StackIn,PC,Acc),
state(RegIn,StackOut,PCOut,Acc)) :-

popstack(StackIn,StackOut,PCOut),
nextInstr(PC,PCOut).

The result of this specialisation is a new Prolog program, with a numbered
execute-predicate for every program point in the original PIC program. The
control flow of the PIC program is now embedded in the calls from one execute-
clause to the next. PIC instructions that can alter control flow of the program
will have more than one version of a given numbered execute-clause. Instructions
modifying the hardware status register (containing among other things, the carry
and zero bit) will also have more than one version, depending on whether the
results would set or not set a bit in the status register.

Example 28. An example of such an execute-clause after specialisation is shown
below; this particular clause corresponds to the addwf instruction whose execInst-
implementation was shown earlier in Example 25.
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Program No. Instr. No. Clauses Size (kb)
Specialisation
Time (sec.)

Compass 141 199 40 13
Accelerometer 215 274 46 18
GPS 400 631 183 42

Table 6.1: Specialisation of PIC programs

execute 5(S,Q,O,M,K,I,G,E,D,B,C, ,F,H,J,L,N,P,R,A) :-
T is Q+A,
0 is T>>8,
T \== 0,
is 24 /\ 251,

U is 24 /\ 254,
is +1,

execute 6(S,Q,O,M,K,I,G,E,D,B,C,U,F,H,J,L,N,P,R,T).

Two status bits can be modified, so 4 different versions are generated; control
flow of the program can only pass to the following instruction, so all execute__5s
will continue with execute__6.

Resulting specialised programs

Some results acquired from specialising the three test case programs from Section
6.2.1 is shown in Table 6.1. The number of predicates in the specialised program is
omitted, since there is a one-to-one mapping between the instructions in the object
program and the predicates in the residual program. The number of clauses will
depend on e.g. the number of instructions modifying control-flow. The table shows
that this increase is in the range 27% to 60% for the example programs. The size
of the residual program reflects how large the programs for later analysis will be.
The timing results show how computationally expensive this step in the process
is. The results were collected using the command line version of Logen on a Linux
machine equipped with a 900MHz Intel Pentium III CPU and 256MB RAM using
the command line tool “time” measuring the user CPU time.

An earlier version of the PIC emulator has been used as a benchmark for, and
a demonstration of, the applicability of the Logen specialiser [105, 106].

The next section will describe a method for obtaining the control-flow facts
used in the specialisation process.
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6.4 Flow Analysis

A general approach to Data Flow Analysis (DFA) using logic programming is
described in this section. Since the approach is based on general techniques and
tools it is therefore not specific to a particular language or abstract machine, and
the method described here can easily be carried out on other languages or abstract
machines.

Expressing a program analysis declaratively in a logic programming language
has a few advantages; the implementation of the analysis is greatly simplified and
analyses described in a few lines of Datalog can take hundreds of lines to write in
a traditional language. Among other things this minimises the risk of introducing
errors in the analyser. When the analysis is expressed in a uniform manner it
becomes easier to combine it with other analyses [153].

Overview

Given a language to analyse we annotate the instruction set with a set of facts
describing their control flow behavior. The program to analyse with respect to is
appended as another set of facts. Then we write rules to determine properties of
that particular program.

The facts associated with the instructions, the program, and the rules, make up
a Datalog program. Efficient methods exist for solving Datalog program such as
the BBD-based method described in Section 5.7.2. We will use the same method
here.

6.4.1 Data Flow Analysis

This section will present an overview of classical Data Flow Analysis concepts.
The notation is based mainly on [99, 97, 134]. Data Flow Analysis (DFA) is in
the area of static program analysis. It focuses on gathering information about the
definition and use of data objects in a program, without executing the program
itself. For imperative languages it provides information about possible program
states that may occur at some program point during execution. A classical DFA is
based on two things: an abstraction of the data transformations in the program,
and the propagation of this information through the control flow graph of the
statements in the program.

The obtained information can be used for a variety of purposes, for instance
debugging, program optimisation and so on. Data Flow Analysis is frequently
found in compilers where it can be used to generate faster code, save memory etc.

A number of properties about a given program can typically be detected using
DFA. Properties can hold for program points and program paths, where a program
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path is a possibly infinite list of program points having an entry program point and
where each successive program point is immediately reachable from the previous
program point in the list. These properties can be split into groups that depend on
a program point’s history, namely those program paths reaching it, and properties
that depend on a program points future, which are program paths starting from
that program point. Some properties will be valid if some property holds for
some path in the history or the future of a given program point, making them
existentially quantified properties, and some will only hold if the property holds
for all paths, making them universally quantified properties.

Examples of properties that can be detected using DFA are:

• Liveness: Data is only live if some future path depends on its value. This
property is typically used for program optimisation. Instructions in the pro-
gram that calculate dead data can typically be eliminated from the program,
and the memory that holds the dead object can be used for other (live) ob-
jects, thereby saving space.

• Undefined values: The use of data objects with no assigned value can
lead to propagation of undefined values in the program, and bugs that can
be hard to detect. This property can be used to warn the programmer of
possible bugs in the program.

Flow graphs

Control Flow Analysis (CFA) is another static analysis method that is needed in
DFA. The DFA will typically be performed on the Control Flow Graph (CFG)
representation of the program. In this more abstract representation, each state-
ment in the program has its own node, and the edges corresponds to the control
transitions. There is a node marked start in the graph. When the CFG is used for
Data Flow Analysis, every node will have a transfer function that specifies how
data is propagated through the program. As with the DFA, CFA can be used to
detect properties that can lead to program optimisation, debugging information
etc. Examples of such properties are:

• Dead Code: Program points that can never be reached by any path in
the program starting from the node marked ‘start’, are dead and can be
eliminated from the program.

• Worst Case Execution Time (WCET): The programmer may wish to
know whether parts of the code will complete within some time constraints.
WCET can be used to give estimates of the execution time of parts of the
program.
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We will use the following notation and definitions of properties relating to the
CFG:

Definition 53. G = (N, E, s) is a directed graph with nodes N , edges E ⊆ N ×N
and starting node s ∈ N .

Definition 54. The immediate predecessors of a node n are denoted and defined
as

Pred(n)
def
= {m|(m, n) ∈ E}

Note: Pred(s) = ∅

Definition 55. The immediate successors of a node n are denoted and defined as

Succ(n)
def
= {m|(n, m) ∈ E}

Definition 56. A path p from node n1 to nk is a sequence of nodes such that
(ni, ni+1) ∈ E for 1 ≤ i ≤ k − 1. P(n) denotes the set of all paths from s to n.

Data Flow Framework

A Data Flow Framework, 〈G, D, F, [[.]],⊥〉, consists of the following items

• G = (N, E, s) a control flow graph

• D: a semi lattice 〈D,v,u〉 of abstract values describing program states

• F ⊆ {f |f : D → D} a set of functions

• [[.]] : N → F are transfer functions for G. A transfer function associated with
a particular node n will be denoted fn.

• ⊥ ∈ D: a description that holds for s ∈ G

D is intended to express the relevant data flow information. The path semantics
of G is given by the function [[.]] which assigns meaning to every node n ∈ N in
terms of the transfer functions.

Definition 57 (Path semantics). For every path p = (n1, ..., nk) ∈ P(n), the path
semantics is defined recursively as a composition of transfer functions:

[[p]] = [[(n2, . . . , nk)]] ◦ fn1

Two strategies exist for obtaining the abstract semantics. The meet over all
paths (MOP) and the maximal fixed point (MFP) [94].

The MOP-strategy meets (or intersects) all information of all possible execu-
tions of program paths reaching a given program point of interest.
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Definition 58 (Meet over all paths).

MOP (n) =
l

p∈P(n)

[[p]](⊥)

If there are loops or recursion in the program, P(n) can be infinite. If P and
D are infinite, it is generally not feasible to solve MOP. Instead the MFP-strategy
can be used. This strategy is in general a safe approximation of the MOP-strategy.

Definition 59 (Maximal Fixed Point).

MFP(s) = ⊥

MFP(n) =
d

m∈Pred(n) fn(MFP(m)) for n 6= s

The MFP-semantics coincides with the MOP-semantics when the functions
specifying the abstract semantics of statements are distributive - a result known
as the Coincidence Theorem [99]. Solving a DFA problem can be regarded for
practical purposes as computing an MFP.

In the following section we will describe our approach to performing Data Flow
Analysis of abstract machines.

6.4.2 Datalog model

In this section we explain how an abstract machine can be modelled in a Datalog
program and how adding Datalog rules will be sufficient to obtain a Data Flow
Analysis Framework for this abstract machine.

In the Datalog program each instruction of the machine is given a unique
number and for each instruction we annotate it with a set of facts that describe
the behavior of that particular instruction. The instruction can behave differently
depending on its arguments. In the following we assume that the instruction set al-
lows for 0, 1 or 2 arguments. The facts are triples of the form someFact(I,A1,A2),
where I is the instruction number, A1 and A2 are the arguments. For the proper-
ties that do not depend on the arguments to the instructions, the associated facts
are of the form someFact(I).

We can categorize the facts such as those describing the control flow of the
program, access to registers and timing information.

• Control flow: In the control flow category, the PIC instructions can be one
of five different types:
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– Straight line instruction: Upon execution of such an instruction, the
control flow of the program continues with the next instruction in the
program.

– Branch instruction: When a branch instruction is executed, either the
following instruction in the program is executed or it will be skipped
and the second following instruction will be executed.

– Goto instruction: Control flow of the program will continue with the
instruction number given as an argument to the goto-instruction.

– Call instruction: Same as a goto-instruction, but it is distinguished
from the gotos since the matching return instruction can redirect control
flow of the program, to the instruction following the call.

– Return instruction: The instruction to be executed after a return in-
struction will depend on the call context of that return instruction.

• Register access: Instructions can access the registers or other parts of
the machine state like the accumulator. It can either be a read or a write
access. Some instructions will both read and subsequently write to a register,
making it a both read and write instruction. Of course some instructions
access neither registers nor the accumulator.

• Timing information: Execution of an instruction can take a different num-
ber of clock cycles, depending on the instruction. Annotating the instructions
with precise timing information can be used later to calculate e.g. WCET.

All programs are assumed to start at program point 0, so we add that as a fact
as well; entryPoint(0).

The program is encoded as a set of facts of the form pp(PC,I,A1,A2), where
PC is the program memory location of that instruction, I is the instruction number
and A1 and A2 are the arguments to that instruction.

Initially we do not allow for arithmetic expressions in our set of rules and facts,
i.e. we restrict ourselves to pure Datalog. A simple increment operator will be
need for the Control Flow Analysis described in Section 6.4.4. A set of increment
facts are added to the program created so far. The increment operator in Datalog
is defined as facts of the form increment(0,1), increment(1,2) etc. up to the
maximum number of instructions in the program.

6.4.3 Datalog rules

Once every instruction has been annotated with the facts described above, and
the program has been appended, rules can be written to detect properties of the
associated program.
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Example 29. Program point N contains a branch instruction if the instruction
located in the program memory at location N contains an instruction that was cat-
egorized as a branch instruction. This translates into the rule

branchInstr(N) :- pp(N,I, , ), branchInst(I).

We will show how these rules can be reused when more complex rules are
needed to describe the properties mentioned in the previous section.

6.4.4 Control Flow Analysis

The control flow facts can be used to reason about the control flow of the program.
A next instruction procedure can be defined in terms of the facts from the control
flow category. For each type of fact, a rule like the one shown in Example 29 is
created. The next instruction procedure has a rule for each type of fact.

nextInstr(N1,N2) :-
straightLineInstr(N1),
increment(N1,N2).

nextInstr(N1,N2) :-
branchInstr(N1),
increment(N1,N2).

nextInstr(N1,N3) :-
branchInstr(N1),
increment(N1,N2),
increment(N2,N3).

nextInstr(N1,R1) :-
gotoInstr(N1,R1).

nextInstr(N1,R1) :-
callInstr(N1,R1).

nextInstr(N1,N3) :-
returnInstr(N1),
calledFrom(N1,N2),
increment(N2,N3).

The branch instruction has two rules. Conditions for branch instructions are
not taken into account, and control flow can therefore either continue with the fol-
lowing or the second following instruction. Depending on which abstract machine
is being modelled, e.g. branch instructions can behave differently. This particular
behavior corresponds to the PIC microcontroller used as a case study.

The called from procedure determines the call contexts for a given instruction.
A call context corresponds to the latest call instruction that was encountered in
the control flow of the program. The called from procedure is defined in terms of
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the facts from the control flow category and the following rules:

calledFrom(0,0).
calledFrom(N1,N2) :-

increment(N3,N1),
straightLineInstr(N3),
calledFrom(N3,N2).

calledFrom(N1,N2) :-
increment(N3,N1),
branchInstr(N3),
calledFrom(N3,N2).

calledFrom(N1,N2) :-
increment(N3,N1),
increment(N4,N3),
branchInstr(N4),
calledFrom(N4,N2).

calledFrom(N1,N2) :-
gotoInstr(N3,N1),
calledFrom(N3,N2).

calledFrom(R1,N1) :-
callInstr(N1,R1).

calledFrom(N1,N2) :-
increment(N3,N1),
callInstr(N3, ),
calledFrom(N3,N2).

All programs are assumed to start at instruction at memory location 0, so
initially the call context is 0. Since a subroutine can be called from more than
one place in the program, an instruction can belong to more than one call context.
The last calledFrom-rule states that any instruction following a call instruction
belong to the same call context as the call instruction does. This is similar to the
first rule stating that any straight line instruction belong to the same call context
as the instruction preceding it.

Dead code detection

Dead code are instructions in the program that will never be executed. A more
optimal use of the program memory can be achieved by eliminating these instruc-
tions. An instruction is dead if it is not reachable from any trace in the program
starting at program point 0.

First we define the relation prevInstr(N,Np) by reusing the previously defined
relation nextInstr(N,Nn). This rule in fact only increases readability and is
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strictly not necessary.

prevInstr(N,Np) :-
nextInstr(Np,N).

The dead instruction rule can now be expressed the following way:

reachable(0).
reachable(N1) :-

prevInstr(N1,N2),
reachable(N2).

unreachable(N) :-
pp(N, , , ),
!reachable(N).

We introduce the exclamation mark as stratified negation (see Section 2.4). The
rule states that reachable instructions are those that can be traced back to program
point 0, and the unreachable instructions are any instruction in the program that
is not reachable.

Register Access

A register R is defined when it is assigned a value (written to) and referenced when
the value in R is used for other computations (read). We write rules for finding
instructions that read or write to a given register.

writeInstruction(R,N) :-
pp(N,I,R,R2),
writeInst(I, ,R2).

readInstruction(R,N) :-
pp(N,I,R,R2),
readInst(I, ,R2).

Program history and future

Writing rules for finding a program’s history and future at a given program point
n is simple enough. A program point m is in program point n’s history if m is an
immediate predecessor or program point l is an immediate predecessor of n and
m is in the history of l. This can be described more formally:

m ∈ history(n)⇐ m ∈ pred(n) ∨ l ∈ pred(n) ∧m ∈ history(l)

142



Writing this property in our rule notation, we get the following procedure:

history(N,M) :-
prevInstr(N,M).

history(N,M) :-
prevInstr(N,L),
history(L,M).

The future relation can be defined in terms of the history - a program point
m is in the future of n if n is in the history of m, more formally

m ∈ future(n)⇐ n ∈ history(m)

Or in our rule notation, simply

future(N,M) :-
history(M,N).

Determining whether a particular property P (n) holds in a program point’s future

P (n)⇐ ∃m ∈ future(n), P (m)

would for example, for the property is a value written to a register at program
point N possibly read later in the program, simply becomes the rule

possiblyUsed(R,N) :-
future(N,M),
readInstruction(R,M).

Program paths

Properties of interest must typically hold for some path in a program; e.g. a register
will be live at program point n, if it is referenced at program point m in n’s future
and not defined in some path from n to m.

There is a difference between writing rules that must hold in either history
or future, and rules that must hold for paths. If the program has a finite set of
program points, history and future will themselves be finite sets. The set of paths
on the other hand will be infinite if loops are allowed.

Bit vector problems

Bit vector problems are a group of important DFA problems that are found in most
program optimisations used in practice. Each path in the history and/or future
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of the given program point is reduced to a single bit value - does a given property
hold for this path. The solution to the problem is obtained by applying either
the conjunction or the disjunction as the “meet” operator over the bit vector. A
previously mentioned property, liveness, is an example of a bit vector problem.
This problem is a future dependent existentially quantified problem - it must hold
for some path in the future. A general approach for writing rules for bit vector
problems can be describe in the following way:

Let P be some property of a program point, N a program point of interest,
and t a path (or trace) in the history of N . The general rule to determine if P
holds at some point on some path in the history of N :

holdsSome(P, N)⇐ P (N)
holdsSome(P, N)⇐ prev(N, Np) ∧ holdsSome(P, Np)

The general rule to determine if P holds on every point on some path in the
(reachable) history of N :

holdsAll(P, N)⇐ entryPoint(N) ∧ P (N)
holdsAll(P, N)⇐ prev(N, Np) ∧ P (N) ∧ holdsAll(P, Np)

Example 30. The rules for detecting a write free path (a holdsAll) or a path with
at least one read (holdsSome) from N to M can be expressed in the following way:

writeFreePath(R,N,M) :-
nextInstr(N,M),
!writeInstruction(R,M).

writeFreePath(R,N,M) :-
nextInstr(N,Ni),
!writeInstruction(R,Ni),
writeFreePath(R,Ni,M).

readPath(R,N,M) :-
nextInstr(N,M),
readInstruction(R,M).

readPath(R,N,M) :-
nextInstr(N,Ni),
readPath(R,Ni,M).

These rules states that there is a write free path from N to M, if there exists a
series of instructions from N to M such that all instructions on this path, are not
write instructions - and there is a path from N to M with a reference of R, if some
instruction on this path is a read instruction.
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Liveness

The liveness property can now be defined in terms of the previously defined rules.

live(R,N) :-
future(N,M),
readInstruction(R,M),
writeFreePath(R,N,M).

This rule states that register R is live at program point N, if for any read instruction
of R in the future of N, there is a path where R is not assigned a new value.

Uninitialised registers

Propagation of values from uninitialised data registers can lead to program bugs
that can be hard to locate. This behavior can be defined similar to the liveness.

initialised(R,N) :-
entryPoint(M),
!writeFreePath(R,M,N).

A register is uninitialised at N if it is not initialised; or simply

uninitialised(R,N) :-
!initialised(R,N).

Redundant code

If a register is assigned a well defined value at program point N, but this value
is never referenced in any future program path, the data assignment at program
point N is redundant and the program can possibly be optimised by eliminating
N. Dead assignments can arise from e.g. register initialisations - if no reference of
a register can possibly occur before any assignment of data to it, initialisation is
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redundant.

nextWrite(R,N,Nw) :-
future(N,Nw),
writeInstruction(R,Nw),
writeFreePath(R,N,Nw).

readBeforeWrite(R,N,Nw) :-
nextWrite(R,N,Nw),
readPath(R,N,Nw).

redundantAssignment(R,N) :-
writeInstruction(R,N),
!readBeforeWrite(R,N, ).

Datalog program

When the program to be analysed is merged with the facts for each instruction
of the abstract machine and the rules for each property of interest, they make up
a Datalog program. In this Datalog program, all of the elements of a traditional
Data Flow Analysis Framework are present. The Control Flow Graph is present in
the form of the nextInstr/2-procedure. Each result for this procedure represents
an edge in the graph. The nodes are the program points, and the starting node is
represented by the Datalog fact entryPoint/1. The abstraction of the Data Flow
(lattices and transfer functions) are present in the facts of each instruction and
rules for each property of interest.

How to obtain results from a Datalog program is described back in Section
5.7.2. The same BDD based procedure can be used for Property Programming.

Applying Property Programming to PIC case study

The nextInstr/2 rule provides the missing CFG information needed for the offline
partial evaluation as described in Section 6.3.3.

Applying the dead code rules described in Section 6.4.4 to the three program
selected for the case study, provides the results shown in Table 6.2. The 34 re-
dundant instructions in the Accelerometer program turn out to be never called
subroutines copied from the GPS program. The two redundant instructions in
the GPS program are two goto-instructions that can never be reached. The test
results were collected on a Linux machine equipped with a 900MHz Intel Pentium
III CPU and 256MB RAM using the command line tool “time” measuring the user
CPU time. Both control flow and data flow rules are solved at the same time.
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Program No. Instr. Dead Instr. Analysis Time (sec.)
Compass 141 0 1.8
Accelerometer 215 34 1.5
GPS 400 2 3.0

Table 6.2: Dead code analysis of PIC programs

6.4.5 Register Remapping

The liveness information obtained by the Data Flow Analysis can be used to op-
timise the object program. This section gives a demonstration of how a logic
programming implementation of a textbook graph algorithm can be used to op-
timise the memory allocation of the case study programs. Reallocating registers
using a graph algorithm applied to the liveness data for a given program [30] is a
well established method. This technique has later been refined [22, 23, 44].

A proper coloring of a graph is, in short, an assignment of a color to every
node in the graph so that no two adjacent nodes have the same color. Adjacent
meaning there exists an edge between the two nodes. The graph coloring problem
is to color the graph using the least number of colors. The graph coloring problem
was also on Karp’s list of 21 NP-complete problems [95].

The output from the Property Programming based Data Flow Analysis is a
set of facts, live(R,N), denoting that register R is live at program point N. Based
solely on these facts a graph coloring algorithm can provide a remapped memory
allocation that will use at most the same number of data registers as in the analysed
program.

The graph coloring is applied to an inference graph representation of the live-
ness data. Each register is assigned its own node in the graph. If register r1

and r2 are live at the same program point, i.e. r1 infers with r2, there is an edge
(r1, r2) in the graph indicates that these two registers cannot be remapped to the
same register. The resulting coloring of the graph yields a more optimal register
allocation if it can be colored using a lower number of colors than the number of
registers actually used in the analysed program.

Algorithm 6 shows a simple graph coloring algorithm. The node with the
highest degree, i.e. most connected, is colored first. Following iterations will try to
color the remaining nodes using a color already used. If that is not possible a new
color is introduced. This procedure is reiterated over the uncolored part of the
graph until all nodes are colored so no adjacent nodes have the same color. This
algorithm is not guaranteed to provide a solution using the least possible number
of colors.

Applying this procedure to the test case program for the PIC processor gives
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Algorithm 6 Graph Coloring Algorithm

Input: Liveness inference graph G = (Nodes, Edges)
Output: Coloring of Nodes

colorGraph([ ],[ ],[ ]).
colorGraph(G, [(RemovedNode,ThisColor)|ColoredNodes], ColorsUsed) ←

assignDegrees(G,NodesDegrees),
removeLeastDegreeNode(G,NodesDegrees,ReducedGraph,RemovedNode),
colorGraph(ReducedGraph,ColoredNodes,ColorsToUse),
colorNode(G,RemovedNode,ColorsToUse,ThisColor),
addColorIfNew(ThisColor,ColorToUse,ColorsUsed).

Program Used Data Reg. Remapped Reg. Reduction pct.
Compass 3 2 33%
Accelerometer 5 3 40%
GPS 23 20 13%

Table 6.3: Remapping registers of PIC programs

the results shown in Table 6.3. For all test case programs there is a more optimal
assignment of data memory compared to that assignment used by the programmer.
The process of remapping registers can also be made transparent to the user once
the instruction set has been annotated and data flow rules specified for a given
microcontroller.

6.4.6 CFA/DFA Analyser Tool

Once the instruction set of the target machine has been annotated and rules written
for the flow analyses, the procedure can be made fully automatic with no other
user involvement than that of supplying a program for analysis. A web based front
end has been constructed to demonstrate this. For a given PIC program, the dead
code analysis from Section 6.4.4 and the register remapping from the previous
section can be performed in one go.

First, the source PIC program is uploaded. Then some statistics are shown
for the program, as shown in Figure 6.4 on the facing page. Then the program is
shown with the dead code highlighted in red, as shown in Figure 6.5 on page 150.

A demonstration of tool is available online at

http://wagner.ruc.dk/PIC/Liveness/
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Figure 6.4: Statistics shown for the accelerometer test case program

6.4.7 Program Transformation Based Approach to Live-
ness Analysis

The specialised emulator resulting from the partial evaluation described in previous
sections is an automatically generated program. Such automatically generated
programs often contain redundant parts that can be eliminated by general purpose
program transformations without affecting the correctness of the program. The
clause shown in Example 28 on page 133 contains various redundancies including
a large number of arguments for the predicate execute__5 and some redundant
operations in the clause body.

After specialisation of the emulator the semantics of the PIC program is now
embedded in the execute-predicates of the specialised version of the emulator.
The machine state is embedded in the arguments of the execute-predicates. To
simplify later specialisation and analysis steps, the machine state can be reduced
to only the live state. Eliminating dead elements of the state will not alter the
semantics of the program.

The results from the Property Programming based technique could also be used
to reduce the machine state by eliminating the registers containing dead data. If
the live/2-facts were available at the partial evaluation step, the list containing
the machine state could be unfolded so only the live registers were kept in the
predicate head.
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Figure 6.5: Dead code highlighted for the GPS test case program

This section will describe a more general logic program transformation tech-
nique called Redundant Argument Filtering that, when applied to the specialised
emulator, results in a new version of the specialised emulator, where only the live
machine state is kept. The technique generally applies to any logic program and
is not specific to our specialised emulators.

6.4.8 Liveness Analysis Using Redundant Argument Fil-
tering

Leuschel and Sørensen [109] proposed a general logic program transformation tech-
nique called Redundant Argument Filtering (RAF). This program transformation
removes predicate arguments that are never “used”. Propagation of dependency
information can either happen in a top-down fashion, from clause head to clause
body, or in a bottom-up fashion from clause body to clause head. The top-down
propagation is called Redundant Argument Filtering (RAF) and the bottom-up
propagation is called Reverse Redundant Argument Filtering (FAR). Either one
or both of the methods can be applied to a program. An optimal solution can be
reached by iterating the procedure over a program, and in each iteration switching
between the two techniques, until a fix point is reached.
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The main motivation for the transformation was the simplification of programs
produced by other transformations, in particular by conjunctive partial deduction
[60]. We focus here on the transformation called Reverse Redundant Argument
Filtering (Section 5 of [109]). In this section we show how the FAR algorithm is a
generalisation of liveness analysis and can be applied to the specialised PIC emu-
lator to eliminate dead registers at each program point. The result is a simplified
program for later program analysis. The filtered program will be both smaller
with regards to lines of code and the arity of the predicates in the program. The
complexity of later analyses applied to this filtered program may depend on both
predicate arity and code size. Leuschel and Sørensen [109] reported an average
code size reduction of 20%. For the specialised PIC emulator this reduction will
be shown to be more than 50%. Particularly the reduction of the arity of the
predicates is significant.

Correct Erasures

The FAR algorithm computes a correct erasure for a given logic program P ; an
erasure is a set of predicate argument positions that can be eliminated without
affecting the computed answers for any goal.

Definition 60 (Erasure). Let P be a program. An erasure is a set of tuples (p, k)
with p/n ∈ ΠP and 1 ≤ k ≤ n.

Suppose an erasure contains {(p, 1), (p, 3), (p, 4)}. Then this means that the
first, third and fourth arguments of predicate p are to be removed. Given a program
P and erasure E, denote by P |E the result of striking out the arguments in E
from all occurrences of the predicates in P .

Example 31. In the case of the erasure {(p, 1), (p, 3), (p, 4)} an occurrence of an
atomic formula for p such as p(t1, t2, t3, t4, t5), would be replaced by p(t2, t5).

An erasure E is correct for program P if the following property holds. For
every computation of P with a goal G, the answers and finite failures are the same
(for the non-erased arguments) as the computation of P |E with G|E (the result
of applying the erasure to G).

Algorithm for Computing a Correct Erasure (FAR)

The algorithm presented by Leuschel and Sørensen successively identifies argu-
ments that are “needed”. Initially, the erasure for P is the set of all argument
positions of predicates in P . On each iteration, arguments are removed from the
erasure until a correct erasure is computed.

It is provable that if conditions 1-3 checked in the loop are false for all argument
positions then the corresponding erasure is correct.
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Algorithm 7 FAR Algorithm
Input: program P
Output: a correct erasure E for P
Initialise:

i = 0;
E0 = the set of all predicate arguments;

while there exists a (p, k) ∈ Ei

and a clause p(t1, . . . , tn)← B in P such that
1. tk is not a variable; or
2. tk is a variable occurring more

than once in p(t1, . . . , tn); or
3. tk is a variable occurring in B|Ei

do Ei+1 = Ei \ {(p, k)}; i = i + 1;
return Ei

Liveness Analysis using the FAR algorithm

We now show that the FAR algorithm can be used as a liveness analyser. In fact it
is more general than a liveness analyser; as will be seen, it can remove redundancies
other than dead variables. To do this we build a straightforward translation from
control flow graphs and logic programs called control flow programs. Then we
show that the classical liveness analysis on control flow graphs [1] is mimicked by
the action of the FAR algorithm on control flow programs. Note that the flow
programs and flow graphs considered in this section are not part of the PIC case
study; they are just defined in order to show that the FAR algorithm can perform
liveness analysis.

We take flow graphs to consist of a set of nodes (program points) and directed
edges labelled either by an assignment statement x = e or a boolean expression b.
Conditional branches are represented by edges labelled with a boolean expression,
and control flows along that edge if the condition evaluates to true. Control flow
graphs with branch instructions and goto statements could be defined instead,
without altering anything essential in the procedure below.

Let x1, . . . , xm be the set of all variables appearing in the graph (i.e. in as-
signment statements or in boolean expressions). For each node j define a unique
predicate pj with m arguments. The control flow program resulting from a given
graph is defined to be the set of clauses of the following form.

1. pi(x1, . . . , xm)← x′l = e, pj(x1, . . . , x
′
l, . . . xm), where xl = e is an assignment

statement on the edge (i, j) and x′l is a variable different from x1, . . . , xm.
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2. pi(x1, . . . , xm) ← b, pj(x1, . . . , xm), where b is a boolean expression on the
edge (i, j).

Let 0 be the entry node of the flow graph. We observe that there is a compu-
tation in the flow program that calls some sequence of predicates p0, pi1 , pi2 , pi3 , . . .
if and only if there is a legal computation in the flow graph passing through nodes
0, i1, i2, i3, . . .. The arguments of a call to predicate pi represent the state of the
variables in the program at node i in the corresponding flow graph execution.

Now consider the application of the FAR algorithm to this program. Initially,
E0 contains every pair (pj, k) where j is a node and 1 ≤ k ≤ m. (We assume that
the arguments of the equality predicate and the boolean expression predicates that
appear in the program are not erased.) We argue informally that the iterations
of the FAR algorithm acting on the flow program correspond to the iterations of
the classical liveness algorithm. Consider an edge (i, j) labelled by an assignment
statement xl = e. Define, as is usual, use(i) = vars(e) and def (i) = {xl}. If the
edge is labelled by a boolean expression b then use(i) = vars(b) and def (i) = {}.

Consider some erasure; let the set of arguments that are not erased from pi

be called in(i). Let the set of arguments that are not erased from all predicates
pj such that there is an edge (i, j) be called out(i). Then we can show that the
FAR algorithm solves the classic data flow equations for liveness, namely in(i) =
use(i) ∪ (out(i) − def (i)), and out(i) =

⋃
j∈Succ(i) in(j), where Succ(i) is the set

of immediate successors (see Definition 55). The algorithm iterates starting from
initial values in(i) = out(i) = {} in the classic liveness analysis; this corresponds
to the fact that the initial erasure consists of all predicate arguments. When the
FAR algorithm terminates, the sets in(i) contain the set of arguments that are not
erased from predicate pi, that is, the live variables at node i. A detailed proof could
argue that the FAR loop terminates exactly when the above data flow equations
are satisfied.

Claim 1. Given a control flow graph containing variables x1, . . . , xm and the cor-
responding control flow program as defined above. Then according to the classical
liveness analysis, a variable xj is live at a given node i of the control flow graph
(xj ∈ in(i)) iff the FAR algorithm returns an erasure that does not include (pi, j).

Application of Redundant Argument Filtering

The specialised emulator described in Section 6.3 has a similar structure to the flow
programs described above. The state of the registers is held in the arguments of
the execute predicates, and there is one version of the execute predicate for each
PIC program point. Application of the FAR algorithm to the specialised emulator
results in the erasure of all register arguments from say executei that are dead
at the program point corresponding to executei. The number of registers live at
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a point is often a small fraction of the total set of registers, and hence the FAR
algorithm yields a program that can be much more efficient to analyse, without
losing any essential information about the program.

In fact, redundant argument filtering does more than just remove dead argu-
ments. It also allows some operations in the body of the execute clauses to be
eliminated as they definitely succeed. Example 32 shows an example of the clause
for the same predicate execute__5 shown in Example 28 on page 133. Note that
the number of arguments of execute__5 has been drastically reduced and the
clause body is simpler.

Example 32. An example of an execute-clause after specialisation and redundant
argument filtering is shown below.

execute 5(B,A) :-
C is B+A,
0 is C>>8,
C \== 0,
D is 24 /\ 254,
execute 6(D,B,C).

Experiments with case study programs

The FAR algorithm has been applied to the specialised versions of the case study
programs. Table 6.4 shows the reduction in the arity of the predicates and the
time it took to run the FAR algorithm. The execute-predicates of a specialised
emulator all have the same arity. During specialisation the list of registers is
unfolded up to the last register used at some point in the program. The size of
the machine state will vary from program to program but will remain static for
a given program. The average live arity in the filtered program is calculated by
summing the arity of the predicates in a given program and dividing it by the
number of predicates in that program. The reduction is more than 50% for all test
case programs.

The reduction in program size is due to both the reduction in arity and the
removal of some calls in the clause bodies. Table 6.5 shows the program size before
and after filtering for the test case programs. This reduction is also substantial.
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Program Arity Avg. live arity Reduction
Specialisation
Time (sec.)

Compass 29 3.5 88% 2.3
Accelerometer 24 3.2 87% 1.5
GPS 46 18 61% 18.6

Table 6.4: Liveness transformation PIC programs

Program
Specialised

emulator (kb)
Transformed
emulator (kb)

Reduction

Compass 40 16 60%
Accelerometer 46 19 59%
GPS 183 94 49%

Table 6.5: Transformation reduction of PIC programs

6.5 Convex Polyhedron Analysis applied to spe-

cialised emulators

The program resulting from the specialisation of the emulator as described up
until now is a logic program equivalent to the initially supplied PIC program,
implementing the same (or a subset of its) semantics. Existing analysis tools and
techniques for logic programs can now be applied to the specialised emulator,
to reason about the PIC program. An example of such a tool is the abstract
interpretation based pre-processor CiaoPP [86], a global program analysis, source
to source transformation and optimisation tool for logic programs.

The specialised emulators contain only numerical data; exceptions to this rule
would be if the emulator had been instrumented with e.g. read/write access pat-
terns as described in Section 6.6.1. The obvious choice is therefore to apply a
numerical analyser to the specialised emulators. In this section we apply the Con-
vex Polyhedron Analyser, developed earlier, to the specialised emulator. These
programs contain non-linear arithmetic operations, like boolean AND, OR and NOT,
that must be given a linear approximation.

The Convex Polyhedron Analyser gives an approximation of the argument value
relationships of the predicates in a program. In the specialised emulator each
instruction in the PIC object program has an equivalent predicate in the residual
logic program. Each element of the abstract machine state, including the data
registers, has its own argument in each predicate. Approximating the arguments
of the specialised emulator results in an approximation of the machine state with
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respect to the object program.

The results from the analysis of the logic program must be presented in a
manner that enables the PIC programmer to interpret these results with regard to
the PIC program. The problem of relating results from the analysis of the (C)LP
program to the “imperative” object program is simplified by ensuring that the
specialised residual program is isomorphic to the object program.

The output of this analysis will be a set of linear constraints between the
registers of the PIC microcontroller, for each program point in the object program.
These constraints can aid the PIC programmer in discovering properties of the
analysed programs, such as possible bugs due to overflows, redundant code due to
static branch conditions etc.

6.5.1 Query-Answer transformation

The specialised emulator is a Prolog program where data flow is propagated in a
top-down fashion, and similarly, the execution strategy of the program is in a top-
down manner. Furthermore, many PIC programs are not intended to terminate
and “succeed” - they simply run forever. The individual calls to the execute-
predicates are not expected to result in an answer unless an error occurs. A
bottom-up analyser, such as the Convex Polyhedron Analyser described in Chapter
4, provides sound information about the set of all possible answers obtained in a
top-down evaluation of the program. Programs where predicate calls can have no
answers, may have an empty model and bottom-up analyses may return no useful
information.

Query-answer transformation of logic program, as also described in Section
2.3, provides a way to use a bottom-up analysis tool to return information about
the computations themselves, in particular, on the set of calls to each predicate
in the program [136]. The query-answer transformation is a generic logic pro-
gram transformation and therefore also applies to our specialised emulators with
no further modifications needed to the specialised emulators or the query-answer
transformation tool.

Example 33. We illustrate the query-answer transformation for the specialised
emulator clauses. Take the clause shown in Example 32 on page 154. If we are in-
terested in obtaining information about the calls to execute__6(D,B,C) the query-
answer transformation would result in the following clause which is an “inverted”
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version of the original execute clause.

execute 6 query(D,B,C) :-
execute 5 query(B,A),
C is B+A,
0 is C>>8,
C \== 0,
D is 24 /\ 254.

All PIC programs start at program memory location 0. Partially evaluating the
emulator produces an execute__0 predicate for this first instruction in the pro-
gram. The query-answer transformation will produce an execute__0_query predi-
cate for this first instruction in the program. When provided with some initially
called goal as a fact, and this would then typically be called execute__0_query

for the first instruction in the program, the bottom-up analyser generates a model
for each query predicate.

6.5.2 Connecting results from analyser to object program

The object program is transformed in several stages, where each stage may rename
registers, transform predicate heads either unfolding lists or eliminating redundant
arguments. The analysis output is specified with respect to the specialised emu-
lator, but the output should be presented with respect to the object program.
Each program transformation step must supply some information specifying what
previous predicate head has been transformed to the current predicate head. The
Logen partial evaluator supplies comments in the residual program stating the
exact predicate including its arguments, that through unfolding resulted in a par-
ticular predicate in the residual program. The redundant arguments filtering was
modified to supply similar comments in the resulting filtered program. The pro-
cedure to translate analysis results from the Convex Polyhedron Analyser (CPA)
to the object program involves the following steps:

1. The CPA renames the arguments of the predicates. Each argument position
of each query-predicate in the output is mapped to that same argument
position of the execute-predicate in the FAR filtered program.

2. Each argument name of the FAR filtered predicates is mapped to its argu-
ment position in the residual program from the Logen specialiser.

3. The name of the arguments of the predicates in the residual program is
mapped to its register number in the PIC emulator. Accumulator, PC and
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other machine state elements can be identified by their argument position.

4. The register numbers are located in the assembled PIC program to identify
what name that particular register has been given by the programmer. The
constraints from the CPA can now be renamed to register numbers used in
the PIC program.

5. The PC identified in the residual program can be used to find the exact
instruction in the PIC program that the execute-predicate implements. The
renamed constraints for that execute-predicate are presented next to the
PIC instruction in the assembler program.

Example 34. Figure 6.6 illustrates the process for the instruction previously used
in Example 28. The results for the execute 5 query-predicate from the Convex
Polyhedron Analyser is mapped to the exeute 5-predicate from the Reverse Re-
dundant Agument Filtering which in turn is mapped to the execute-predicate in
the PIC emulator. Argument A of the query-predicate is mapped to register num-
ber 16 which is located in the assembled PIC program and indentified to be named
“SUM”. Argument B is identified to be the accumulator. The instruction is iden-
tified to be number 4 in the object program and translates to “addwf SUM,0” with
the constraints “[1*SUM=64,1*Acc=64]”.

6.5.3 Integer grid polyhedra

Only integer values can occur in the clause heads of the specialised emulators,
and all arithmetic operations in the clause bodies yields integer results for integer
operands, e.g. division, that could result in a rational number, does not occur in
any clause bodies. The n-dimensional polyhedra are therefore implicitly restricted
to n-dimensional integer grids, e.g. the 2 dimensional polyhedron P , shown in
Figure 6.7 on page 160 is restricted to the intersection of that polyhedron with
the 2-dimensional integer grid Z2, PZ = P ∩ Z2. Projection of a 2-dimensional
polyhedron over the rational (or real) numbers onto a single dimension results
in an interval that is the most precise approximation. Projecting the rational
polyhedron shown in Figure 6.7 onto the x-axis would result in the accurate ap-
proximation X > 0, X ∈ Q. Projecting the same polyhedron again, only this
time intersected with the integer grid, onto the x-axis would ideally result in the
accurate approximation 2 ∗X +1 ≥ 0, X ∈ N. Using a polyhedral analyser for the
rational domain to analyse programs over the integer domain may lose precision
during projection. For the example polyhedron shown here, projection may result
in the interval X > 0 implicitly with X ∈ N which may be a safe approximation,
but not a precise approximation, of the odd numbers.
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Output:
addwf SUM,0 [1*SUM=64,1*Acc=64]

ASM:
00000010 00010 SUM EQU 10H
. . .

0004 0710 00023 addwf SUM,0

PE:
/* execute([...],[...,14-P,15-Q,16-R,17-S,18-T],4,A) :-

execute 5(T,R,P,N,L,J,H,F,D,B,C,E,G,I,K,M,O,Q,S,A). */

FAR:
/* execute 5(A,B,C,D,E,F,G,H,I,J,K,L,M,N,O,P,Q,R,S,T):-execute 5(B,T) */

CPA:
execute 5 query(A,B) :- [1*A=64,1*B=64]
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Figure 6.6: Translate results from analysis of specialised emulator to results for
source object program. Translation is a reversal of the specialisation process, so
the figure is read “bottom-up”.
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Figure 6.7: Projecting the 2-dimensional integer grid polyhedron P onto the x-axis
is approximated by the set of odd numbers.

When our analyser (over the rational domain) is applied to the specialised
emulators, no explicit conversion to the integer domain takes place. This may, as
shown above, result in a loss of precision.

The specialised emulators contains a few boolean operators (over integers) for
which some linear approximation must be given. These are described next.

6.5.4 Linear approximation

The example code shown in Example 33 contains two non-linear arithmetic ope-
rations, the bit shift ‘>>’ and the boolean AND ‘/\’. Approximation for these two
operators plus other boolean operators that the emulator may use such as OR and
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NOT (bit-wise negation) must be added to the Convex Polyhedron Analyser. The
linearisation procedure for the analyser, described in Section 4.3.4, is extended
to include approximation of boolean operators. These operators are not typically
found in CLP programs.

Bit-wise negation

The approximation of the unary operator NOT depends on the maximum integer
size of the abstract machine we are modelling. In our case study, the 8 bit PIC
micro-controller the maximum integer value is 255. This bit-wise negation operator
can be given an exact linear approximation. The Prolog term X is \Y, where ‘\’
is the Prolog syntax for bit-wise negation, can be approximated by the expression
X = 255− Y .

Boolean AND

For the AND operator it is not possible to give an exact numerical approximation if
either of the operands is not a constant. The results however can never be greater
than smaller one of the two operands, and never less than zero, assuming the
abstract machine only allows for unsigned integers. The Prolog term X is Y /\ Z

can be approximated by the constraints X ≤ Y ∧X ≤ Z ∧X ≥ 0.

Boolean OR

Similarly with the OR operator. If either of the operands is not a a constant, an
exact approximation cannot be given. The result of an OR operation however can
never be greater than the sum of the operands and never smaller than the largest
operand. The Prolog term X is Y \/ Z can be approximated by the constraints
X ≤ Y + Z ∧X ≥ Y ∧X ≥ Z.

Bit shift

The PIC processor has a bit shift instruction for left shifting of bits in a data
register, and an operation for right shifting of bits. Bits can only be shifted one
position at a time. Left-shifting bits one position equals multiplication by 2 - this
case has already covered under the arithmetic operations. Right-shifting is division
by 2 and rounding down to nearest integer.

These approximations are not very precise. As shown in Example 35 the con-
straints on registers whose values are the result of a series of boolean operations,
are correct but not precise. The resulting set of constraints from the analyser is
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renamed and shown along the PIC object program following the procedure de-
scribed previously in Section 6.5.2. In this particular example no special features
of the analyser, such as delayed widening or widening up-to, has been enabled.
This is also evident from the lack of a lower bound for the CNT or SUM register.
The following sections will demonstrate how narrowing, widening up-to and de-
layed widening for the Convex Polyhedral domain can be used to recover bounds
and improve precision of the analysis results for the PIC programs.

Example 35. This example is a small PIC program containing a loop of 10 ite-
rations in which a register is incremented by two in each iteration. This is imple-
mented with an OR and an ADD instruction. The instruction decfsz decrements
CNT and skips the following instruction if the result is 0.

Running it through the analyser produces the constraints shown below. The
constraints are shown for the live machine state (data registers and accumulator)
prior to the execution of the listed instruction. Acc is the accumulator - its value
is 1 from instruction 5 and to the end of the program. The precise value of SUM
after the loop terminates, is 20. The analysis shows it to be less than or equal to
20; a correct result but not an exact result. The loss of precision is a result of the
inexact approximation of the OR-operator.

1: movlw D’10’
2: movwf CNT [1*Acc=10]
3: movlw D’0’ [1*CNT=10]
4: movwf SUM [1*CNT=10,1*Acc=0]
5: movlw D’1’ [1*SUM=0,1*CNT=10]
6: loop1
7: iorwf SUM,1 [-1*CNT>= -10,-1*SUM+ -2*CNT>= -20,1*Acc=1]
8: addwf SUM,1 [-1*CNT>= -10,-1*SUM+ -2*CNT>= -21,1*Acc=1]
9: decfsz CNT [-1*CNT>= -10,-1*SUM+ -2*CNT>= -22,1*Acc=1]
10: goto loop1 [-1*CNT>= -9,-1*SUM+ -2*CNT>= -20,1*Acc=1]
11: goto MAIN [-1*SUM>= -20]

Replacing the iorwf-instruction with an addwf-instruction that has the same
effect as the iorwf-instruction for this particular program, and has an exact lin-
ear approximation, results in the following constraints. The result after the loop
terminates is now an exact result.
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1: movlw D’10’
2: movwf CNT [1*Acc=10]
3: movlw D’0’ [1*CNT=10]
4: movwf SUM [1*CNT=10,1*Acc=0]
5: movlw D’1’ [1*SUM=0,1*CNT=10]
6: loop1
7: addwf SUM,1 [1*SUM>=0,1*SUM+2*CNT=20,1*Acc=1]
8: addwf SUM,1 [1*SUM>=1,1*SUM+2*CNT=21,1*Acc=1]
9: decfsz CNT [1*SUM>=2,1*SUM+2*CNT=22,1*Acc=1]
10: goto loop1 [1*SUM>=2,1*SUM+2*CNT=20,1*Acc=1]
11: goto MAIN [1*SUM=20]

6.5.5 Widening

In the numerical domain arithmetic operations have no upper or lower bounds.
For infinite chains of operations some mechanism must be implemented to ensure
or accelerate the convergence of the fix point computations. This is what the
polyhedral widening operator ensures. Various widening operators are provided
by the Convex Polyhedron Analyser. In our specialised emulators loops can occur
- even non terminating loops. Widening will ensure termination of the analysis,
but at the cost of precision. Typically this will be evident in a lack of either upper
or lower bounds.

Example 36. Take for example the small PIC program shown below; a simple
loop of 10 iterations, in which 10 is added to a register in each iteration of the loop
(when the loop terminates the register contains the value 100).

1: movlw D’0’
2: movwf SUM [1*Acc=0]
3: movlw D’10’ [1*SUM=0]
4: movwf CNT [1*SUM=0,1*Acc=10]
5: loop1
6: addwf SUM,1 [1*SUM>=0,1*SUM+10*CNT=100,1*Acc=10]
7: decfsz CNT [1*SUM>=10,1*SUM+10*CNT=110,1*Acc=10]
8: goto loop1 [1*SUM>=10,1*SUM+10*CNT=100,1*Acc=10]
9: goto MAIN

The register containing the loop counter (CNT), if isolated in the constraints,
lacks the lower bound ‘1’ inside the loop. Apart from that, the register containing
the sum of 10s, has the right relation with the loop counter. Isolating SUM in the
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constraints for instruction 7 yields the following equation: SUM = 110−10∗CNT,
for CNT ∈ [1, . . . , 10]⇒ SUM ∈ [10, 20, 30, . . . , 100] or the exact values SUM will
be assigned in the loop.

Analysing the same program with either of the following widening techniques
enabled - widening up-to, delayed widening for at least 10 iterations or simple
narrowing - gives the correct lower bound.

1: movlw D’0’
2: movwf SUM [1*Acc=0]
3: movlw D’10’ [1*SUM=0]
4: movwf CNT [1*SUM=0,1*Acc=10]
5: loop1
6: addwf SUM,1 [1*SUM>=0,-1*SUM> -100,1*SUM+10*CNT=100,1*Acc=10]
7: decfsz CNT [-1*SUM> -110,1*SUM>=10,1*SUM+10*CNT=110,1*Acc=10]
8: goto loop1 [-1*SUM> -100,1*SUM>=10,1*SUM+10*CNT=100,1*Acc=10]
9: goto MAIN

For this particular example PIC-program any of the three improved widening
techniques will suffice. This is not true in general. The next section will compare
the techniques for the specialised emulators.

6.5.6 Convex Polyhedron Analysis of PIC programs

The structure of the specialised emulators resembles that of an imperative pro-
gram. Generally speaking an imperative program is characterised by sequences of
computations, where each step in a sequence changes the program state. In the
specialised emulator a step in a computation sequence is equivalent to a predicate.
We will consider the specialised emulators to be imperative style constraint logic
program. The limited size of the stack on the PIC microcontroller limits the pos-
sibilities for the PIC programmer to write recursive programs. Loops in the PIC
object program would be translated to loops in the imperative style CLP program.

The Convex Polyhedron Analyser has already been applied to a handful of de-
clarative style CLP programs in Chapter 4. The imperative style CLP programs
justifies a new evaluation of the analyser for these particular programs. The pro-
grams that were used to evaluate the analyser in Chapter 4 were small programs
that resulted in a set of constraints that were small enough to present in this thesis.
As Table 6.5 on page 155 shows, the specialised emulators are significantly larger
programs, from 16kb and up, whose resulting set of constraints from the analysis
will be too large to present here.
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As a rule of thumb a higher number of constraints represents a more precise
approximation for a predicate. Below are the results for a single predicate of the
compass-program. With standard widening the approximation is

execute 100 query(A, B, C, D) :- [1 ∗ C >= 0]

Analysing it with delayed widening produces the following result for the same
predicate

execute 100 query(A, B, C, D) :- [−1 ∗ C >= −255, 1 ∗ C >= 0,−1 ∗ A >= −1]

In this case the larger set of constraints also results in the smaller, and there-
fore better, approximating polyhedron. If the two sets of constraints were e.g.
[A < 100] and [A < 1] then of course the latter set of constraints results in the
smaller polyhedron, though the sets have the same size. For easy comparison of
the analysis results for larger programs, we will simply use the size of the sets of
constraints to find the better approximation.

Delayed Widening

One of the methods for improving precision of the CPA is the delayed widening
technique, where the application of the widening operator is postponed for a num-
ber of iterations of the fix point computations. The particular structure of the
specialised emulators results in only those query-predicates, whose predecessor in
the call graph has been assigned an approximating polyhedron, can themselves
be assigned an approximating polyhedron. The minimum number of iterations
of the fix point computations to complete before all query-predicates have been
assigned an approximating polyhedron, in a worst case situation, is equal to to
the height of the minimal spanning tree of the call graph starting at the entry call
for the program. If the height of this tree is greater than the number of itera-
tions to delay, widening at some program points may not benefit from the delayed
widening. Table 6.6 on the next page shows the results of analysing the compass
case study program, with different number of iterations to delay widening with.
The third column shows how many iterations the analyser requires to reach a fix
point. The last column shows the number of constraints found for the program -
a higher number generally means more precise approximation. Delaying for any
number shorter than the length of the program - 141 instructions in this particular
program - results in little gain in precision of the approximation.

For large programs this may mean a high number of iterations to delay widen-
ing. One alternative to the delayed widening strategy has been explored. Instead
of starting widening after a certain number of iterations, widening is only applied
every second, third etc. iteration. The results of this strategy is shown in Table 6.7.
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Program
Delayed

Widening
(iterations)

Number of
Iterations

to fix point

Resulting
Constraints
(Number of)

Compass 0 158 200
Compass 5 158 200
Compass 10 158 200
Compass 30 158 200
Compass 100 178 223
Compass 140 208 289
Compass 150 212 350
Compass 160 212 350

Table 6.6: Delayed Widening for PIC programs

This technique does not result in more precise approximations or fewer fix point
iterations overall compared to delaying widening for a large number of iterations.
And delaying for more iterations does not necessarily result in more precision than
delaying for fewer iterations.

A final solution would be to let the delaying of the widening apply individually
to each widening point. A widening point is not considered until after a certain
number of fix point iterations. This number is equal to the length of some path
in the call-graph, from entry to the particular widening point. If widening should
be delayed for d iterations, and p is a widening point and the shortest path from
entry to p is of length l, then widening only applies to p after l + d iterations.
Table 6.8 shows the results of following this procedure. After 9 iterations there
are no improvements to be gained from delaying widening. This happens to be
the result for all three test case programs. These three PIC programs all contain
loops of exactly 8 iterations. These loops typically occur when the programs reads
input one bit at a time. This suggests that the number of iterations that widening
should be delayed, should be determined by the sizes of the static loops in a given
program.

Widen up-to and narrowing

Table 6.9 shows the results of applying the CPA to the specialised case study PIC
programs. For the compass program the best result is achieved using a combination
delayed widening, widen up-to and narrowing. The most significant gain appears
to come from delayed widening and widen up-to. Narrowing contributes only few
extra constraints. For the accelerometer program only widen up-to shows a small
gain in precision.
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Program
Iterations
between
widening

Number of
Iterations

to fix point

Resulting
Constraints
(Number of)

Compass 0 158 200
Compass 1 158 220
Compass 2 203 261
Compass 3 178 316
Compass 4 170 268
Compass 5 204 310
Compass 6 207 246
Compass 7 208 306
Compass 8 215 281
Compass 9 207 268
Compass 10 186 301

Table 6.7: Delayed Widening for PIC programs

Program
Delayed

Widening
(iterations)

Number of
Iterations

to fix point

Resulting
Constraints
(Number of)

Compass 7 208 227
Compass 8 208 266
Compass 9 215 354
Compass 10 215 354
Compass 20 215 354

Table 6.8: Delaying individually per widening point

167



Program
Delayed

Widening
(iterations)

Simple
Narrowing
(iterations)

Widen
up-to

Resulting
Constraints
(Number of)

Compass 200
Compass 200 209
Compass

√
302

Compass 10 354
Compass 10 200 357
Compass 10

√
362

Compass 10 200
√

363
Accel. 420
Accel. 300 420
Accel. 10 420
Accel.

√
426

Accel. 10 300
√

426
GPS 6319

Table 6.9: Widening for PIC programs

Analysis of the GPS program is only possible without using improved widening
techniques. This analysis takes just over 1 minute to complete. Analysing with
delayed widening or widen up-to does not complete within 15 minutes. Narrowing
results in the Ciao Prolog process allocating more than 1 GB memory. Asserting
facts allocates memory but it does not appear to free this memory when the
facts are retracted. This GPS program has a much larger live state than the two
others, as Table 6.4 also shows. The approximating polyhedra are of similarly
large dimensions. For this particular program “aggressive” widening is needed to
accelerate the fix point computations at the cost of precision.

Selecting Widening Points

Section 4.3.5 described how the set of widening points for a program could be
calculated. An algorithm selecting widening points based the number of loops
that the individual program points cuts, was suggested. The results reported
so far in this chapter on delayed widening, narrowing and widen up-to were all
using the cut-loop algorithm. This section compares the results of this algorithm
to the feedback-edge algorithm suggested by both Bourdoncle and Cousot [21,
46]. Table 6.10 shows the compass program analysed using both the feedback-
edge detection of widening points, that finds 22 program points to widen at, and
the cut-loop detection that finds 12 widening points. Results are showed using
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Delay
Widen

Narrow
Widen
up-to

Feedback-edge
22 ∇-points

Cut-Loop
12 ∇-points

200 200
200 209 209√

295 302
10 340 354
10

√
355 357

10 200 357 362
10 200

√
363 363

Table 6.10: Feedback-edge results compared to Cut-Loop results

different configurations of the widening operator. Using fewer widening points
improves precision for some combinations of widening strategies. However for this
particular program the number of widening points selected makes no difference
for the resulting precision if either “least” or “most” optimal widening strategy is
used.

6.6 Instrumented emulator

The emulator can be “instrumented” with additional information not present in
the PIC processor. This additional information can be used for program analysis
purposes.

6.6.1 Register Access Patterns

The register list (see Section 6.2.3) could be extended with additional informa-
tion that keeps a history of previous values and operations performed on the
register. Each element in the register list could have the following structure,
RegNr-(Vlist,RWlist), where Vlist is a list of previous values the register has
been assigned, with the current value in the head of the list. The RWlist is a list
of r(PCw,PCr)-terms and w(PCw)-terms signifying that the register has been read
or written. For each instance where the register has been accessed the program
counter (PC) is stored in the terms and denotes at which program point a register
had been read, and at what program point the read value had been written. For
example a write operation at program point 22 would add the term w(22) to the
head of the RWlist , and read operation to the same register at the next program
point would add the term r(22,23) to the head of the RWlist. This procedure
can for instance be used to determine access patterns of the data registers. A
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register would have an illegal access pattern if it was read before it was initialised
thereby propagating undefined values in the program, possibly indicating a bug.
These access patterns can be defined using regular types rules, for instance a read-
before-write type could be defined by the rules

rbw ← [r]; [rw|rbw]
rw ← r; w

Keeping a list of values stored in the register can be used to detect for instance
constant registers. If the same value is written to a register repeatedly is may
reveal redundant computations in the program. This approach to analysing the
PIC microcontroller is described in [85].

6.6.2 Worst Case Execution Time

The results from the convex polyhedron analyser applied to the specialised emula-
tors provided some information about the PIC programs. There are other program
analyses that depends on this information, specifically accurate approximations of
upper and lower bounds on values in a program. An example of such an analysis
is a Worst Case Execution Time (WCET) analysis. This section will briefly illu-
strate how the PIC analyser can be extended to include execution time analysis
for a PIC program.

The PIC microcontroller has a variable clock frequency. The slower the clock
frequence is, the lower the power consumption will be. For a wearable applica-
tion power consumption is important. Wearable software would generally need to
communicate with other devices. And device to device communication typically
requires some precise timing constraints to be met. The WCET analysis can aid
the programmer in determining whether a program meets these timing constraints.

A WCET analysis will give an estimate of how much time a given computational
task will take to complete on a given hardware platform. The estimate is a safe
approximation and is typically stated either in (fractions of) seconds or number
of clock cycles. The clock frequency of the hardware platform will then determine
the actual time to complete the task. The results of the WCET analysis can then
be used for e.g. verification purposes for real time systems where tasks must be
guaranteed to complete within some time frame. If the software fails to meet these
timing constraints the results may have grave consequences such as loss of life.

WCET is a static analysis where abstract interpretation has been applied suc-
cessfully [145]. A WCET analyser would typically contain the following compo-
nents [65]

- A Control Flow Analysis of the object program
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- A Value Analysis computing intervals of data memory, registers etc.

- A Loop Bound Analysis determining upper and lower bounds on the number
of iterations a given loop can be executed

Hardware specific analyses may be required, such as cache analysis, depending on
the hardware platform being modelled.

Parametric WCET

A parametric WCET allows parameters in the expression approximating the WCET.
The execution time of a program may depend on (dynamic) values that will not be
known prior to running the program. The WCET can be parameterised by these
unknown values. Automatically discovering these relations between the parame-
ters and the execution time, can provide insight into how these parameters affect
the execution-time behaviour of the program.

Our analyser already provides the elements required for a WCET analysis. The
CFG is embedded in the specialised emulator. The Convex Polyhedral Analyser
computes the Value Analysis and implicitly also the loop bounds. In other words
no additional analyses are required in our case. Only the execution time of each
program point is missing to complete the WCET analysis.

Instrumenting the emulator with timing information

A loop counter is added to the emulator shown previously in Section 6.2.3. The
counter will be increased by the number of clock cycles that the current PIC
instruction takes to complete. The new emulator loop is shown below.

execute(Prog,StateIn,Clock,Environment) :-
fetchinst(Prog,PC,I,R1,R2),
execInst(I,R1,R2,StateIn,StateT,ClockTicks),
simulatehw(StateT,StateOut,Environment,NewEnvironment),
NewClock is Clock + ClockTicks,
execute(Prog,StateOut,NewClock,NewEnvironment).

An additional argument is required for each emulated instruction. Example 26
on page 127 showed the emulation of the goto-instruction. With the added clock
parameter it now looks like this:

execInst(goto,Arg1, , state(R,S,PC,Acc),state(R,S,Arg1,Acc),1).
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This procedure is similar to that outlined by Cousot and Cousot in Example
15 in [54]:

“Observe that the analysis discovers relations between variables that
never appear within the same command. Incidentally, this fact can be
used to prove automatically the termination of loops: a new counter
is added to the program for each loop which is initialized to zero and
incremented by one within the loop body. The analysis will relate its
value to that of the other variables of the program. If the value of
the counter is bounded on loop exit, then termination is automatically
proved.”

If the worst case execution time is bounded then similarly termination of the
program is proved. We count not the number of loop iterations but the number
of clock cycles executed for every instruction in the program.

Examples where the convex polyhedron analyser is applied to the instrumented
emulator is shown next.

A loop can have a “static” or “dynamic” number of iterations and similarly
the length (in instructions) of a loop iteration can be static or dynamic. Two
examples will show that a static number of iterations and loop length yields exact
execution time approximation and a dynamic number of iterations and dynamic
loop size results in a safe approximation that is still precise.

Example 37. A PIC program containing a simple loop was shown in Example
36. Re-analysing the program with global clock enabled and none of the improved
widening methods enabled, produces the following constraints (for brevity only con-
straints on the clock are reported).

1: movlw D’0’ [1*Clk=1]
2: movwf SUM [1*Clk=2]
3: movlw D’10’ 1*Clk=3]
4: movwf CNT [1*Clk=4]
5: loop1
6: addwf SUM,1 [1*Clk>=5,4*CNT+1*Clk=45,2*SUM+ -5*Clk= -25]
7: decfsz CNT [2*SUM+ -5*Clk= -10]
8: goto loop1 [2*SUM+ -5*Clk= -15]
9: nop [1*Clk=44]

Each loop takes 4 clock cycles, there are 10 iterations and 4 clock cycles are
spent initialising the registers. The correct result ‘44’ is found. The execution time
of this example program does not depend any input values, hence no parameterised
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expression of the execution time is given. The next example will show a program
where WCET can be stated as a parameterised expression.

Example 38. A modified version of the program shown in Example 36 is listed
below. The number of loops to execute is now read from the input port. With
external input considered dynamic, the result can be any integer in the interval
[0, . . . , 255]. The value read is restricted to the interval [1, . . . , 16] by applying
boolean AND with the value ‘15’ and adding ‘1’.

In this example a conditioned call to a subroutine is added to the loop. The sub-
routine will be executed depending on whether bit 3 is set in the register ‘SUM’ - an
otherwise useless condition. Analysing this program gives the following constraints
on the clock:

1: movlw D’0’ [1*Clk=1]
2: movwf SUM [1*Clk=2]
3: movf INPUT,0 [1*Clk=3]
4: andlw D’15’ [1*Clk=4]
5: addlw D’1’ [1*Clk=5]
6: movwf CNT [1*Clk=6]
7: movwf LOOPSIZE [1*Clk=7]
8: movlw D’10’ [1*Clk=8]
9: loop1
10: addwf SUM,1 [-6*LOOPSZ+6*CNT+1*Clk>=9,

10*LOOPSZ+ -10*CNT+ -1*Clk>= -9]
11: btfsc SUM,3 [-6*LOOPSZ+6*CNT+1*Clk>=10,

10*LOOPSZ+ -10*CNT+ -1*Clk>= -10]
12: call oddloop [-6*LOOPSZ+6*CNT+1*Clk>=11,

10*LOOPSZ+ -10*CNT+ -1*Clk>= -11]
13: decfsz CNT [-6*LOOPSZ+6*CNT+1*Clk>=12,

10*LOOPSZ+ -6*CNT+ -1*Clk>= -16,
10*LOOPSZ+ -10*CNT+ -1*Clk>= -16]

14: goto loop1 [1*SUM>=10,1*SUM+ -1*Clk>= -7,
-3*SUM+5*Clk>=35]

15: goto MAIN [-6*LOOPSZ+1*Clk>=8,10*LOOPSZ+ -1*Clk>= -8]
16: oddloop
17: nop [-6*LOOPSZ+6*CNT+1*Clk>=13,

10*LOOPSZ+ -10*CNT+ -1*Clk>= -13]
18: return [-6*LOOPSZ+6*CNT+1*Clk>=14,

10*LOOPSZ+ -10*CNT+ -1*Clk>= -14]
19: MAIN

If the longest loop path is taken then each loop iteration takes 10 clock cycles to
complete. There can be up to 16 iterations of the loop. Finally there are 10 clock
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cycles spent initialising and exiting the loop. The constraints found on the clock
after loop exit is

[-1*Clk>= -170,1*Clk>=16]

The upper bound approximation of the clock, 16 ∗ 10 + 10 = 170, is both safe
and precise. The shortest path through the program is one loop iteration (of 6
clock cycles) where the subroutine is not called, taking 16 clock cycles to complete
including setting up the registers initially.

Projecting the constraints onto Clk and LOOPSIZE gives the following parame-
terised expression for the execution time

[-6*LOOPSZ+1*Clk>=10,10*LOOPSZ+ -1*Clk>= -10,1*LOOPSZ>=1,-1*LOOPSZ>= -16]

Here the sizes of the shortest and longest path through the loop are indirectly stated
in the constraints. The number of clock cycles used to set up the loop can also be
extracted from these constraints.

For the PIC test case programs the timing critical part is the subroutine sending
(or reading) a byte from the I/O port attached to a serial interface. The subroutine
transmitting a byte, one bit at a time, is shown in Figure 6.8. The value NUMBIT
determines the number of bits to transmit (a constant of 8). An additional stop
bit will be appended to the bit stream. Analysing this subroutine results in the
constraints [−1 ∗ Clk > −124, 1 ∗ Clk >= 16] for the global clock. Each iteration
of the loop will take on average (124 − 5)/9 = 13, 2 clock cycles - worst case is 9
iterations and 5 clock cycles are spent setting up the registers initially. Assuming
the expected bit rate on the output port is 4800 bps then we can calculate the
slowest clock frequency that will meet the timing constraints. At 4800bps the
delay between bits must be 4800−1 = 208µs. Each clock cycle should then take
208
13,2

= 15, 75µs. This translates to a clock frequency of 15, 75µs−1 = 63, 5kHz . In
other words, any clock frequency slower than this cannot transmit at 4800bps.

If the clock frequency is known then the delay between loop iteration required
to meet the desired bitrate can be calculated. At 1MHz a clock cycle is exactly 1µs.
At 4800bps, each loop iteration should take 208µs. Executing a loop iteration at
this frequency takes about 13µs leaving an artificial delay of 195µs to be introduced
in each iteration of the loop to meet the timing requirements for the desired bit
rate.

6.7 PIC Analysis Tool

The PIC analysis tool have been made available online. This illustrates that the
whole procedure can be fully automated with no other involvement from the user
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XMIT

MOVWF SER_TX ; Data shifter

MOVLW NUMBIT+1 ; Get the bit count + 1 for start bit

MOVWF BITCNT ; Preset data bit (down) counter

; Send the start bit

TXLOW ; Set start bit level

GOTO XMITC ; Wait for start element to go

; Set the transmit data level from the carry and wait for an element

XMITA

RRF SER_TX,1 ; Clock shift register RIGHT through carry

SKPNC ; If data (carry) is ’0’, skip

GOTO XMITB

TXLOW ; Data is ’0’

GOTO XMITC

XMITB

TXHI ; Data is ’1’

XMITC

; WAITEM ; Wait for the element to go

; Count the elements as they are sent

TSTF BITCNT ; Zero if just sent the stop bit

SKPNZ ; Skip next if bit count is not zero

RETURN ; Exit from XMIT

DECFSZ BITCNT,1 ; Dec. bit count, skip if zero

GOTO XMITA ; Loop until all bits are sent

; Bit count has zeroed, send the stop bit

TXHI ; Set stop bit

GOTO XMITC ; Wait for the stop bit to go

Figure 6.8: PIC code for serial transmission of single byte
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Figure 6.9: Example output from analysis of a PIC program

than simply supplying a program for analysis. An example output of the analysis
is shown in Figure 6.9. The diagram in Figure 6.10 on the facing page shows:

- The data that must be supplied by the user (only the PIC program).

- The elements of the analyser that must be written specifically for our parti-
cular case study PIC microcontroller.

- The set of tools used to transform and analyse the supplied PIC program.

- A web-based front-end making the analysis tool available online.

To try out the analysis too, visit the URL

http://wagner.ruc.dk/PIC/ConvexHull/
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Figure 6.10: Structure of web-based front-end to PIC analyser
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Chapter 7

Related work

The main topic that was covered in this thesis was the application of abstract
interpretation based analysis tools to embedded systems and software such as that
used in wearable computing. In this chapter we review related work. The analysis
tools developed in this thesis were developed independently of the overall goal. We
therefore also review related work for these tools.

Abstract Interpretation of embedded software

There are related projects applying abstract interpretation based frameworks to
embedded software to aid programmers in producing reliable and efficient soft-
ware. The Hoist [130] project explores two abstract domains; the interval domain
which is a less powerful domain than the polyhedral domain but with computa-
tionally better performance, and a bit wise domain that can potentially give more
precise approximations than the polyhedral domain for code containing boolean
arithmetic. In Hoist the analyser is applied to an emulator of the target machine.
Hoist can use an existing emulator to automatically construct abstract transfer
functions. It derives the transfer functions by brute force, i.e. trying all possible
input combinations for a given instruction, hence at the moment it is limited to
8 bit processors. Deriving a single transfer function can take a day’s time. The
derived transfer functions can then be used in an abstract interpretation based
analyser. Relying on existing emulators would make it difficult to instrument the
emulator to obtain WCET analysis results, just to give an example. It does not
capture numerical relations between data registers which would be required to
obtain parametric WCET results.

The aiT [65] tool is specialised for timing validation of embedded software. It
applies abstract interpretation based analysers over the interval domain to approx-
imate register values and loop bounds. It is not a fully automatic WCET analyser
since some user input may be required, e.g. manually specifying safe approximation
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of loop bounds. The tool can handle more advanced features of modern processors,
such as caches and pipelines, to give more precise timing analysis results. The tool
has successfully been applied to real-time critical embedded software such as the
flight control systems of the Airbus A3801.

Program analysis using logic based meta-programs

Using logic programming to analyse other programming languages has been stu-
died before [87]. In [59] program analyses formulated declaratively were used for
groundness analysis of logic programs and strictness analysis of functional pro-
grams. Semantic properties of the target language were expressed as logic pro-
grams. XSB, a table-based logic programming system was used to compute the
models of these logic programs.

Closely related to property programming is the work by Whaley and Lam [152].
They analysed Java byte code where properties of objects defined in the Java code
were stated as Datalog rules. BDDs were used to provide an efficient means of
evaluating the Datalog programs. Data Flow Analysis of imperative programs
using logic based approaches has previously been investigated in [131, 137].

Recently .NET intermediate code (similar to Java’s byte code) have been ana-
lysed and transformed using an extension of logic programming called path logic
programming [64].

Saha and Ramakrishnan [138] formulated incremental and demand driven pro-
gram analyses (e.g. pointer analysis) as logic based rules. This was used for analysis
of C-source code.

Polyhedral analysis

Analysis of argument size relationships of constraint logic programs has previously
been investigated. Argument size analysers are typically applied in connection with
termination analysis [14, 118, 119, 150]. Polyhedral analysers have been applied
by Benoy and King [12], and Bagnara [4] applied a restricted form of polyhedra
limited to rectangular bounding boxes corresponding to the interval domain.

Improved widening operators and widening strategies is an active research area
that has been explored in e.g. [5, 142, 78].

Polyhedral analysis have previously been used for finding parametric WCET
results [111, 79]. Authors claims this work is the first fully automatic parametric
WCET analyser. The method applies abstract interpretation over the polyhedral
domain to automatically detect bound on loop iterations. Standard polyhedral
widening is used to accelerate fix point computations.

1http://www.absint.com/releases/050427.htm

180



Type analysis and tree automata

Type based analysis of logic programming is an established field [26, 40, 39, 2,
31, 67]. Much work exists in the field of type inference for logic programming
[32, 10, 25, 66, 89, 25].

Pre-interpretation based analyses were introduced in the early 1990s [20, 19,
70]. Tree Automata are increasingly being used in the field of static analysis,
abstract interpretation, logic programming etc. [75, 122, 43, 84, 17]. It is a well
known property of Tree Automata that any Finite Tree Automaton (FTA) can be
turned into a (bottom-up) Deterministic Finite Tree Automaton (DFTA). It is also
well known that this transformation can in the worst case result in an exponential
increase in the number of states and transitions. Efficient ways of representing
automata state spaces has previously been studies [17] including the use of BDDs
for this purpose [113].
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Chapter 8

Conclusion

An approach to analysing programs written for small microcontrollers used in
areas such as wearable computing has been described. The method is based on
general program analysis and transformation techniques. The analysis tool has
been applied to an example microcontroller architecture and test case programs.
Analysis results obtained using this tool includes information about dead code in
the programs, more optimal memory allocation and timing information.

The method is based on transforming the object program into a logic program
equivalent. This is accomplished by constructing an “interpreter” for the micro-
controller and subsequently applying partial evaluation to this interpreter with the
object program as static input. This approach is based on an established and well
researched topic. For our purpose it has the advantage that the emulator can be
instrumented with additional information not part of the underlying language’s
semantics. For instance adding information about how many clock cycles each in-
struction takes to complete resulted in a Worst Case Execution Time analysis for
the object program. A control flow analysis of the object program was required for
offline partial evaluation of the emulator. A Datalog based approach for obtaining
flow analyses was described.

An advantage of our approach of relying on logic programming as meta-programs
for analysis, is the relative ease of developing a similar tool for a new language
or microcontroller. New analysis tools developed for logic programs, which are
emerging constantly, would also straightforwardly apply to our target platforms.
The analysis tools applied to the transformed programs are mainly abstract inter-
pretation based. Combining the analyses may lead to precision gains compared to
applying them individually - this property is known as the reduced product domain
[53].

The programmer using the analysis tool need not be aware that it relies on logic
programming. The prototype implementation of the tool translates and presents
the analysis results back to the object program transparently to the user.
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Analysis tools for logic programs

Some tools required for our analysis approach are readily available for logic pro-
grams, such as partial evaluators and polyhedral programming libraries. Addi-
tionally, abstract interpretation based program analysers for logic programs can
easily be constructed following well described method. Two analysis tool for logic
programs were constructed; a convex polyhedron analyser and a type analysis tool.
The analysis tools have been made available via web interfaces. This allows easy
demonstration of the capabilities of the tools, convenient experimentation with the
tools etc.

Convex polyhedron analyser

The convex polyhedron analyser for constraint logic programs is based on an ex-
isting polyhedral library. This has the advantage that as precision and efficiency
of the polyhedral operations improve, such progress is easily added to our tool
when they are implemented in the programming library. The analyser implements
a number of techniques for improving precision of the analysis including a simple
narrowing operation for convex polyhedra. A novel technique of computing widen-
ing points is implemented that provides a small set of program points to widen on
compared to the classical feedback edge method. The precision is equal to those
previously reported for convex polyhedral analysers for CLP.

Deterministic regular types

A method for automatically deriving pre-interpretations from regular type speci-
fications was described. It is based on Finite Tree Automata techniques. Deter-
minising the FTA description of the regular types results in a pre-interpretation.
An efficient algorithm for determinsing the FTAs was described. It was further-
more described how an analysis based on the derived pre-interpretations can be
computed using a BDD-based Datalog solver.

The deterministic type method has been used for propagating binding types
for offline partial evaluation, among other applications.

Further work

The polyhedral domain is not suited for approximating programs making use of
boolean operations. Other abstractions can be applied to the specialised emulator
to improve precision of the approximation. This could, for example, be a bit-size
domain where registers are assigned a type based on which bit is the most signif-
icant bit in the value contained in the register. For instance, the result of an OR

operation between two registers would be the largest bit-size of the two operands,

184



and similarly bit shifting can be given more precise approximations in this do-
main. This symbolic abstraction could complement the numerical abstraction of
the polyhedral domain to produce more precise results. The pre-interpretations
based on regular type descriptions could possibly be used for this purpose.

Backwards analysis is another common analysis technique used on logic pro-
grams that could be applied to the specialised emulator to detect, for instance,
preconditions that guarantees that certain parts of the code, such as error handling
routines, are never executed.
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