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Abstract

The dissertation concerns the efficient application of probabilistic logic pro-
gramming – in particular the PRISM system – to problems involving bi-
ological sequence data. Specifically, I consider DNA-feature-annotation in
general and gene-finding in bacterial DNA in particular. A compositional
framework for complex sequence annotation, Bayesian Annotation Net-
works, inspired form traditional Bayesian Networks is developed. In this
new framework, probabilistic annotation models assumes the role of condi-
tional probability tables for quantifying dependencies between individual
DNA-features and how they are analysed. I also develop approximative
methods for inference with the framework and apply it to several non-trivial
DNA-annotation tasks and show that computational complexity can be con-
strained to the complexity of the most complex constituent. The inherent
modularity of the approach allows for easy experimentation with alternative
combinations of putative signals for gene-finding in DNA and also allows
local dependencies to be exploited for training and prediction. The disser-
tation is divided in three main parts: Part I introduces the different sci-
entific domains involved in the interdisciplinary study – molecular biology,
sequence analysis, machine-learning – and also provides a formal introduc-
tion to the PRISM system, that is used for example programs throughout
the dissertation. Part II presents the proposed methodology for approxi-
mation and optimization through problem decomposition as a means for
increasing efficiency of complex annotation tasks. The proposed modelling
paradigm, Bayesian Annotation Networks, is introduced and formally de-
fined as the main original contribution of the dissertation, and two examples
of employing the paradigm to problems from bioinformatics are presented
and their respective strengths and weaknesses are discussed. Finally, in
Part lll, I present related and future work and present my conclusions.
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Resumé

Denne afhandling omhandler effektiv anvendelse af probabilsitisk logikpro-
grammering – og især PRISM systemet – til analyse af DNA-sekvenser.
Jeg fokuserer p̊a annotering af egenskaber ved, og aspekter af DNA i almin-
delighed og gen-annottering i særdeleshed Der udvikles og dokumenteres
et kompositionelt system, kaldet Bayesian Annotation Networks, til brug
for sammensatte analyse- og annotterings-problemer. I dette system, der
kan ses som en variant af traditionelle Bayesianske netværk, kvantificeres
de forskellige afhængigheds-relationer mellem individuelle aspekter v.h.a.
probabilistiske annotations modeller i stedet for de traditionelle betingede
sandsynligheds fordelinger. Der udvikles yderligere approksimerende algo-
ritmer for inferens med BAN’er som eksemplificeres p̊a flere ikke-trivielle
DNA-annoterings problemer. Det demonstreres at den samlede komplek-
sitet kan begrænses til kompleksiteten af den mest kompleske konstituent.
Systemets modulære opbygning egner sig umiddelabrt godt til experimenter
med potentielle signaler og kombinationer af samme med henblik p̊a for ek-
sempel detektion af gener i DNA. Samme modlaritet muliggør yderligere
udnyttelese af lokale afhængigheder mellem del-analyser i forbindlese med
inferens. Afhandlingen har tre hoved-dele: Part I introducerer de viden-
skabelige domæner der vedrører afhandlingen – molekylær biologi, formel
sprogteori, machine-learning samt en formel introduktion til PRISM sys-
temet, der anvendes til imlementering af eksempler igennem hele afhan-
dlingen. Part II præsenterer den foresl̊aede metodologi til approksimereing
og optimering via problem-dekomposition som indgangsvinkel til effektiv
behandling af sammensatte annotaterings-problemer Afhandliongens hov-
edbiddrag, Bayesian Annotation Networks, introduceres og defineres, og to
eksempler p andvendelse beskrives og diskuteres. Til slut, i Part III, op-
summeres relateret forskning og mulige retninger for videre arbejde, samt
afhandlingens konklussion.
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Chapter 1

Introduction

1.1 Project aims and purposes

The thesis proposed in the dissertation concerns the efficient application of
probabilistic logic programming to biological sequence analysis. In partic-
ular, it is the aim to research the extent to which PRISM, a probabilistic
extension to the logic programming language Prolog, is suited for devel-
oping competitively efficient programs for automatic detection of genes in
bacterial DNA.

Recently developed technologies for extremely efficient automatic se-
quencing of genomic material (see [70] for an early review) have caused a
veritable explosion in the amount of raw DNA to be analysed and anno-
tated, and the need for efficient and accurate automatic methods for DNA
annotation is more pressing than ever.

Automatic methods for predicting and annotating likely genes in DNA
have been researched at least since Roger Staden [71] in the early 1980s
designed a computer program to recognise the distinct structural patterns
formed by tRNA genes in DNA. In general, the best current programs for
gene-finding, i.e., genefinders, [41, 6, 63], are able to detect up to about 90%
of the known genes in well studied bacterial genomes like Escherichia Coli.
About 10%, however, prove to be extremely resilient to automatic detection.
Furthermore, this accuracy is relative to a set of accepted reference genes for
that organism that is almost certanly not complete. Even in extremely well
studied reference genomes, like that of Escherichia Coli, there are likely
to be genes that have not yet been identified and annotated, and thus
missing from the reference. The real proportion of genes that are correctly
detected by state of the art genefinders could therefore be significantly
smaller than 90%. This is supported by recent research [75] indicating, that

3



4 CHAPTER 1. INTRODUCTION

a large number of primarily short genes are missing from current reference
databases of bacterial genomes.

These observations all contribute to the growing need for considering
new ways of regarding the problem of efficient and accurate DNA annotation
in general and gene finding in particular.

For the past 15 years there has been a growing interest and activity in
the research of how to combine logic programming, probability theory and
machine learning into unified modelling languages and formalisms and sev-
eral probabilistic programming languages that extends classical Prolog with
the capability of probabilistic inference have emerged, see for example [26]
for an excellent survey. The inherited declarative strengths of such systems
may prove to be useful for rapid prototyping and experimental model de-
sign, not only for DNA-annotation but for complex sequence analysis in
general.

1.2 The LoSt-project

The research documented here has been carried out as an integral part of the
LoSt-project, “Logic-statistic modelling and analysis of biological sequence
data” [52], funded by the NABIIT program under the Danish Strategic
Research Council.

The project has involved a number of people from both academia and
industry to varying degrees including: Henning Christiansen, John Pe-
ter Gallagher, Ole Skovgaard, Mathieu Petit, Ana Capatana, Søren Mørk,
and Christian Theil Have from Roskilde University. Manfred Jaeger from
Ålborg University, Taisuke Sato and Yoshitaka Kameya from Tokyo In-
stitute of Technology, and Anders Krogh from University of Copenhagen
as well as specialists from industrial companies CLC-bio and Christian A.
Hansen have also been involved in the project as a whole.

The bulk of the present work is the result of my close collaboration with
Henning Christiansen, Matthieu Petit and Christian Theil Have at Roskilde
University. The synergy in this group of people has been of such a vibrant
and cross-fertilizing nature, that it is practically impossible to discern any
single responsibility for most of the published work (which is also why we
consistently denote authorship of co-authored publications alphabetically
rather than in order of contribution). In each case, one or two persons
had primary responsibility but in all cases each co-author contributed ex-
tensively to the content either directly or by continuous discussion and
experimentation.
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The overall goal of the LoSt project is to experiment with one proba-
bilistic logic programming language in particular, namely the Prolog-based
PRISM system [64, 65], as a platform for developing efficient, accurate and
flexible tools for DNA-annotation. Being declarative, PRISM and similar
languages cater for rapid prototyping and clear and concise programs espe-
cially by

• increased expressive power - programs in these languages are gen-
erally shorter and more concise than implementations in procedural
languages,
• executable problem specifications - once a problem has been properly

specified, that specification functions as a working implementation for
the solution of the problem,
• clear and consistent semantics based on classical 1st order logic.

We believe that these strengths allow for systematic experimentation with
- and comparison of - novel or putative gene-signals in DNA and benefit
the development of new and powerful DNA-annotation systems. There are
however also challenges with regard to efficiency of computation when using
Prolog and PRISM, and the overall research question of the LoSt project
can be formulated as follows:

How to implement clear, flexible and efficient systems using PRISM for
accurate DNA-annotation?

Three possible directions of research for the LoSt project were originally
identified:

• Can proper pre-processing of data increase efficiency for example by
identifying regions of special interest and thus avoid unnecessary ana-
lysis?
• Can the underlying implementation of a PRISM-program be opti-

mized, for example based on automatic program analysis?
• Can we apply automatic program analysis to devise an automatic sys-

tem for source to source transformation of PRISM programs (to for
example C++)?

My chosen focus was on pre-processing and in particular on compositional
aspects of DNA-analysis, where a complex overall task is optimized or
approximated by identifying and negotiating constituent subtasks and, in
turn, integrating their analytical results. The motivating research question
of my research within the Lost-project can thus be formulated as:
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Can we establish a system of compositionality for probabilistic annotation
programs in PRISM that retains the strengths of declarative programming
but keeps computational complexity low enough for practical application?

Compositionality of sequence analysis

I present in this work a general, systematic and very flexible methodology,
Bayesian Annotation Networks, for integrating annotations from separate
and independent sub-models and attempt to evaluate their relative im-
portance to the overall analysis. The main methodology is based on two
publications in particular:

(2009) Preprocessing for optimization of probabilistic-logic models for sequence
analysis [21], authored by Henning Christiansen and myself.

(2011) Bayesian Annotation Networks for Complex Sequence Analysis [18],
authored by Henning Christiansen, Christian Theil Have, Matthieu
Petit and myself.

The first one [21] concerns early experiments with a systematic method for
decomposing a complex sequence model into simpler constituents. We first
attempt to identify the different analytical tasks as being either simple or
demanding in terms of computational complexity. We then decompose the
overall model accordingly, i.e., into a specialised sub-model for each class
of tasks. By means of yet another sub-model, called a chopper, for simple
pre-analysis of the data-sequence, we attempt to distinguish corresponding
types of sub-sequences: those, that require the complex analysis and those,
that can make do with the less sophisticated analysis. Each sub-sequence
is then submitted to the sophisticated annotation model of its type, and
the individual sub-annotations combined to produce an annotation of the
original sequence. That is, we follow an algorithm along these lines:

1. Apply the pre-processor to distinguish sub-sequences according to
type.

2. Submit each sub-sequence to complex annotation-analysis according
to type.

3. Append the annotations.
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I am responsible for the general idea, prototype program, the experiments
were formulated in dialogue with Søren Mørk and carried out by me while
planning, analysis of results, and the published paper itself represents joint
work between Henning Christiansen and myself. This work – published also
in part in [20] (2008) and [42] (2008) – forms the substrate of chapter 8 of
the dissertation.

We gained at least one important insight in particular from these early
experiments. Namely, that when we, like this, distinguish first and per-
form complex analysis later, then the complex analysis obviously has no
influence what so ever on the distinction. In many cases, where the pre-
processor represents a very simple model without the sophistication of the
specialised annotation-model, this corresponds to letting the blind lead the
seeing. Therefore, if we want the sophisticated annotation programs to in-
fluence the distinction and classification of sub-sequences, we are required
to annotate first and distinguish later. This let me to think of the overall
model in terms of a tree-like structure (a directed acyclic graph, really) of
sub-models, each with their special responsibility be it chopping, feature-
analysis, or integrating, and each depending on the annotations of one or
more of the others. During my stay in Leuven, I enthusiastically applied my-
self to the task of programming a prototype system, consisting of a chopper,
a program for annotating DNA-conservation (in a manner discussed with
Ole Skovgaard and also Ana Capatana prior to my departure), and several
parsers for various existing databases and gene-finder results. I also included
a simple format for specifying order of executing of sub-programs, passing
the results to dependent sub-models and presenting different annotations
for visual inspection. Safely returned to Roskilde, the general merits of the
approach were recognised by the rest of the LoSt-group and it quickly be-
came the main focus for both me, Christian Theil Have and Matthieu Petit.
Other than for visual inspection, however, I had no idea of how to consis-
tently integrate the different annotations of a data-sequence until Henning
Christiansen pointed out the structural and logical similarity to classical
Bayesian Networks, unfamiliar to me at the time. From this evolved the
general methodology of organizing specialized sub-models according to their
interdependencies in a topology, that we now call a Bayesian Annotation
Network (BAN). Matthieu Petit replaced almost all of my initial programs
by clever new versions and we all contributed to a growing library of spe-
cialised annotation models. My simple format for specifying execution order
was replaced by a sophisticated framework, called the LoSt framework, for
specifying topologies, keeping track of already computed annotations and
coordinating probabilities thanks especially to the efforts of Christian Theil
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Have. BAN’s are the topic of the second paper [18], that I had the main
responsibility for though Christian Theil Have contributed significantly to
the experimental part of the paper. Both Christian Theil Have and Hen-
ning Christiansen contributed to the discussion concerning BAN-evaluation
while tentative speculations towards an information theoretical approach to
evaluation is my responsibility. I describe general methodology in detail in
chapter 6, and the experimental part forms the basis of chapter 7.

Other topics

A number of other publications also resulted from the collaborative work
in the LoSt-project, that fell outside the focus of the dissertation:

(2009) A Constraint Model for Constrained Hidden Markov Models [15]
(2010) Inference with constrained hidden Markov models in PRISM [16]
(2010) The Viterbi Algorithm expressed in Constraint Handling Rules [17]
(2011) Taming the Zoo of Discrete HMM Subspecies & Some of their Rela-

tives [19]

all authored by Henning Christiansen, Christian Theil Have, Matthieu Petit
and myself.

1.3 Dissertation overview

In the course of this very interdisciplinary work, I will make reference to
concepts from molecular biology, formal language theory probability theory
and machine learning as well as to PRISM and Prolog in general. The rest
of Part I of the dissertation is therefore devoted to a short general intro-
duction to each of these domains along with the related terminologies and
conventions adopted in the dissertation. Part II will describe in detail the
proposed methodology that evolves around the central idea of formulating
a complex annotation task in terms of Bayesian annotation networks of
annotations, I also document and discuss experiments with the proposed
methodology. In Part III, I make reference to future and related work before
I sum up my conclusions.

A word on examples, figures and Illustrations

Unless otherwise stated, all examples, figures, and illustrations in this dis-
sertation are of my own devise and to my knowledge not subject to any
other intellectual ownership.
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Background
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Chapter 2

Biological Sequence Data

In this chapter, I introduce the biological terminology employed throughout
the dissertation.
To begin an understanding of the challenges involved in DNA-annotation
and gene-finding (defined below, in section 2.6), it is necessary to also
understand the intricate biological relationship between DNA (section 2.3)
and genes (section 2.1). To this end, section 2.1 introduces the overall
relationships between Cells, Proteins, Genes and DNA, while the remainder
of the chapter provides a more formal terminological definition of individual
concepts and processes.

The material is based entirely on existing literature in the field, in par-
ticular [3, 22, 77]) and, while going into sufficient detail to form a basis for
the thesis presentation and discussion, the reader is respectfully referred
to such sources for a deeper and more thorough study of the domain than
what is supported here. The illustration of molecular constituents of DNA
and their relationships in figure 2.2 (p. 15) is adapted from [3].

2.1 The central ”dogma” of molecular

biology

Among the most important agents in the chemical processes occurring in all
biological organisms are the proteins. Proteins are polypeptides consisting
of sequences of smaller molecules called amino acids.

Proteins are vital for the proper functioning of any living organism and
they are produced in the cells, (see [3] or similar for a thorough treatment
of cells in biology). Each cell in every organism contains, among other
things, the DNA (deoxyribonucleic acids) of the organism. DNA is a macro-
molecule consisting of two strands, each representing a sequence of nucleic-

11



12 CHAPTER 2. BIOLOGICAL SEQUENCE DATA

acid molecules (also-called a poly-nucleotide). The two sequences are in fact
each other’s complements (see section 2.3), and encode the genome of the
organism, i.e., all the hereditary information in the organism – including
the genes for all the necessary proteins.
This relationship – sometimes called ”the central dogma” of biology – be-
tween genes, i.e., DNA and nucleotides, on one side and gene-products, e.g.,
amino acids and proteins, on the other, is defined in terms of two essential
intracellular molecular processes, transcription (section 2.4) and translation
(section 2.5), as also sketched in figure 2.1:

1. The gene for the protein is transcribed to a poly-nucleotide called mes-
senger RNA or mRNA, by a macro-molecule called RNA-polymerase.

2. The mRNA is then translated to the polypeptide that makes up the
protein, by another macro-molecule, the ribosome.

Apart from proteins, functional RNA of various types are also considered
gene-products. These serve functional purposes in the cell directly after
being transcribed and are therefore never translated. Thus, the ribosome
consists, for example, to a large extent of functional RNA, so-called riboso-
mal RNA or rRNA.

A gene that is transcribed and translated in a cell, is said to be ex-
pressed in the cell, and the combined process from gene to gene product
is referred to as gene expression. While all cells in the organism contain
the entire genome, individual cells specialise according to their specific type
and function to regulate what genes are expressed in them.

Prokaryotic vs. Eukaryotic organisms

There is an important distinction between two mutually exclusive groups of
organisms, namely eukaryotes and prokaryotes. The eukaryotes encompass,
among others, plants, fungi and animals. Primarily bacteriae belongs to the
prokaryotic group, but also another sub-group of micro-organisms called Ar-
chaea belong here. The distinction between eukaryotes and prokaryotes is
relevant to DNA annotation for several reasons:

• The number of genes is significantly lower in prokaryotes than in eu-
karyotes. For example about 4.600 genes is thought to make up the
genome of the bacteria Escherichia Coli, while the eukaryotic human
genome is estimated to involve about 20.000 protein coding genes.
• The amount of DNA is bigger in eukaryotic genomes than in prokary-

otic ones. Escherichia Coli’s genome consists of about 4.6 million bp
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Figure 2.1: Sketch of ”the central dogma” of biology. The individual nu-
cleotides (section 2.2) of the template strand of the double-stranded DNA-
molecule are first transcribed to RNA by the polymerase (not depicted).
The single stranded RNA poly-nucleotide is identical to the coding strand
of the DNA, except that all A’s are transcribed as U’s rather than as T’s), as
described in section 2.4. The ribosome (not depicted ) then translates the
RNA – three consecutive nucleotides (a codon) at a time – to a sequence of
amino-acids according to a particular genetic code (figure 2.4 on page 22).
Translation is described in detail section 2.5.

(basepairs, see section 2.2 below) and the largest bacteria genome
known has about 9.9 million bp (Solibacter Usitatus (Ellin6076)).
In contrast, the human genome has about 3.200 million bp and the
largest known genome, belonging to an amoeba called Polychaos Du-
bium, has 670,000 millions bp.
• The average gene length also differs between prokaryotes, about 900

bp, and eukaryotes, about 1300 bp, see [78].
• The protein coding genes of eukaryotic organisms only take up about

10% of its entire genome, while in prokaryotic organisms, they take
up about 90% of the genome.
• In eukaryotic organisms, the RNA transcript of the DNA is called pre-

mRNA and undergoes a special process called splicing before transla-
tion takes place. This process does not occur in prokaryotes. During
splicing, entire subsections, referred to as introns, are cut out of the
pre-mRNA and the remaining subsections, the exons, are linked to-
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gether in sequence to form the mature mRNA, that is then translated
to amino-acids. Because the same pre-mRNA may be spliced in sev-
eral different ways, known as alternative splicing, it may define several
different genes.

This work focuses on annotation of prokaryotic genomes.

2.2 Nucleotides

DNA (see below) is built from four distinct molecules, adenosine, cyti-
dine, thymidine and guanosine, collectively referred to as nucleic acids or
nucleotides. From a molecular perspective they all consist of three com-
ponents: A base, a central sugar ring and a phosphate, respectively shown
in figure 2.2 in green, blue and yellow. One of four distinct nucleic bases
(figure 2.2 a)), adenine, cytosine, thymine and guanine, is joined to the
first of five carbon atoms in a sugar ring (ribose). The carbon atoms in the
ribose-ring are conventionally numbered according to the order in which
they are positioned in a clockwise direction, i.e., as 1’ through 5’, counting
from the base-connection. Finally, the sugar ring is joined to a phosphate
at 5’, forming one of four distinct complex nucleotide molecules like the one
shown in figure 2.2 b). For convenient reference, individual nucleotides are
represented as capital letters A,C, T and G, referring to their respective
bases.

Base-pairing

The bases of individual nucleotides also form pairwise bonds, in a process
called base-pairing. Specifically, T binds to A, and C binds to G, as shown
in figure 2.2 c).1 The pairs T-A and C-G are called base-pairs and T
and A are said to be each others complements, as are C and G. Base-
pairing plays a crucial role in many important processes involving DNA
and RNA, including the pairing of the two strands of DNA, transcription
and translation, described in sections 2.3, 2.4 and 2.5 below.

1 This kind of base-pairing, i.e., between A-T and C-G, is called Watson-Crick base-
pairing after James D. Watson and Francis Crick who proposed it along with the double
helical structure of DNA in 1953 (see [76]). Other kinds do exist, primarily between
nucleotides in RNA. They are arguably less important to the general discussion presented
in this work and not treated in further detail here.
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Figure 2.2: The components of DNA and how they combine (adapted from
[3]). In a) individual nucleosides adenosine, cytidine, thymidine and guano-
sine are shown in green. Each combine with ribose (blue) and phosphate
(yellow) to form one of four nucleotides or nucleic acids, named adenine b),
cytosine, thymine and guanine. The central ribose-molecule in DNA con-
sists of a 5-ring with oxygen and four carbon atoms. The carbon atoms in
the ring are conventionally numbered clockwise from the oxygen i.e., as 1’,
2’, 3’ and 4’ indicated in b). The nucleoside binds at 1’ and the phosphate
binds to a fifth carbon atom of the ribose, numbered 5’. Base-pairing c)
is defined as hydrogen bonds between nucleoside components of A-T and
C-G respectively and does not involve the other components. Base-pairing
holds together the two reversed-complementary strands of DNA (dotted
lines between left and right chains in d)). Polynucleotides are chains of
nucleotides that are formed when the alcohol HO at 3’ in the ribose of
one nucleotide binds to the phosphate of another. The direction of polynu-
cleotides are identified by the orientation of the third and fifth carbon atom
in the ribose as 5’-3’ vs 3’-5’, also indicated in d)
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2.3 DNA

DNA (deoxyribonucleic acid) molecules are double-stranded macromolecules
consisting of two polynucleotides, called strands. Each strand consists of a
chain of nucleotides, linked together via bonds between the phosphate of
one nucleotide and the 3’ carbon atom of the sugar-ring of another, shown
as the chains of yellow and blue components in fig. 2.2 d) (p. 15). One end of
each strand is conventionally referred to as the 5’-end because it terminates
with the phosphate at the fifth carbon atom of a nucleotide sugar ring.
The other end is called the 3’-end of the strand, because it terminates with
the third carbon atom of a nucleotide sugar ring. Because of the way the
DNA was created, DNA-synthesis (see for example [3]), the two strands
are each others reversed complements, in that, regarding them, nucleotide
for nucleotide, in opposite directions, i.e., 5’-3’ vs 3’-5’, they consist of
complementary nucleotides, i.e., an A on one strand corresponds to a T on
the other and vice versa and similarly for C and G. The two strands are
joined together like this – in opposite directions – via base-pairing between
individual nucleotides from each strand, as shown in figure 2.2 d).

2.4 Transcription

DNA-transcription involves an enzyme, a kind of protein, called RNA poly-
merase. The RNA polymerase may bind to a pair of promoter sequences
on a strand of DNA. The promoters are short segments of nucleotides that
complements two reactive sites in the RNA polymerase. When the RNA
polymerase binds to promoters on one of the DNA-strands it begins tran-
scribing that strand in the 3′− 5′ direction. Along the way, the polymerase
denatures the DNA, i.e., it splits the base-pairing that holds the two strands
together, just enough to allow interaction with the individual bases on the
strand that it transcribes. During transcription, free nucleotides available in
the cell are paired to bases that have been laid bare on the DNA and linked
together to form a growing poly-nucleotide called RNA (ribonucleic acids).
Transcription stops once another pattern, called a termination signal, is
transcribed.

The resulting RNA is the reversed complement of the DNA segment,
that was transcribed, except that in stead of transcribing A to its DNA
complement, T , a slightly different version of that nucleotide, uracil – con-
ventionally represented as U , is used.

The strand of the segment of DNA that was transcribed is called the
template-strand to distinguish it from the coding strand of the DNA, where
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the segment is identical to the newly produced RNA (Us in the RNA for
T s in the DNA). The template strand is also sometimes called the reverse
or the anti-sense strand and the coding strand is sometimes also called the
direct or the sense strand. Depending on promoter location, either strand
may be undergo transcription.

RNA

A RNA-sequence is a single-stranded transcription of a gene (see 2.1. It is
identical to the direct strand of the DNA of that gene with Us instead of
T s. For the present discussion it is useful to distinguish between two main
types of RNA:

• Messenger-RNA or just mRNA, transcribed from protein-coding genes
that are later translated to proteins (see below).
• Different kinds of functional RNA that serve various crucial functions

in the cell directly as is and thus never translated.

Functional RNA, structure is function

Very little is known about the functions served by a vast host of functional
RNA. It is however generally believed that functional RNA relies heavily
on its structure for serving its proper functioning in the cell. This is be-
cause molecular function relies on interaction between reactive regions of
individual molecules and the molecular structure must allow easy contact
between such regions for interaction to occur.

Due to base-pairing and the exertion of other biochemical forces, a RNA
strand inadvertently fold up on itself, forming particular structures, depend-
ing in part, on its nucleic acid sequence. RNA-structures can be described
in three different levels of abstraction conventionally referred to as primary,
secondary and tertiary RNA-structure, respectively:

• the primary RNA-structure is the linear sequence of nucleotides mak-
ing up the RNA.
• the secondary RNA-structure refers to a 2-dimensional structure re-

sulting from base-pairing of complementary regions of the strand while
leaving other regions un-paired. Secondary RNA structures are classi-
fied in several different general groups (see figure 2.3 Right on page 19
for some of them). One of the most important of these general struc-
tures is the hairpin loop (see below).
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• the tertiary RNA-structure: The secondary RNA-structures is “flat”,
but RNA-molecules are not. Individual nucleotides in a sequence “fit”
into its neighbours in such a way that each orient itself slightly dif-
ferently than the one before it, causing the entire strand to twist and
curl. There are also other biochemical forces of attraction and repul-
sion that cause a 3-dimensional structure that is particular to each
type of RNA and referred to as its tertiary structure ([77]).

Arguably, knowing the tertiary-structure of a piece of functional RNA,
enables narrowing in on its possible functions. Tertiary-structure is con-
strained by its secondary structure, that is in turn constrained by its pri-
mary structure, therefore a great deal of recent and current research is
concerned with predicting secondary and tertiary structures from the pri-
mary structure of a RNA sequence, which can again be assessed via its
DNA.

”Hairpins” and ”Loops”

Hairpin loops, or just hairpins, refers to a generic type of secondary RNA-
structure that consists of two base-pairing regions forming a single stem
supporting a small loop of un-paired nucleotides, figure 2.3 a). Hairpins are
in a sense the basic secondary structure, because other structures can be
seen as special cases or combinations of hairpins.

2.5 Translation

Translation refers to a process that constructs a protein according to the
information in a specific mRNA. Translation occurs when the ribosome, a
complex molecule consisting of both nucleotides and amino-acids ([3]), binds
to a pattern of nucleotides in the mRNA called a ribosomal bindings-site or
just RBS.

The ribosome translates nucleotides in non-intersecting sets of three,
so-called codons, starting a few nucleotides from the RBS, with a so-called
start-codon. Each codon, including the start-codon, corresponds to one of
20 amino-acids, which are produced in interaction between the ribosome
and so-called transfer RNA molecules or tRNA, see right part of figure 2.3.
Each type of tRNA has one of the 20 amino acids attached to its 3’-end.
In the opposite portion of the tRNA molecule, there is a reactive site of
three specific nucleotides complement to one of the codons in the RNA, the
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Figure 2.3: (Left) Secondary structure of DNA and RNA. The grey line
represents the sequence of nucleotides of the tRNA molecule. The black
lines indicate base-pairing that forms the secondary structure from the pri-
mary. Hairpin-loops consist of a stem of base-paired nucleotides supporting
a loop a) of unpaired nucleotides. Other generic structures include bulge
loop in b), inner loop in c), multistem loop in d) and pseudo-knot in e),
that involve crossing base-pair relations. (Right) The particular secondary
structure of tRNA, after [71]. Also indicated in the figure are the reactive
sites of the tRNA described in section 2.5.

so-called anti-codon. When the anti-codon binds – via base-pairing – to
the codon, that is being translated, it causes the attached amino acid to be
transferred from the tRNA to the growing polypeptide under construction
by the ribosome.

Translation stops when one of three specific stop-codons are encoun-
tered, causing the polypeptide, the now finished protein, to be detached
from the ribosome.

Reading frames

There are three different offsets at which the sequence of codons may begin
in the DNA (0, 1 or 2 bases) and since DNA can be transcribed in both
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directions, a translated region is said to be in one of six reading frames of
the DNA.

Open reading frames (ORFs)

A start-codon followed by a sequence of codons and terminated by a stop-
codon is referred to as an open reading frame or ORF, regardless of whether
it is actually translated or not.

Genetic code

Since there are 64 different codons and only 20 amino-acids, most amino-
acids are encoded by several codons. The genetic code, i.e., which codons are
considered start-codons by the ribosome and what amino-acids each codon
corresponds to, differs slightly from organism to organism. Escherichia
Coli, the bacterial organism that is used for the experiments in this work,
follows a genetic code table conventionally numbered table 11, and showed
in figure 2.4(p. 22). Common in all tables is that stop-codons terminate
translation and are not translated themselves.2 Start codons may occur any
number of times during translation and, apart from initiating translation,
they are also translated to specific amino acids themselves.

Amino-acids

As mentioned in section 2.1 above, amino-acids are the basic building blocks
of proteins, similar to the way in which nucleic acids are the basic building
blocks of DNA and RNA. Like nucleotides can be linked to each other to
form poly-nucleotides – of which DNA and RNA are prominent examples,
amino-acids can also be linked to each other in what is called polypeptides
– of which proteins are examples. There are in total 22 different standard
amino-acids of which 2 are usually left out of the general discussion.3 The
remaining 20 are listed in the bottom half of figure 2.4.

2 There are rare exceptions where stop-codons occur internally in a transcribed gene.
These are considered so rare, that they do not affect the general trend, but are just
extremely rare exceptions to the rule.

3 When stop-codons are overridden during translation, and thus occur internally in
a gene, two additional amino acids result, namely Selenocysteine and Pyrrolysine. As
already mentioned, these circumstances are extremely rare and not important for this
introduction. Apart from the standard amino acids there exist a great number of non-
standard amino-acids, that are not relevant to our purposes and therefore not described
further.
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Each individual amino acid has particular biochemical properties and
characteristics that dictates its behaviour under different circumstances.
Hydrophobic amino acids, for example, repels water, as opposed to hy-
drophilic amino-acids, that are attracted to water. Other groupings of
amino acids can be distinguished according to their electrical charge and
various other factors. Each protein is defined by the corresponding sequence
of amino-acids, also here referred to as the primary structure of the protein
and the properties of individual amino acids in a protein dictates, how pro-
teins, similarly to functional RNA, fold up on themselves to form complex
secondary and tertiary protein structures, and how they react and interact
with their surroundings.

2.6 Genome annotation and Gene-finding

In this work, genome- and DNA-annotation refers to the identification and
marking of aspects, features and properties in a sequence of DNA that could
be relevant for identifying genes in that sequence. Thus, the ultimate goal of
DNA-annotation w.r.t. some DNA, would be the annotation of all genes and
other functional features in it. Interesting features in this regard informally
include the DNA-sequence itself, the genes in it and ’everything in between’.
We might express gene-finding as a binary classification problem, that seeks
to classify each open reading frame as either belonging to the positive class,
i.e, for actual genes or the negative class, i.e., non-genes.

Traditional measures for accuracy are defined in terms of true positives,
false positives, true negatives and false negatives, in this case:

TP : number of actual genes correctly annotated.
FP : number of non-gene regions wrongly annotated as genes.
TN : number of correctly annotated non-gene regions.
FN : number of actual genes wrongly annotated as non-gene regions.

In these terms, Sensitivity, Specificity and Accuracy are defined as follows:

Sensitivity(SN) =
TP

TP + FN
(2.1)

Specificity(SP ) =
TP

TP + FP
(2.2)

Accuracy(AC) =
TP + TN

TP + TN + FP + FN
(2.3)

Informally, Sensitivity concerns the proportion of actual genes correctly an-
notated as such, Specificity concerns the proportion of correctly annotated
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The Genetic Code:

TTT F Phe TCT S Ser TAT Y Tyr TGT C Cys
TTC F Phe TCC S Ser TAC Y Tyr TGC C Cys
TTA L Leu TCA S Ser TAA * Ter TGA * Ter
TTG L Leu i TCG S Ser TAG * Ter TGG W Trp
CTT L Leu CCT P Pro CAT H His CGT R Arg
CTC L Leu CCC P Pro CAC H His CGC R Arg
CTA L Leu CCA P Pro CAA Q Gln CGA R Arg
CTG L Leu i CCG P Pro CAG Q Gln CGG R Arg
ATT I Ile i ACT T Thr AAT N Asn AGT S Ser
ATC I Ile i ACC T Thr AAC N Asn AGC S Ser
ATA I Ile i ACA T Thr AAA K Lys AGA R Arg
ATG M Met i ACG T Thr AAG K Lys AGG R Arg
GTT V Val GCT A Ala GAT D Asp GGT G Gly
GTC V Val GCC A Ala GAC D Asp GGC G Gly
GTA V Val GCA A Ala GAA E Glu GGA G Gly
GTG V Val i GCG A Ala GAG E Glu GGG G Gly

Aminoacid single- and triple-letter symbols:
Arginine R Arg Glutamine Q Gln Lysine K Lys
Threonine T Thr Asparagine N Asn Glycine G Gly
Methionine M Met Tryptophan W Trp Asparticacid D Asp
Histidine H His Phenylalanine F Phe Tyrosine Y Tyr
Cysteine C Cys Isoleucine I Ile Valine V Val
Proline P Pro Leucine L Leu Stop codon * Ter

Figure 2.4: The genetic code shows how individual codons are translated
by the ribosome in a large group of organisms including all bacteriae. The
table is organised according to the three codon positions and each codon
is followed by the amino-acid that it translates to, represented by both a
single- and a triple-letter symbol. Possible start-codons in this table are
marked with the lower case letter i. It can be seen that all start-codons
translate into amino-acids in addition to serving as translation initiation
signals. Contrarily, stop codons, with single and triple letter symbols “*”
and “Ter”, do not translate into amino-acids but only signal translation
termination. Several codons, varying primarily in the third codon position,
i.e., within an inner “box” of the table, translate to the same amino-acid.
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genes to nongenes annotated as genes and Accuracy concerns the proportion
of correct annotations (genes or non-genes) to wrong ones.

An important problem with using these measures for gene-finding is
that, in general, we do not know the correct answers. For lack of better
alternatives, the measures are still used, but it is important to keep in
mind that they refer to the extent of current domain knowledge. So an
open reading frame that is known to represent a gene will be counted as
belonging to the positive class. Only the annotation that annotates the
ORF as a gene from the correct start to the correct end, according to this
knowledge, will be counted as a true positive. Consequently, an annotation
that gets either end wrong is therefore counted as a false positive, even
though some (or all) of the ORF may actually be part of a gene. Similarly,
only an ORF annotated as a non-gene, that is in fact known to represent a
gene, represents a false negative, and a true negative otherwise. Given that
our knowledge about genes is not complete, undiscovered genes, i.e., genes
that we do not know of, will be among be among the false positives, if they
are detected by the gene-finder.

Intrinsic versus Extrinsic methods for gene-finding

Genes can be identified and verified by experiments in biochemical labo-
ratories. Nowadays, however, gene-finding typically refers to the applica-
tion of computational methods for identifying, or more precisely, predicting
possible genes in DNA. A distinction is usually made between intrinsic
and extrinsic gene-finders, depending on what information is considered for
gene-prediction. I will return to these matters in more detail later, and just
present the distinction informally here.

Intrinsic methods consider only the DNA that is being analysed, i.e.,
the distribution of features like promoters, start- and stop-codons, codon
sequence, and termination sites, see figure 2.5 (p. 25). They do, of course,
require knowledge about the likely distribution of those features in genes.
Intrinsic methods are quite efficient in circumstances where little or no
knowledge is available about the genome under investigation. The primary
weakness of intrinsic methods is that these signals are all quite weak. Find-
ing, especially short, undetected genes in well-studied genomes is extremely
hard and may require increased intrinsic knowledge about genes, beyond
what has already been mentioned.

Extrinsic methods relies primarily on similarity to verified genes of closely
related organisms, homologs, for gene-prediction. The primary weakness
of extrinsic methods is that they require extensive annotation of other
genomes, and they are limited to finding genes that are similar to known
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genes in homologous genomes. While gene-finders that incorporate all avail-
able information are seeing recent improvement (see [8] for a review of eu-
karyotic genefinders), there is a danger of consistently missing entire groups
of genes that differ from the already discovered genes in one way or another.

In this work, a framework that supports both approaches is developed.
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Figure 2.5: Some intrinsic signals for transcription and translation in
prokaryotic DNA. The diagram shows the coding strand of a gene and
its immediate surroundings in DNA . Shown in frames are the transcribed
parts, i.e., c), d) and e), whereas the remaining parts, a), b) and f), inter-
act with reactive sites in the polymerase for guiding the transcription pro-
cess. The sequences, TTGACA and TAATAT , at a) and b), represent the
two promoters, referred to as the -35 box and -10 box (or TATA-box ), that
occur approximately 35 nucleotides and 10 nucleotides before transcription
start. Both can be present, but the -35 box is often missing and the -10
box may also be absent. Even if present, the sequences shown here are only
so-called consensus motifs, i.e., sequences of most frequent nucleotides for
each position. Commonly, actual promoters only have four or five of the
six symbols matching the consensus. In c), is the 5’ untranslated region,
5′UTR, so-called because it is not translated by the ribosome. It includes
a reactive site for the ribosome to bind to, a ribosomal bindings site. The
ribosomal binding site shown here is the so-called Shine-Dalgarno-sequence
(after John Shine and Lynn Dalgarno who proposed it) that most often
occur in prokaryotes (but never in eukaryotes). Like for the promoters, the
sequence AGGAGG is also only a consensus motif and may vary signifi-
cantly from gene to gene. From d) to e) is the coding region, CDR that
determines the gene product. It starts with one of several possible start-
codons and proceeds with a varying number of codons (from around twenty
and up to several thousands) and terminated by one of a few stop codons.
After the CDR follows the 3’ untranslated region, 3′UTR, ending with the
transcription termination signal at f). The termination signal shown here
consist of a strong hairpin followed by a sequence of A′’s that is transcribed
to a sequence of relatively weakly bound U ’s in the RNA. The energy by
which the stem forms is thought to literally tear the growing poly-nucleotide
from the U ’s, releasing the finished RNA.





Chapter 3

Formal Language Theory

Biological sequence data as defined in section 2 consists of sequences of
symbols. Regarded as such, DNA and RNA are not much different from
natural language or programming languages and many tools and methods
developed for these domains can be applied with little or no adaptation
to the biological domain. In this chapter, I include a selection of general
definitions of formal languages, grammars and automata that have been
applied both in compiler theory and natural language modelling (see for
instance [1, 2, 68, 36]).

3.1 String languages

I will use the terms sequence or symbol sequence interchangeably to refer to
a finite string over some set of symbols called an alphabet denoted Σ.

Definition 1 (Alphabet) An alphabet, denoted Σ, is any set of symbols.

Definition 2 (String) A string over an alphabet Σ is defined recursively
as follows:
• the empty string, denoted ε, is a string over any alphabet
• if ω is a string over Σ and α ∈ Σ, then ωα is a string over Σ
• nothing else is a string over Σ.

We adopt the following short-hands:
– Σ+ denotes the set of all non-empty strings over Σ, and
– Σ∗ denotes the set of all strings over Σ, i.e., Σ+ ∪ {ε}
– For a string ω, |ω| denotes the number of symbols in that string.

Definition 3 (Concatenation) The concatenation of x and y, where x
and y are strings over Σ, denotes the string consisting of the symbols of x
followed by the symbols of y and can be written both as xy and x • y.

27
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Definition 4 (Language over Σ) A language L over Σ is a possibly in-
finite set L ⊆ Σ∗ of strings over Σ.

3.2 Languages and Grammars

Specific languages can be denoted by grammars as defined as follows.

Definition 5 (Grammar) A rewriting grammar is a quadruple G = 〈N,Σ, R, S〉
where
• N is a finite set of nonterminal symbols,
• Σ is a finite set of terminal symbols, disjoint from N,
• R is a finite set of rewriting rules (α, β), where

– α ∈ (N ∪ Σ)+ and β ∈ (N ∪ Σ)∗

– S ∈ N is a distinguished start-symbol.
We adopt the conventions that

– rules (α, β) may be written α→ β and
– a set of rules α → β1, α → β2 . . . α → βn may be written α →
β1|β2|...|βn.

Definition 6 (Rewriting step) For a grammar, G = 〈N,Σ, R, S〉 and
two symbol sequences, αβγ, αδγ where α ∈ (N∪Σ)+ and β, γ, δ ∈ (N∪Σ)∗,
αβγ can be rewritten in one step as αδγ iff there is a rule β → δ ∈ R. We
write:

αβγ ⇒ αδγ

Definition 7 (Derivation) For a grammar, G = 〈N,Σ, R, S〉 and symbol
sequences, α, βi, γ ∈ (N ∪ Σ)∗, a derivation from α to γ is a sequence of
rewriting steps,

α⇒ β1, β1 ⇒ . . . ⇒ γ

We adopt the convention that
– a derivation of n rewriting steps may be written α⇒n γ and
– a derivation of any number of rewriting steps may be written α⇒∗ γ.

In unrestricted grammars there are many ways of deriving a given sequence
that are essentially the same, differing only in the order of individual rewrit-
ing steps. Different rules of preference exist for different classes of gram-
mars, and the issue will be dealt with as appropriately below in section 3.3
and 3.4, when describing the regular and context-free classes of languages.

Definition 8 (Parse) The language L(G) denoted by a grammar G =
〈N,Σ, R, S〉 is the set of terminal symbol sequences, ω, that can be derived
from the start symbol S, i.e., {ω ∈ Σ∗|S ⇒∗ ω}
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– ξ(ω) denotes a derivation S ⇒∗ ω, also called a parse of ω in G

Definition 9 (Ambiguity) For a grammar G = 〈N,Σ, R, S〉, a sequence
ω ∈ L(G) is ambiguous in G if there exists different parses ξ(ω) and ξ′(ω)
for ω in G.

A classic classification of languages is the Chomsky hierarchy of languages [12],
that distinguishes between five classes:

finite ⊂ regular ⊂ context-free ⊂ context-sensitive ⊂ unrestricted

The unrestricted class contains all languages. The remaining classes each
pose gradually more restrictive constraints on the rules in their respec-
tive grammars and denote subset languages of decreasing expressive power.
However, while finite languages are restricted to contain a finite set of
strings, the other classes all denote languages of possibly infinitely many
strings. In general, the more restricted languages are easier to analyse but
also less expressive. For a string ω and a regular language L, it can be
established in linear time whether ω ∈ L in terms of |ω|. For context-
free languages, the task requires almost cubic time in the worst case, [73],
whereas context-sensitive languages require exponential time, and it is gen-
erally un-decidable whether a sequence belongs to an unrestricted language
or not. Grammar-formalisms that are more expressive than context-free
grammars but still recognisable in polynomial time, are of great interest,
not only to computational linguists but also in general (see [36] for a tho-
rough presentation of current formalisms). Computational complexity of
algorithms are traditionally distinguished as either polynomial or exponen-
tial in terms of input data size, where polynomial is considered acceptable.
For large data sizes this distinction is not sufficient since some polynomial
algorithms are too complex to be practical. The present work is restricted
to describe in detail only regular and context-free grammars, i.e., up to
cubic complexity in terms of input size.

3.3 Regular languages

Definition 10 (Regular grammar) A regular language L is described by
a regular rewriting grammar G = 〈N,Σ, R, S〉 with rules in R of the form
A→ a or A→ aB where:

• A,B ∈ N and
• a ∈ Σ∗
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Since only nonterminals can occur in the head of rules and each rule may
contain at most one non-terminal, there is only one order in which rules
can be rewritten, and the possible ambiguity arising form different orders
of rewriting steps does not apply for regular grammars.
Regular languages can also be specified by regular expressions defined as
follows.

Definition 11 (Regular expression) A regular expression ρ over an al-
phabet Σ and the language Lρ denoted by it are defined recursively as fol-
lows:
• the empty string: ε is a regular expression denoting the language
Lε = {ε}.
• unit: a, where a ∈ Σ, is a regular expression denoting the language
La = {a}.
• concatenation: if α and β are regular expressions, then so is αβ,

denoting the language Lαβ = {x • y|x ∈ Lα
∧
y ∈ Lβ}.

• disjunction: if α and β are regular expressions, then so is α + β,
denoting the language Lα+β = Lα ∪ Lβ.
• Kleene star: if α is a regular expression, then so is α∗, denoting

zero or more concatenations of α, i.e., closure over concatenation.
• parentheses may be used for disambiguation, i.e., if α is a regular

expression, then so is (α), denoting Lα.
• nothing else is a regular expression.

Any language that can be specified as a regular expression is also a regular
language.

Example 1 Consider the language L0 over the alphabet Σ = {0, 1} of se-
quences beginning with a 0 and containing at least one 1. We can specify
L0 as the language denoted by the regular expression :

ρ0 = 00∗1(0|1)∗

Example 2 The language L0 specified by the regular expression R0 from
example 1 can be specified also as the grammar G0 = 〈{S,A}, {0, 1}, R, S)〉,
where R consists of the rules:

S → 0S

S → 1A

A→ 0A

A→ 1A

A→ ε
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Note, that this is an unambiguous grammar, in that for any ω ∈ L(G0)
there exists exactly one parse ξ(ω).

For any regular expression there is at least one regular grammar specifying
the same language (proved elsewhere; see for example [1]) and vice-versa.
Algorithms that transform between regular expressions and equivalent reg-
ular grammars are well-known in the field.

Finite State Automata

Yet another way of specifying languages is by way of automata. An au-
tomaton for a language L is an abstract machine that accepts a sequence
ω as input and reports as output, whether ω ∈ L and it is said to recognise
L. For any grammar there is a corresponding automaton that specifies the
same language. For regular grammars, the type of automata is called Finite
State Automata (FSA). There exist algorithms for transforming regular ex-
pressions into equivalent FSA’s and vice versa [2] but that is outside the
scope of the present work. FSA’s are central to the description of their
probabilistic extensions Hidden Markov Models (chapter 4). There are two
equivalent versions of FSA’s, referred to as Moore- and Mealy-machines re-
spectively. In both traditions, FSA’s are essentially directed graphs where
the vertices represent states and the edges represent transitions between
states. The difference between the two traditions lies in how they consider
emissions:

– in Moore-machines, a set of possible state-emissions is associated with
each state,

– in Mealy-machines individual emissions are associated with individual
transitions.

Here, I define the Moore-version since that is the preferred tradition in the
bioinformatics domain.

Definition 12 (FSA) A finite state automaton over some alphabet Σ is
a sextuple FSA = 〈S,Begin,End, T,Σ, E〉, where:

• S is the set of states,
• Begin ∈ S is a distinguished begin state,
• End ∈ S is a distinguished end state,
• T ⊆ S × S is a set of directed state transitions.
• Σ is the alphabet of emittable symbols,
• E ⊆ S × Σ is a set of possible state emissions.

The following conventions are adopted:
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– T (s) = {t|(s, t) ∈ T} denotes the set of states reachable from s ∈ S
in one transition.

– E(s) = {β|(s, β) ∈ E} denotes the set of emittable symbols from
s ∈ S.

– Any state, s, that have no emittable symbols, i.e., E(s) = ∅, is called
silent states.

Note: Traditionally, the specification of FSA’s involve a non-empty set of
possible end-states with emissions. I prefer a version with a single End -
state with no emissions. This version can be formed from the traditional
definition by including the new End -state in S and adding to T a transition
from each of the original End -states to this new one.

Definition 13 (Path) A path P in an FSA = 〈S,Begin,End, T,Σ, E〉 is
defined as a finite sequence of n states π0, . . . , πn−1 ∈ S such that
π0 = Begin, πn−1 = End and (πi, πi+1) ∈ T , where 0 ≤ i < n− 1,

A path, P(ω), deriving ω in a FSA corresponds to a parse, ξ(ω), in an
equivalent grammar.

Two different paths P(ω) and P ′(ω) deriving the same sequence, ω, in
an FSA is proof of the ambiguity of ω – just as two different parses ξ(ω)
and ξ′(ω).

Example 3 The regular expression ρ0 from example 1 (p. 30) and the
equivalent grammar G0 (example 2) can be specified by the unambiguous
FSA, FSA0 = 〈S,Begin,End, T,Σ, E〉, where
• S = {s0, s1, s2, s3, s4}
• Begin = s0

• End = s4

• T = {(s0, s1), (s0, s2), (s1, s1), (s1, s2), (s2, s3), (s2, s4), (s3, s3), (s3, s4)}
• Σ = {0, 1}
• E = {(s1, 0), (s2, 1), (s3, 0), (s3, 1))}

Any FSA can be represented graphically as shown for FSA0 in figure 3.1.
When representing FSA’s graphically, each state si ∈ S is drawn as a
uniquely labelled vertex. Here vertices are circles and labels are printed in-
side the circles. Any accepting state e ∈ End, is traditionally distinguished
by a double circle (however when the meaning is clear from the context the
double circle can be omitted). Any state si in S is also labelled with the set
of possible emissions {(si, β) ∈ E}, for the corresponding state in S. For
each transition (si, sj) ∈ T , a directed edge is drawn from the vertex cor-
responding to si to the vertex corresponding to sj. A sequence of symbols
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Figure 3.1: Graphical representation of FSA0

[β1 . . . βn] is accepted as a sentence in the language recognised by the FSA,
if a there exists a path s0, π1, . . . , πn, si, such that si is a state in End
and in each nonsilent state πi along the path, the symbol βi is among the
possible emissions. If no such path is possible, the sequence is rejected.

Example 4 A grammar, that distinguishes ORFs as defined in section 2.5
in the first direct reading frame of DNA, can be represented as the FSA
illustrated in Figure 3.2 below. The model ensures that genes start with a
start codon in state sequence s1 → s2 → s3, and that when a stop codon is
encountered, in state sequences s5 → s8 → s13 or s5 → s9 → s14, the ORF
portion of the model is terminated and a new recursion must follow or there
are no more symbols in the sequence. It also models codon sequences as
sequences of nucleotide triplets. Finally it models non-ORF regions simply
as a sequence of arbitrary nucleotide-triplets, ensuring that we stay in the
same reading frame.

It is easy to see that this FSA is ambiguous. For an arbitrary ORF-
sequence, there exist a path through the FSA starting in s1, with the start
codon and ending with the stop-codon in s16 or s17. However, there exists
also at least one alternative path, namely the one that starts in the non-ORF
state, s15, and stays there until the end of the sequence. Each additional
possible start-codon inside the ORF, will give rise to one more path through
the FSA, starting with a series of non-ORF triplets before beginning a series
of ORF-triplets from that particular start-codon and out.

3.4 Context-free languages

Definition 14 (CFG) A Context-free grammar (CFG) is a grammar G =
〈N,Σ, R, S〉 where the rules in R are of the form A→ β and:
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Figure 3.2: An FSA representation for a DNA reading frame with the
capability of distinguishing substrings as open reading frames (ORF’s). In
this specification, an ORF starts with a start-codon in the states in the
green portion of the figure. Then follows a sequence of coding codons, in
the yellow portion before a stop-codon ends the ORF in the red portion of
the figure. Only paths that include states s16 or s17 specify a stop codon. A
non-ORF is simply a series of triplets of nucleotides, as specified in the grey
portion of the figure. This FSA accepts any series of ORF’s and non-ORFs
that can be expressed as a series of nucleotide triplets.

• A ∈ N and
• β ∈ (N ∪ Σ)∗.

In other words, context-free grammars are grammars where the left-hand-
sides of rules in R consist of exactly one nonterminal, while the right-hand-
sides are unrestricted. Because each right-hand-side may contain more than
one non-terminal, a potential ambiguity arises from rewriting them in dif-
ferent orders. Therefore, by convention, in each rewriting-step the left-most
nonterminal is rewritten.

For CFGs derivations ξ(ω) are traditionally represented as equivalent
parse trees Tree(ω):

Definition 15 (Parse Tree) For a CFG, G = 〈N,Σ, R, S〉 and a se-
quence ω = σ1σ2 . . . σn, ω ∈ L(G), a parse tree, Treeω, for ω is an ordered
labelled tree with the following properties:
• the root node of Treeω is labelled by the start symbol S
• each node in Treeω is either
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– the root node of a sub-tree labelled by a nonterminal symbol α ∈
N such that, if β1, β2 . . . βm are the labels of the roots of the im-
mediate descendants of α from left to right, then α→ β1β2 . . . βm
is a rule in R.

– or a leaf node labelled by a terminal symbol σ ∈ Σ or ε such that,
when read from left to right, the leaves of Treeω form the string
ω = σ1σ2 . . . σn.

We write Tree(ω) and Tree′(ω) or Treei(ω) to distinguish between different
parse trees for the same sequence, ω.

The existence of different parse trees Tree(ω) and Tree′(ω) for a sequence
ω is proof of the ambiguity of ω, just as different parses ξ(ω) and ξ′(ω).

CFGs denote context-free languages (including regular languages). Specif-
ically, CFGs can describe nested constructs like palindromes, which is im-
possible with a regular grammar. FSA’s are not sufficient as recognising
automata for context-free grammars, instead the general type of recognising
automaton for this class of languages is pushdown automaton (defined else-
where, for example [1, 36]). Consequently, parsing context-free languages
is significantly more complex, in the worst case cubic in the length of the
string to be analysed (in contrast to linear), [73].

Example 5 Examples of a context-free language, for which there exists no
regular grammar includes the language consisting of sequences of 0’s fol-
lowed by an equal number of 1’s. An unambiguous context-free grammar
for that language can be expressed as G2 = 〈{S,A}, {0, 1}, R, S)〉 with the
following rules in R:

S → 0A

A→ 0A1

A→ 1

Example 6 The secondary RNA structure called hairpin loop is another
important example of a non-regular context-free structure (see section 2.4).
A grammar for hairpin loops can be defined as

G3 = 〈{HairpinLoop, Stem,Loop}, {a, t, c, g}, R, S)〉

with the following rules in R:



36 CHAPTER 3. FORMAL LANGUAGE THEORY

Figure 3.3: Two alternative parsetrees for the sequence aactt, given the
ambiguous grammar for hairpin loops G3 from example 6.

HairpinLoop→ a Stem t | t Stem a | c Stem g | g Stem c

Stem→ a Stem t | t Stem a | c Stem g | g Stem c | Loop

Loop→ a Loop | t Loop | c Loop | g Loop |
a | t | c | g

This grammar is clearly ambiguous. For some sequence, for example aactt,
a stem of at least length one is required as specified in the HairpinLoop-
rule. Here, the initial a and final t suffice. But the sub-sequence forming
the Stem-part, here act may be interpreted both as a continuation of the
stem by one of the nested α Stem β alternatives, figure 3.3 (left), or as one
big loop by immediately entering the Loop alternative, figure 3.3 (right).



Chapter 4

Probabilistic Sequence
Analysis

As illustrated by the examples, many grammars and their equivalent au-
tomata are ambiguous. In compiler theory, that concerns the design and
implementation of programming languages, ambiguity is undesirable and
avoided altogether. Natural language, however, is inherently highly am-
biguous and that is also the case for many grammars specifying biological
sequence data. Ambiguity of a sequence in a language means that there ex-
ists different derivations for the sequence in the grammar of the language.
Probability theory or probability calculus provides a systematic way of mak-
ing informed choices among sets of possible solutions.

In this chapter I include basic definitions from probability theory and go on
to describe probabilistic extensions FSA’s and CFG’s (HMM’s and PCFG’s
respectively). The remainder of the chapter contains a description of rele-
vant inference tasks with the probabilistic models.

4.1 Probability Theory

Probability theory concerns the probability of events and draws upon both
propositional logic and statistics. The following introduction is adapted
from several sources including [5, 61, 25, 24].

Propositions and events

We adopt the definitions, equivalences and properties of propositional logic
in particular the notions of propositional variables, logical connectives, propo-
sitions and truth. Specifically, propositions are well-formed sentences formed

37



38 CHAPTER 4. PROBABILISTIC SEQUENCE ANALYSIS

from propositional variables, constants and logical connectives. Proposi-
tional variables assume one of two basic values true or false and proposi-
tions can be evaluated to be either true or false. Basic propositional logic
can be generalised to concern multi-valued variables that range over several
possible values rather than true and false.

Definition 16 (Multi-valued variables) A multi-valued variable is a vari-
able, X, that ranges over a domain, dom(X), of possible values and include
two variants:

• A discrete variable, that ranges over a countable, possibly infinite set
of possibles values.
• A Continuous variable, that ranges over all values in R, possibly de-

limited by a certain minimum and maximum value.

I will only be concerned with discrete variables ranging over finite domains.
As is customary in statistics and probability theory, I use the term event
instead of proposition and in the generalized propositional logic we get the
following definition:

Definition 17 (Event) Events are defined recursively from variables, val-
ues and logical connectives, =,¬,∧,∨, as follows:

• every variable X is an event.
• X = xi is an event, where X is a variable and xi is one of its possible

values.
• if φ and ψ are events, then so are

¬φ (true when φ is not and false otherwise).
φ ∧ ψ (true when both φ and ψ is true and false otherwise).
φ ∨ ψ (true when either or both of φ and ψ is true and false
otherwise).

Furthermore, I adopt the conventions:

- Events of the form X = xi, are called variable instantiations or just
instantiations.

- X = xi may be written instead as xi when the relation between
variable and value is clear form the context.

- φ1 ∧ φ2 ∧ . . . may be written instead as φ1, φ2, . . ..
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event X Y y2 ¬x3 ∨ y2

e1 x1 y1 false true
e2 x1 y2 true true
e3 x1 y3 false true
e4 x2 y1 false true
e5 x2 y2 true true
e6 x2 y3 false true
e7 x3 y1 false false
e8 x3 y2 true true
e9 x3 y3 false false

Figure 4.1: Instantiation table for Multi-valued variables, X and Y , each
ranging over three distinct values, {x1, x2, x3} and {y1, y2, y3}, respectively.
Also shown are the truth-distributions of propositions Y = y2 and ¬X =
x3 ∨ Y = y2.

Atomic events

In a system of n Multi-valued variables, an atomic event is a conjunction
of instantiations of every variable in the system, i.e.:

e =
n∧

i=1

xi

or equivalently

e = x1, x2, . . . , xn

where xi ∈ dom(Xi).
The set of all atomic events in a system is specified by an instantiation
table, as exemplified in figure 4.1 (first three columns). I will write, e |= φ,
to indicate that an event, φ, is true in an atomic event, e, and say that e
covers φ. Any event, φ, can be completely specified by the disjunction of
atomic events, ei, that covers φ, i.e.:

φ =
∨

ei|=φ
ei

For example as in figure 4.1. for events Y = y2 and ¬(X = x3) ∨ Y = y2.
The event Y = y2 is covered by atomic events {e2, e5, e8}, and the truth
of either implies the truth of Y = y2. Similarly, ¬(X = x3) ∨ Y = y2, is
covered by atomic events {e1, e2, e3, e4, e5, e7, e9}.
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event X Y p(e)
e1 x1 y1 0.05
e2 x1 y2 0.05
e3 x1 y3 0.10
e4 x2 y1 0.10
e5 x2 y2 0.10
e6 x2 y3 0.10
e7 x3 y1 0.15
e8 x3 y2 0.15
e9 x3 y3 0.20

Figure 4.2: A probabilistic model of random variables X and Y from fig-
ure 4.1, and the associated joint probability distribution over the atomic
events of that model.

Probabilities of events

Where propositional logic is concerned with the truths of events, probability
calculus is concerned with the probability of events. In this context, atomic
events, e, are regarded as possible outcomes of a probabilistic model and
the probability, p(e) of an atomic event is a real value in the range [0; 1]
that represents the relative degree of belief in the occurrence of that event;
0 meaning zero belief, and 1 meaning absolute certainty:

Definition 18 (Discrete Probability) For a countable set of possible atomic
events e – called a sample space and denoted Ω, we define a probability func-
tion p : Ω 7→ [0; 1] such that:
• ∀e ∈ Ω 0 ≤ p(e) ≤ 1,
• ∑

ei∈Ω p(ei) = 1.

I define here a probabilistic model in terms of random variables and joint
probability distributions, basically an instantiation table where each atomic
event has a distinct probability, see figure 4.2.

Definition 19 (Random variable) A (discrete) random variable is a tu-
ple, 〈X,P (X)〉, where:
• X is Multi-valued variable with a countable domain dom(X) = {x1, x2, . . .}.
• P (X) = 〈p(x1), p(x2), . . .〉, is called the probability distribution of X,

and contains a probability, p(xi) for each element, xi ∈ dom(X)
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Definition 20 (Probabilistic model) A probabilistic model is a tuple
〈m,P (m)〉, where:

• m = {X1, . . . , Xn}, is a set of distinct random variables
• P (m), is called the joint probability distribution of M and is a map-

ping, e 7→ p(e), from atomic events, e, in m to probabilities p(e) of
those events. P (m) is sometimes referred to as the probabilistic pa-
rameter of m, denoted θm or just θ.

Definition 21 (Marginal probability) The marginal or unconditional
probability of an event, φ, in a probabilistic model, m, is the probability of
φ regardless of all other events in m. It is given as the joint probability of
the atomic events that covers φ and since all atomic events of a model are
distinct, we have:

p(φ) =
∑

ei|=φ
p(ei)

The marginal probability of an event of a model is also called the prior
probability of that event.

An important concept that captures the possible dependency between events
in a probabilistic model is the conditional probability, p(φ|E), of an event φ
given that a set of events E = {ψ1, ψ2, . . . ψn}, referred to as evidence, all
occurred:

Definition 22 (Conditional probability) The conditional probability p(φ|E)
is defined from prior/marginal probabilities p(φ) and p(E), assuming p(E) 6=
0, as follows:

p(φ|E) =
p(φ ∧ E)

p(E)

where p(φ∧E) is the probability that both φ and all of ψ1 . . . ψn occurs. The
conditional probability distribution

P (φ|E)

is the set of probability distributions of φ given all possible instantiations of
the variables in E. We have that for any combination of values, ψ1, . . . , ψn,
of the n evidence variables in E,

∑
∀xi p(xi|ψ1, . . . , psin) = 1, as illustrated

for P (X|Y ) in figure 4.3.
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X Y p(X|Y )
x1 y1 0.1667
x1 y2 0.1667
x1 y3 0.2500
x2 y1 0.3333
x2 y2 0.3333
x2 y3 0.2500
x3 y1 0.5000
x3 y2 0.5000
x3 y3 0.5000

Figure 4.3: Conditional probability distribution, P (X|Y ), with reference to
the variables in figure 4.2. Each entry contains the conditional probability
p(xi|yj) for particular instantiations of X and Y , calculated as defined in
definition 22.

Rules of Probability theory

Conditionally independent events Two events, φ, ψ, in a proba-
bilistic model are conditionally independent from each other, if the occur-
rence of one does not affect the probability of the other, i.e., iff:

p(φ|ψ) = p(φ)

or equivalently

p(ψ|φ) = p(ψ)

Minus rule The complement of an event, φ, written here as ¬φ, is
the event that φ does not occur. We have the rule:

p(¬φ) = 1− p(φ)

Product rule The probability, p(φ ∧ ψ) also written p(φ, ψ), of the
conjunction of two events, φ and ψ, is the probability that both φ AND ψ
occur. We have the rule:

p(φ, ψ) = p(φ)p(ψ|φ)

or equivalently:

p(φ, ψ) = p(ψ)p(φ|ψ)
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For independent events this reduces to the product of marginal probabilities:

p(φ1, . . . , φn) =
n∏

1=1

p(φi)

Sum rule The probability, p(φ∨ ψ), of the disjunction of two events,
φ and ψ, is the probability that either OR both events occur. We have the
rule

p(φ ∨ ψ) = p(φ) + p(ψ)− p(φ, ψ)

For a disjunction of mutually exclusive events, that can never occur to-
gether, this reduces to the sum of marginal probabilities:

p(φi ∨ . . . ∨ ψn) =
n∑

i=1

p(φi)

Bayes conditioning Given the evidence of p(φ, ψ) and p(ψ) we can
regard the probability of φ in the light of positive evidence of ψ, i.e.:

p(φ|ψ) =
p(φ, ψ)

p(ψ)

This is called updating the belief in φ given the evidence ψ.

4.2 Hidden Markov Models

Hidden Markov Models (HMM’s) are probabilistic augmentations of finite
state automata. This introduction is adapted primarily from [1, 2, 29, 61,
62]. In a HMM, the non-deterministic choices of which transition to make
and which symbol to emit in each state, si, are each governed by a random
variable ranging over the possible alternatives. The languages that are
denoted are still regular.

By extending the FSA from definition 12 (p. 31) with conditional proba-
bility distributions, P T and PE, for transitions and emissions both depend-
ing on the state si, we get a first-order output HMM, defined as follows:

Definition 23 (HMM) A first-order output HMM is an octuble
M = 〈S,Begin,End, T,Σ, E, P T , PE〉
where:
• 〈S,Begin,End, T,Σ, E〉 is an FSA and
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• P T = {p((s, t))|(s, t) ∈ T} is a set of probability distributions over
possible transitions from each state and
• PE = {p((s, β))|(s, β) ∈ E} is a set of probability distributions over

possible emissions from each state.

There exists a wide variety of extensions to the these basic forms of
HMM’s, please see [19] for a more thorough survey of HMM-varieties.

Probability of a path in a HMM A parse ξ(ω) of a sequence ω
corresponds to a path P(ω) (definition 13, page 32) for that sequence in
an equivalent FSA. The probability, p(ξ(ω)), of a particular parse, ξ(ω),
deriving the sequence ω = β1β2 . . . βn is the joint probability of the particu-
lar transitions and emissions in the parse, considering them as independent
events, i.e. by the product rule,

p(ξ(ω)) =
n∏

i=1

p((πi−1, πi))×
n−1∏

j=1

p((πj, βj))

Probability of a sequence in a HMM In a HMM M , the prob-
ability, p(ω), of some sequence, ω ∈ LM , is calculated as the combined
probability of all parses ξi(ω) deriving ω in M , i.e., by the sum rule for
mutually exclusive events,

p(ω) =
∑

∀i
p(ξi(ω))

Example 7 To transform the FSA for reading frames in DNA from figure
3.2 (p. 34) into a first order output HMM, simply associate a transition
probability with every edge and an emission probability with every emittable
symbol in every state, as indicated in figure 4.4.

4.3 Probabilistic Context free Grammars

The probabilistic augmentations of context-free grammars are called proba-
bilistic context-free grammars (PCFG ’s), sometimes also stochastic context
free grammars (SCFG ’s). This introduction is adapted from [1, 2, 29, 61,
62]. They are formed from context-free grammars by associating a proba-
bility distribution PR with the rewriting rules, A → β1|β2|...|βn, for each
nonterminal, A, thus turning each of them into a random variable ranging
over its alternative right-hand-sides, βj.
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Emissions β Transitions to t
s ∈ S from s p((s, β)) from s p((s, t))

Begin s1 0.45
s18 0.55

s1 a 0.25 s2 1.00
g 0.50
t 0.25

...
...

...
...

...
s20 a 0.20 s18 0.89

c 0.15 s1 0.10
g 0.30 End 0.01
t 0.35

Figure 4.4: Sketch of specification of a HMM the basis of the DNA FSA in
figure 3.2 on page 34.

Definition 24 (PCFG) A probabilistic context-free grammar is a quintu-
ple G = 〈N,Σ, R, S, PR〉 where:

• G = 〈N,Σ, R, S〉 is a context-free grammar and
• PR = {p(Ai → βj)|Ai → βj ∈ R} is a set of probability distributions

over alternative rewriting rules for each nonterminal in G.

Probability of a parse in a PCFG For context-free grammars,
the probability, p(ξ(ω)), of a particular parse, ξ(ω) = 〈A1 ⇒ β1, A2 ⇒
β2 . . . An ⇒ βn〉, deriving the sequence ω is the joint probability of the
series of rules applied in the parse, considering them as independent events,
i.e. by the product rule,

p(ξ(ω)) =
n∏

i=1

p(Ai → βi)

Probability of a sequence in a PCFG In a PCFG, the probability,
p(ω), of some sequence, ω ∈ LM , is the combined probability of all parses,
ξi(ω), deriving ω, i.e., by the sum rule for mutually exclusive events,

p(ω) =
∑

∀i
p(ξi(ω)).
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4.4 Probabilistic Inference

Three types of probabilistic inference are introduced here, sampling, pre-
diction and parameter estimation. Sampling implements a basic statistical
experiment with a probabilistic model. The motivation for employing prob-
ability in the first place was to resolve the ambiguity of the sequence models.
This is referred to as prediction and is the primary task of probabilistic in-
ference. Parameter estimation is another important task for probabilistic
inference, that seeks to establish the parameter of a probabilistic model from
observed data. The following introduction is adapted from [61, 62, 25].

Sampling

Given a probability distribution P (ei) defined over a finite sample space
of atomic events, I will use the term, sampling, to refer to a statistical
experiment consisting of picking an atomic event ei from that space with
probability p(ei). We also call such sampled outcomes observations. The
law of large numbers state that if enough samples are made from a given
sample space, the relative frequency of different observations converge to-
ward their respective probabilities.

Prediction

The motivation for employing probability in the first place was to resolve
the ambiguity of the sequence models. This is referred to as prediction and
is the primary task of probabilistic inference. For the HMM for reading
frames given in DNA from figure 4.4 (p. 45), a parse

ξ(ω) = [(Begin, π1), (π1, β1), (π1, π2) . . . (πn, βn), (πn, End)]

completely explains how the DNA sequence ω is derived in that model.
When observing DNA, however, usually only the sequence of nucleotide

symbols ω = β1 . . . βn are available, whereas the path Π = π1, . . . , πn is
unavailable. Examples like this are said to consist of both an observed
part, here the symbol sequence ω, and a hidden part, here the path Π.
Predictive inference refers to establish hidden data from observed data. In
general, for a probabilistic sequence model M , like HMMs and PCFGs, with
probabilistic parameter θ, the task of probabilistic predictive inference can
be defined as finding a parse ξ∗(ω) with highest probability in that model,
i.e.:

ξ∗(ω) = argmax
ξ(ω)

p(ξ(ω)|θ)
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For a HMM M of m states and a symbol sequence ω of length n derivable
in M , there are in the worst case mn different parses ξ(ω). While a näıve
comparison is clearly intractable, the well-known dynamic programming
viterbi-algorithm [74] computes ξ∗(ω) in time O(m2n). The Viterbi algo-
rithm can be adapted to efficiently apply to other classes of probabilistic
models, including PCFGs.

Parameter estimation

Parameter estimation is basically a search task, i.e.,

Given: A probabilistic model and a set D of observed samples and their
proper annotations, e.g., for sequence models training samples is of
the form (ω, ξ(ω)).

Task: Find the parameter that maximizes the probability p(D|θ), called the
likelihood of θ given the data D, which may be denoted L(D|θ)

Note, that the two terms probability and likelihood refers to the same nu-
meric value namely, p(D|θ). The term probability indicates that the value
is to be regarded as a function of the data D, whereas likelihood indicates
that it is to be regarded instead as a function of the parameter θ. The
probability p(D|θ) is the combined probability of all the parses ξ(ω) in D
and with regard to the probability of a path in a HMM (section 4.2), we
get:

L(D|θ) = p(D|θ)
=

∑

ξ(ω)∈D
p(ξ(ω)|θ)

=
∑

ξ(ω)∈D


 ∏

(s,t)∈ξ(ω)

p((s, t)|θ)
∏

(s,β)∈ξ(ω)

p((s, β)|θ)


 (4.1)

Supervised learning - learning from fully observed data

Consider the HMM sketched in figure 4.4 on page 4.4, and assume that the
probability distributions PE and P T are unknown. Assume fully observed
parses, i.e., both the symbol sequence ω and path Π of each example in D
are given. In this case, parameter estimation simply amounts to counting
the frequencies of the various emissions and transitions from each state and
set the probabilities accordingly.
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Take as an example state, s20 of the HMM. For each of the parses in D we
count the number of times and a, c, t or g was emitted from s20. Let us name
those frequency counts f((s20, a)), f((s20, c)), f((s20, t)) and f((s20, g)).
Then set the emission probabilities, p((s20, βi)) ∈ PE as:

p((s20, βi)) =
f((s20, βi))∑
β f((s20, β))

Similarly for transition probabilities p((s20, si)) ∈ P T .

Unsupervised learning - learning from partially observed data

Consider now the case where only the symbol sequences ωi are given and
the paths Π(ωi) are hidden. In this case, we seek to find the parameter
with highest likelihood given the data D, i.e., θ∗ = argmaxθ L(D|θ). We
can construct a complete dataset D′ containing all possible parses ξi(ω)
for every observed ω in D and count the frequencies f((s, t)), f((s, β)), as
before. This time we weigh each of them according to their probability
given a candidate parameter θ. The maximum likelihood parameter can
now be defined as:

θ∗ = argmax
θ

∑

ξ(ω)∈D′


 ∏

(s,t)∈ξ(ω)

f((s, t))× p((s, t)|θ)
∏

(s,β)∈ξ(ω)

f(s, β)× p((s, β)|θ)




The well-known general expectation maximization algorithm, EM, (see for
example [25]) is widely used for approximating the maximum likelihood
parameter θ∗. It can be sketched roughly as follows for the HMM example:

1. Complete the dataset to get D′.

2. Assume some current parameter, θi.

3. Iterate the following two steps until the parameter and likelihood con-
verge:

E-step: Count the frequencies f((s, t)) and f((s, β)) of the various tran-
sitions and emissions in the completed dataset D′, exactly as
for supervised learning; only this time, each frequency count is
weighted by its probability given θi to form expectation counts,
ec((s, t)) and ec((s, β)):

ec((s, t)|θi) = f((s, t))× p((s, t)|θi)
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and
ec((s, β)|θi) = f(s, β)× p((s, β)|θi)

M-step: Set new probabilities according to expected counts to form the
new parameter θi+1:

p((s, t)|θi+1) =
ec((s, t)|θi)∑
β ec((s, t)|θi)

and similarly for the emission probabilities:

p((s, β)|θi+1) =
ec((s, β)|θi)∑
β ec((s, β)|θi)

The EM algorithm guarantees convergence on some local maximum likeli-
hood parameter for every probabilistic model. While only a local maximum
is guaranteed, there are several tricks to increase the chance of a global max-
imum likelihood result under various circumstances. Furthermore, for many
families of probabilistic models there exist efficient specialised dynamic pro-
gramming versions of the general EM-algorithm, like the Baum-Welch al-
gorithm for HMMs. These will however not be described here.





Chapter 5

Probabilistic Logic
Programming

Several general and powerful formalisms seeking to join logic and proba-
bility theory have been suggested the last 15 years. I exemplify here the
PRISM system, [65, 66], that is a probabilistic extension to B-Prolog [79] –
an distribution of the standard Prolog logic programming language. Being a
declarative language, PRISM specifications of arbitrarily complex relation-
ships are still comparatively clear and concise. PRISM inherits from Prolog
a powerful mechanism for finding all solutions to a query, known as back-
tracking. Because of the potential very large solution space to be searched
this way, Prolog and PRISM are in principle less efficient than more tradi-
tional programming languages. BProlog employs tabling to reduce the need
for re-evaluation of already evaluated sub-goals and the dynamic program-
ming Viterbi algorithm avoids searching the entire space. Other optimiza-
tions to the general performance have also been developed in the LoSt-
project, [14]. Finally, the raw power and parallel capabilities of modern
computers has rendered this drawback more or less negligible, except where
speed is crucial to the application. For gene-finding and DNA-annotation,
annotation-accuracy is arguably more interesting than execution time.

5.1 The PRISM programming language

PRISM is a programming language intended for probabilistic logic mod-
elling. PRISM extends Prolog and essentially replaces the Prolog notion of
truth with one of probability. To illustrate the semantics of PRISM, I first
sketch the syntax and declarative semantics of Prolog based on proof trees
(see for instance [72, 51]). Then I sketch the probabilistic extension.
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Syntax and declarative semantics of Prolog

Prolog is a logic programming language defined in terms of Horn clauses
which is a subset of first order predicate logic, and from here I adopt the
associated notion of truth. Here I define truth and proof-trees directly for
Prolog.

In the following I assume the following distinct sets:

• Constants ; positive integers and strings starting with a lower-case
letter, or quoted strings.
• Variables ; strings starting with an upper case letter or “ ”; the latter

indicating distinct anonymous variables.
• Functions ; f/n, where f is the function symbol and n is the arity.
• Predicates ; p/n, where p is the predicate symbol and n is the arity.

Definition 25 (Terms) A term in Prolog is defined inductively as follows:
• constants and variables are terms.
• If f/n is a function symbol of arity n and τ1 . . . τn are terms then so

is f(τ1, . . . , τn).
• nothing else is a term in Prolog.

Terms of the form f(τ1, . . . , τn) are called compound terms.
Terms with no variables are called ground terms.

Definition 26 (Atoms) If p/n is a predicate symbol of arity n and τ1, . . . , τn
are terms, then
• p(τ1, . . . , τn) is an atom.
• nothing else is an atom in Prolog.

Atoms are the building-blocks of Prolog programs.

Definition 27 (Clauses) A Prolog clause is a structure of the form

A:- B1, . . . , Bn

where n ≥ 0 and both A and all the B′s are atoms.
A is called the head of the clause and B1, . . . , Bn is called the body.

• A fact, written simply as A., is a clause where n = 0,
• A rule is a clause where n > 0.

Definition 28 (Prolog Programs) A Prolog program P is a finite set
of Prolog clauses.
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Definition 29 (Herbrand Base) For a Prolog program P , the Herbrand
Base of P , B(P ), is the set of all ground atoms that can be constructed from
the constants, function symbols and predicate symbols in P .

Each atom α ∈ B(P ) has a truth value defined in terms of proof trees :

Definition 30 (Proof trees) Given a Prolog program P the set of proof
trees is defined inductively as follows:
• If α is a ground instance of a fact in P , then Tα is a proof tree rooted

in α with no sub-trees.
• If α is an atom such that there is a ground instance, α : − β1, . . . , βn,

of a rule in in P and Tβ1 , . . . , Tβn are proof trees rooted in β1, . . . , βn,
respectively, then Tα is a proof tree rooted in α having Tβ1 , . . . , Tβn as
immediate sub-trees.
• Nothing else is a proof tree.

Definition 31 (Truth) An atom α ∈ B(P ) is true iff a proof tree rooted
in α can be constructed from the rules and facts in P and false otherwise.

Definition 32 (Declarative program meaning) The declarative mean-
ing P of a Prolog program P is defined as the subset of true atoms in B(P )

Syntax and semantics of PRISM

PRISM extends Prolog with a notion of probabilistic variables called Multi-
valued switches enabling the specification of probabilistic programs.

A Multi-valued switch S with outcome space {V1 . . . Vn} is declared in
PRISM by use of the values/2 built-in predicate:

values(S,[V1, . . . , Vn])

The switch identifier S must conform to a Prolog term – including complex
terms, so that for example die, die(red,1), die(red,2) and die(blue,1)

are all legal (distinct) switch identifiers. On this note, Prologs anonymous
variable (initiated by “ ”), works as usual so that for example die(red, )

will unify with any term that matches that particular pattern. A uniform
probability distribution over the outcomes space is assumed per default, but
a specific distribution may be set explicitly by use of the set sw/2 built-in
predicate:
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set sw(S,[p(V1), . . . , p(Vn)])

The probability distributions for all Multi-valued switches in a PRISM-
program corresponds to the parameter of a probabilistic model.

In PRISM, a Multi-valued switch defines a family of random variables
with the same switch identifier and outcome-space. An independent switch
instance of this family is generated and instantiated probabilistically to a
value in the outcome-space by a call to the built-in predicate msw/2:

msw(S, V )

where V ∈ {V1 . . . Vn}.

Note that individual calls to msw/2 are independent so that any call, msw(S, V ),
will generate a new instance of S and instantiate it anew, i.e., independently
from other such calls, to one of the possible outcomes of S.

PRISM atoms can be defined as for Prolog (definition 26, p. 52) with the
addition that ground instances of Multi-valued switches, msw(S, V ) also are
atoms, for use exclusively in the body of clauses. In these terms, probabilistic
predicates are predicates that depend on one or more probabilistic choices,
i.e., calls to msw/2.

Clauses and programs in PRISM are defined as for Prolog (definitions 27
and 28, on page 52), with the constraint that for a program to be a legal
PRISM program, all non-determinism must be resolved by calls to msw/2.
Note, however, that a non-probabilistic interpretation of a PRISM program
can be achieved simply by assuming that msw/2-calls always succeed or,
alternatively, by redefining msw/2 simply as the Prolog built-in member/2-
predicate.

The Herbrand Base B(P ) for a probabilistic program P is also defined
as for Prolog programs (definition 29, p. 53), except that here each proba-
bilistic atom α ∈ B(P ) is either false or has a non-zero probability, defined
in terms of explanation tree as follows.

Definition 33 (Explanation tree) Given a PRISM program P the set of
explanation trees is defined inductively as follows:

• If α is a ground instance of a fact in P , then Eα is an explanation
tree rooted in α with no sub-trees and probability p(Eα) = 1.
• If α is a ground instance, msw(S,V), of a Multi-valued switch in P ,

then Eα is an explanation tree rooted in msw(S,V) with no sub-trees
and probability p(Eα) = p(V ).
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• If α is an atom such that there is a ground instance, α : − β1, . . . , βn,
of a rule in P and Eβ1 . . . Eβn are explanation trees rooted in β1 . . . βn,
with probabilities p(Eβ1) . . . p(Eβn), then Eα is an explanation tree
rooted in α having Eβ1 . . . Eβn as immediate sub-trees and probabil-
ity p(Eα) =

∏
i p(Eβi) .

• Nothing else is an explanation tree.
An explanation tree rooted in an atom α is also called an explanation for
α.

Definition 34 (Probability of atoms) Given a PRISM program P ev-
ery (ground) atom in the Herbrand Base B(P ) has a probability defined as
follows:
• An atom α ∈ B(P ) has probability p(α) =

∑
i P (Ei

α), where Ei
α are

all explanation trees rooted in α and p(Ei
α) are their respective prob-

abilities.
• Iff no explanation tree rooted in α can be constructed, then α has zero

probability.

Under the basic distribution semantics as defined by Taisuke Sato in [64],
a PRISM program defines a probability distribution over the ground atoms
in the associated Herbrand Base if the following conditions are met:

1. Exclusiveness condition, stating that disjunctive paths in a proof-tree
must be probabilistically exclusive, basically meaning that all choice
in the program must be governed by multi-valued switches.

2. Uniqueness condition, stating that all solutions to any goal must be
probabilistically exclusive and their probabilities sum to 11.

In these terms we may define the declarative probabilistic meaning of
PRISM programs as follows:

Definition 35 (Meaning of probabilistic programs) The probabilistic
declarative meaning of a PRISM program P under the distribution seman-
tics is defined as the subset of ground atoms in B(P ) with non-zero proba-
bilities.

Note, however, that any PRISM-program can be regarded as a Prolog-
program by assuming a non-probabilistic functionality of msw/2, e.g., calls

1This ultimately implies the potentially very critical restriction that no goal may
ever fail in a PRISM program. The newer versions of PRISM take such failures into
account and thus relax the uniqueness condition, [67].
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to msw/2 always succeed or, alternatively, msw/2 simply mimics the membership-
predicate member/2. An annotation program defined this way constitutes
the logic part of a annotation model, where the probabilistic parameter θ
constitutes the probabilistic part.

5.2 Probabilistic sequence models in

PRISM

The PRISM system is well suited for specifying probabilistic grammar for-
malisms and parsers, which I illustrate for HMM’s and PCFG’s in this
section.

Hidden Markov Models in PRISM

Recall from definitions 12 (p. 31) and 23 (p. 23), that an HMM is defined
as the octuple 〈S,Begin,End, T,Σ, E, P T , PE〉 where:
• S is the set of states,
• Begin ∈ S is a distinguished begin state,
• End ∈ S is a distinguished end state,
• T ⊆ S × S is a set of directed state transitions.
• Σ is the alphabet of emittable symbols,
• E ⊆ S × Σ is a set of possible state emissions.
• P T = {p((s, t))|(s, t) ∈ T} is a set of transition probabilities and
• PE = {p((s, β))|(s, β) ∈ E} is a set of emission probabilities.

In PRISM, HMM’s can be defined concisely in terms of their states, S,
the possible transitions and emissions from each state s ∈ S, T (s) and E(s),
and their corresponding probability distributions. To model, for example,
the DNA-HMM from example 7 (p. 44) following the diagram in figure 3.2
(p. 34) can be precisely specified in PRISM by declaring the components
as follows:

% (begin and end states)

initial(begin).

final(end).

% (transitions in $T$)

values(trans(begin),[s(1), s(18)]).

values(trans(s(1)) ,[s(2)]).

...
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values(trans(s(20)) ,[s(1),s(18),end ]).

%(emissions in $E$}

values(emit(s(1)) ,[a,g,t]).

...

values(emit(s(20)) ,[a,c,g,t]).

The respective probability distributions can be specified – using proper in-
stances of set sw/2, or the default uniform distributions may be accepted
as is.

To generate a sample sequence from these specification we need a general
parser for Hidden Markov Models, implemented in PRISM for example as
follows:

hmm(Sequence ,Path):-

initial(BeginState)

msw(trans(BeginState),State1),

hmm(State1 ,Sequence ,Path).

hmm(ThisState ,[] ,[]):- final(ThisState ).

hmm(ThisState ,[ ThisEmission | RestEmissions ],[ ThisState|RestPath ]):-

\+ final(ThisState),

msw(emit(ThisState), ThisEmission),

msw(trans(ThisState), NextState),

hmm(NextState , RestEmissions , RestPath ).

The program consists of a top-predicate hmm/1 and a recursive predicate
hmm/2. The top-predicate establishes the initial state by a call to the goal
msw(trans(BeginState),State1) and initiates the recursion by a call to
goal hmm(State1,Seqeunce). The clauses of the recursive predicate estab-
lishes what symbols to emit and what state to transit to from each state, as
governed by the two msw/2-calls. Recursion continues until the end-state

is reached. Note, that the use of negation as failure (\+) may have unde-
sirable effects in some programs due to backtracking, but is unproblematic
here since in each case there is only one possible clause to choose.

Given an instance of sequence S that is explained by the probabilistic
model, the built-in predicate prob/1:

:- prob(hmm(S))
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implements an algorithm for computing

p(hmm(S)) =
∑

E
hmm(S)

p(Ehmm(S))

i.e., the sum of the probabilities of all explanation tress rooted in hmm(S),
given the rules of the hmm-program and current probability distributions.

Probabilistic context-free grammars in PRISM

PCFG’s are modelled in PRISM just as straightforwardly as were HMMs.
Recall from definitions 14 (p. 33) and 24 (p. 45)that PCFG’s are defined
as the quintuple G = 〈N,Σ, R, S, PR〉 of nonterminal symbols, N , terminal
symbols, Σ, rewriting rules, R with corresponding probability distributions,
PR and a unique start symbol S, such that each nonterminal rule in the
grammar is in essence a random variable ranging over its various rewriting
alternatives.
Consider again the HairpinLoop grammar from example 6 on page 35,

G3 = 〈{HairpinLoop, Stem,Loop}, {a, t, c, g}, R,HairpinLoop, PR)〉

with grammar rules in R:

HairpinLoop→ a Stem t | t Stem a | c Stem g | g Stem c

Stem→ a Stem t | t Stem a | c Stem g | g Stem c | Loop

Loop→ a Loop | t Loop | c Loop | g Loop |
a | t | c | g

This can be precisely specified in PRISM by declaring components, S, N, Σ, andR
as follows:

% (grammar symbols)

startsymbol(hairpinLoop ).

nonterminal(hairpinLoop ).

nonterminal(stem).

nonterminal(loop).

terminal(a).

terminal(t).

terminal(c).
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terminal(g).

% (rules in $R$)

values(hairpinLoop ,[ [a,stem ,t],

[t,stem ,a],

[c,stem ,g],

[g,stem ,c]]).

values(stem ,[ [a,stem ,t],

[t,stem ,a],

[c,stem ,g],

[g,stem ,c],

[loop ]]).

values(loop ,[ [a,loop],

[t,loop],

[c,loop],

[g,loop],

[a],[t],[c],[g]]).

note that each nonterminal is represented by a separate multi-valued switch
an outcome space corresponding to its alternative rewriting rules in the
grammar. As for HMMs, the probability distributions in PR can be spec-
ified explicitly or we may (for now) accept the default uniform distributions.

Once again, we need a general generative parser for sampling execution.
Using variable RHS for the alternative right-hand sides of rules, we can
implement a parser for PCFGs as follows:

% (top -predicate)

pcfg(Sequence):-

startsymbol(Start),

msw(Start ,RHS),

pcfg(RHS ,Sequence ).

% (Cases of the recursive predicate)

% (endcase)

pcfg([], Sequence):- Sequence = [].

% (nontermainal case)

pcfg([ First|Rest],Sequence):-

nonterminal(First),

msw(First ,RHS),
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pcfg(RHS ,Prefix),

pcfg(Rest ,Postfix),

append(Prefix ,Postfix ,Sequence ).

% (terminal case)

pcfg([ First|Rest],Sequence):-

terminal(First),

pcfg(Rest ,Postfix),

Sequence = [First|Postfix ].

As for HMMs the parser consists of a top predicate and a recursive
predicate. When the top predicate pcfg/1 is called, it establishes the
unique start-symbol and randomly chooses one of its rewriting-rules by
calling the goal msw(Start,RHS), with which it initiates the recursive pred-
icate pcfg/2. Depending on the first symbol in the right-hand-side list of
symbols, different clauses of the recursive predicate is matched:
• if the right-hand-side is empty, the empty list is returned.
• if the right-hand-side starts with a nonterminal, one of its rewrit-

ing rules is chosen and parsed recursively to the terminal sequence
Prefix. Then the reaming right-hand-side is parsed recursively to
the terminal sequence Postfix. Finally Postfix is appended to Prefix
to form the final output sequence.
• if the right-hand-side start with a terminal symbol, it is simply copied

to the output sequence of the remaining right-hand-side as established
by the recursive call pcfg(Rest,Postfix).

5.3 Probabilistic inference in PRISM

Apart from the built-in predicates values/2, set sw/2, msw/2 and prob/1

already mentioned, PRISM includes a large collection of built-in tools in
many variations for probabilistic analysis, including efficient implementa-
tions of well known algorithms for sampling, prediction and learning that,
I will describe briefly.

Sampling in PRISM

Recall from section 4.4, that sampling refers to the statistical experiment
of picking an atomic event ei from a sample space with probability p(ei).
When properly parametrised, a sequence model in PRISM represents a
probability distribution over all possible sequence that can be derived from
it. In the following I sketch the particular processes for HMMs and PCFGs
in particular.
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Sampling in PRISM A random sample sequence from the PRISM pro-
gram, hmm/1, from section 5.2 is generated by the calling the built-in pred-
icate sample/1:

?- sample(hmm(S)).

Similarly, a sample sequence given the probabilistic program pcfg/1 is also
generated as the result of a call of sample/1:

?- sample(pcfg(S)).

In which case the respective parsers are evaluated as described above to
generate random sequences from the corresponding grammars.

Prediction in PRISM

Predictive inference in PRISM is catered for by a family of built-in predi-
cates implementing different variations of a generalized Viterbi algorithm.
The generalised Viterbi algorithm finds a most probable explanation, E∗G,
for a ground probabilistic atom G, given the PRISM rules and the current
probability distributions. I.e., the call:

?- viterbig(G,P,E).

implements
E∗G = argmax

EG

p(EG)

and instantiates E to E∗G and P to p(E∗G).
As an important functionality of the viterbig-predicates in PRISM, all

non-ground variables in the goal G becomes grounded to specific values that
correspond to the maximal overall probability.

Example 8 If hmm/1 defines a parametrised HMM in PRISM as described
in section 5.2, (parser repeated here)

hmm(Sequence ,Path):-

initial(BeginState)

msw(trans(BeginState),State1),

hmm(State1 ,Sequence ,Path).

hmm(ThisState ,[] ,[]):- final(ThisState ).

hmm(ThisState ,[ ThisEmission | RestEmissions ],[ ThisState|RestPath ]):-
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\+ final(ThisState),

msw(emit(ThisState), ThisEmission),

msw(trans(ThisState), NextState),

hmm(NextState , RestEmissions , RestPath ).

and S is a ground sequence that can be derived from that model, then the
query

viterbig(hmm(S),P,E)

will establish the most likely explanation E for S, and instantiate the argu-
ment P to the probability of that explanation.

If we extend the model to a version, hmm/2, with an extra argument Path
to record the states of paths as follows:

hmm(Sequence ,Path):-

initial(BeginState)

msw(trans(BeginState),State1),

hmm(State1 ,Sequence ,Path).

hmm(ThisState ,[],[]): - final(ThisState ).

hmm(ThisState ,[ ThisEmission | RestEmissions ],[ ThisState|RestPath ]):-

\+ final(ThisState),

msw(emit(ThisState), ThisEmission),

msw(trans(ThisState), NextState),

hmm(NextState , RestEmissions , RestPath ).

the query
viterbig(hmm(S,A),P,E)

will in addition instantiate Path to a list of those states that corresponds to
the most likely path deriving S, i.e., as an alternative to the full explanation
tree E.

Parameter estimation in PRISM

PRISM has a family of built-in predicates for parameter estimation, given
a suitable set of training goals, i.e., a file of ground instances of the top-
predicate. The simplest is learn/1, that implements the general EM-
algorithm for approximating the maximum likelihood parameter, θ∗, given
the training data, D, i.e.:

θ∗ = argmax
θ

L(D|θ)

and sets the current parameter values accordingly.
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Example 9 Given the extended hmm ,hmm/2, from the previous example
and a list of ground instances of goals,

D = [hmm(S1, A1), . . . , hmm(Sn, An)]

the query:

learn(D)

will invoke the built-in learning functionality of PRISM and set the individ-
ual switch-probabilities according to the recorded paths for the sequences in
the training data D.





Summing up - Part I

In this part of the dissertation, I have defined the necessary biological, lin-
guistic and probabilistic foundations for describing the problem context of
applying probabilistic logic programming for DNA-analysis. In chapter 2,
I explained the central biological dogma: transcription of DNA to mRNA
and translation of mRNA to proteins. The important notions of basepairing,
codons, genetic code and reading frames were introduced and explained. I
also briefly introduced the concept of DNA-annotation and made the dis-
tinction between extrinsic and intrinsic approaches for gene finding. In
chapter 3, I presented the formal definitions and background for formal
language description, introducing formal grammars, automata and the no-
tion of ambiguity. I indicated through examples how these formalisms easily
lend themselves to the description of problems related to DNA-annotation,
but also that the inherent ambiguity of the biological domain needs resolu-
tion. In chapter 4, I included the basic probabilistic foundations necessary
for showing how probability theory offers a robust way of resolving am-
biguity. Probabilistic grammars and automata were defined in chapter 4.
In chapter 5, I briefly defined the syntax and semantics of the PRISM
system and showed how probabilistic models can be formulated as PRISM-
programs and how to perform the most important inferential tasks with
those programs: sampling, probability calculation, prediction and parameter
estimation.
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Part II

Methodology and Examples
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Chapter 6

Complex Sequence Analysis

In this chapter I define the proposed compositional approach, Bayesian
Annotation Networks for integration of probabilistic models for sequence
analysis. In chapter 7 and 8, I describe in detail two example applications
to the domain of DNA-annotation and the experiments that were carried
out with them. The approach evolved from experiments with preprocessing
as a means of negotiating complexity of a complex annotation task

We attempted to first identify the different analytical tasks as being ei-
ther simple or demanding in terms of computational complexity. We then
decompose the overall model accordingly, i.e., into a specialised sub-model
for each class of tasks. By means of yet another sub-model, called a chop-
per, for simple pre-analysis of the data-sequence, we attempt to distinguish
corresponding types of sub-sequences: those, that require the complex ana-
lysis and those, that can make do with the less sophisticated analysis. Each
sub-sequence is then submitted to the sophisticated annotation model of its
type, and the individual sub-annotations combined to produce an annota-
tion of the original sequence. That is, we follow an algorithm along these
lines:

1. Apply the pre-processor to distinguish sub-sequences according to
type.

2. Submit each sub-sequence to complex annotation-analysis according
to type.

3. Append the annotations.

This work – published also in part in [20] (2008) and [42] (2008) – forms
the substrate of chapter 8 of the dissertation.

69
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At least one important insight in was gained from these early experi-
ments. Namely, that when we, like this, distinguish first and perform com-
plex analysis later, then the complex analysis obviously has no influence
what so ever on the distinction. In many cases, where the pre-processor
represents a very simple model without the sophistication of the specialised
annotation-model, this corresponds to letting the blind lead the seeing.
Therefore, if we want the sophisticated annotation programs to influence the
distinction and classification of sub-sequences, we are required to annotate
first and distinguish later. This let me to think of the overall model in terms
of a tree-like structure (a directed acyclic graph, really) of sub-models, each
with their special responsibility be it chopping, feature-analysis, or integrat-
ing, and each depending on the annotations of one or more of the others. It
was observed that the idea resembled Bayesian Network only with annota-
tion models rather than random variables in the nodes. From this evolved
the general methodology of organizing specialized sub-models according to
their interdependencies in a topology, that we now call a Bayesian Anno-
tation Network (BAN).

6.1 Introduction

Having established the theoretical background and basic tools for biological
sequence analysis and probabilistic logic programming, I can now present
the research problem of my dissertation clearly – and in the proper context.

Recall from chapter 2.6, that by genome- and DNA-annotation, I refer
to the identification and marking of features and properties in a sequence
of DNA, that could be relevant for identifying genes in that sequence. The
relationship between DNA and genes, is a complex one that involves a lot
of biochemical mechanisms and aspects not all of which are entirely un-
derstood. While automatic genefinders do take a number of important
aspects into regard, a small percentage of the genes that we know to exist
in well studied genomes, for example that of Escerichia Coli, evade state
of the art gene-finders like Glimmer [63, 28, 27], Genemark [7, 44, 6], and
EasyGene [41, 50]. In fact, around 2% of the known genes in E.Coli go
undetected by all the state of the art genefinders. The consistent failure to
detect what we know to be there, only supports what is generally assumed,
namely that there exist genes, even in well studied genomes, that have not
been discovered yet, see for example [75] and elsewhere. Consequently, it is
going to take quite a big effort, both biologically and computationally, to
identify the remaining relevant features and increase the predictive power
of automatic systems for gene-finding. To this end, a shift to a declarative
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probabilistic-logic paradigm, as represented by the PRISM system, may
contribute usefully by:

• increased expressive power - programs in these languages are gen-
erally shorter and more concise than implementations in procedural
languages,
• executable problem specifications - once a problem has been properly

specified, that specification functions as a working implementation for
the solution of the problem,
• clear and consistent semantics based on classical 1st order logic.

In part I, I demonstrated how comparatively easy it is to implement sim-
ple Hidden Markov models and stochastic context-free grammars in PRISM.
The inherent modularity of predicate logic that is integral in PRISM, allows
for flexible systems, where clear and well defined alterations and adapta-
tions can be specified. That being said, PRISM is just as vulnerable to
high complexity problems as any other programming language. The sheer
size of data-instances involved in DNA-annotation, means that care has to
be taken to keep computational complexity in check. Furthermore, DNA-
annotation is extremely susceptible to the curse of dimensionality; i.e., as
the number of parameters under consideration in a predictive system in-
creases, the predictive power of the system tend to decrease.

As already mentioned in the introduction, this presents the non-trivial
challenge, that is the motivating research question of the LoSt project as a
whole:

How to implement clear, flexible and efficient systems using PRISM for
accurate DNA-annotation?

As a partial problem of this overall goal the research question of the present
dissertation can be formulated:

Can we establish a system of compositionality for probabilistic annotation
programs in PRISM that retains the strengths of declarative programming
but keeps computational complexity low enough for practical application?

I explore here an approach to the answer of that question, that involves
two universal problem solving strategies: problem decomposition and data
partitioning.
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The compositional approach

The basic idea is to analyse a selection of individual features in isolation
with separate annotation models and afterwards integrate the results in a
compound analysis. To keep the size of data-instances manageable, suitable
ways of partitioning data are also proposed. Together these strategies seek
to rise to the general challenges of the LoSt-project by:

• reducing the number of required parameters in individual annotation
models,
• allowing optimization of individual models with minimal regard to

irrelevant factors,
• keeping the overall analysis flexible enough for easy comparison and

experimentation with alternative combinations of feature signals.

This overall strategy raises several questions that will be addressed in this
chapter: In section 6.2, I will discuss the different kinds of annotations
that the methodology will involve and what I mean by annotation models.
For any kind of DNA-annotation to be efficient, it is quite necessary to
break up the extremely long genomic sequences into manageable chunks
and in section 6.3, I discuss alternative strategies for doing so. I propose, in
this work, a method for integrating information from separate annotations
that is inspired from classical Bayesian Networks. It involves what we
call Bayesian Annotation Networks or simply BANs which are defined and
discussed in section 6.4. Different BAN’s integrate individual annotations
differently and section 6.6 discuss systematic comparison and evaluation of
alternatives.

6.2 Annotations, programs and models

DNA-annotation in general, refers to any mark-up of the DNA-sequence
representing some aspect of it. A DNA-annotation program then, is simply
a computer program that analyses an input DNA-sequence with regard to
some aspect and produces a suitable annotation representing the result of
the analysis, i.e., in logic programming terms:

Definition 36 An annotation program, or just a program, is a PRISM
program prog, that defines a set of atoms, each of the form:

prog(s, a, parents),

where
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- s is called the sequence, and represents the data sequence to be anno-
tated by the program.

- a is called an output annotation, and
- parents represents zero or more conditioning annotations.

The “parents” argument in this definition, anticipates the introduction of
Bayesian Annotation Networks in section 6.4 below. Parent annotations
represent annotations produced by other annotation-programs, serving as
conditions for the analysis associated with prog .

Definition 37 A probabilistic annotation model

m = 〈prog , θ〉

consists of an annotation program prog and a parameter θ. The parameter
is a set of specific probability distributions for the Multi-valued switches in
the program, giving rise to a well-defined conditional probability distribution
(def. 22, p. 41) for annotation programs, prog(s, a, parents):

P (a | s, parents , θ)

The framework captures also analyses that are not necessarily written
in a probabilistic-logic language.

Definition 38 A deterministic annotation model is a program

prog(s, a, parents)

where, for a specific sequence s0 and parents0, there exists exactly one output
annotation a0, i.e.,

P (a0 | s0, parents0, θ) = 1,

where θ, in this case, refers to an empty parameter which is ignored.

The empty parameter is included for uniformity of notation only. A deter-
ministic annotation model with empty parents may for example represent
an analysis provided by an external tool that, e.g., searches for similarities
in a database of related sequence data or some other deterministic analysis.

Example 10 Figure 6.1 illustrates an example of a simple probabilistic an-
notation model, that considers a specific nucleotide preference as an indica-
tion for coding potential in un-annotated DNA, S. This example is adapted
from an example in [29] for illustrating hidden Markov models. Because
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there is a functional relationship between a protein and the nucleotides in
the encoding gene, it may be assumed that the nucleotides in protein-coding
genes are distributed differently than nucleotides in non-coding regions of
DNA. Such a difference in bias of the two distributions (referred to as a
preference) may be sufficient to distinguish coding regions from non-coding
regions. It is very straightforward to implement, for example, as a first
order output HMM with two states, one for coding, cs, and one for non-
coding, ns. Both states can be initial and final and both have transitions to
themselves and each other. Each of the states cs and ns emits one of the
four nucleotides a, c, t or g before making a transition to the next state,
and the emitting state is recorded along the way as an annotation of that
position in the sequence. The parameter, θ, of the model, consisting of the
transition and emission probabilities, can be explicitly specified or estimated
from existing training data.

Following the general scheme for HMMs in PRISM, that was presented
in section 5.2, it is equally straightforward to implement the model in PRISM
(figure 6.1, Right).

Predictive analysis consists of finding a path through the HMM, that
corresponds to which parts of the sequence represent coding regions, and
which that do not. We can infer a most probable path given the sequence
and the model parameter, θ.

The position specific annotation, A, produced this way forms a prediction
of the location of the coding regions in the input DNA sequence, S, based
on similarity between occurrence of nucleotides in the input sequence and
the preference hypothesised by the model parameters (figure 6.1, Bottom).

Example 11 As an example of a deterministic annotation model, con-
sider again the FSA from figure 3.2, also shown in a simplified version in
figure 6.2. It can be implemented as an HMM-based annotation program
similarly to the one shown in figure 6.1 for annotating likely orf- and non
orf-positions in an input sequence.. Recall that orf ’s are defined in terms of
3-nucleotide units called codons. They begin with a start codon, then fol-
lows a sequence of coding codons and terminates with the first stop codon
in this sequence of codons.

An annotation, aorf , could be a codon-specific one, that assigns a discrete
triplet-symbol, “...”, “<<<”, “>>>” or “---” to each non-coding codon,
start codon, stop codon and orf codon, respectively (see figure 6.3). This
annotation is necessarily specific to a specific reading frame and for each
there is only one possible outcome of the corresponding annotation model,
morf , that is therefore an instance of a deterministic annotation model with
an empty list on parents, by definition 38.
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Figure 6.1: (Left) A first order output HMM modelling a difference in nu-
cleotide preferences between coding and non-coding states. Apart form
the silent begin and end states, there are states cs for coding and ns for
non-coding, that can each be responsible for any of the four nucleotide sym-
bols but with assumed different probabilities. (Right) An implementation
in PRISM that closely follows the general scheme for HMM’s (presented
in section 5.2) except for an extra argument, A, in the hmm predicates for
collecting the sequence of emitting states in a path. The transition and
emission probabilities are assumed to be contained in the file named ”pa-
rameter file”. Together the PRISM program and its parameters constitute
a probabilistic annotation model. (Bottom) For any complete set of transi-
tion and emission probabilities, the most probable state sequence, A, for a
given sequence S of nucleotide symbols a, c, t or g can be identified as an
example of a probabilistic annotation of S.
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Figure 6.2: Simplified structure of the finite state automaton for DNA from
figure 3.2. The annotations, “...”, “<<<”, “---” and “>>>”, associated
with the codon-classes in an ORF-annotation are also indicated.

Figure 6.3: Three annotations, orf, cns and gen of a common DNA se-
quence seq.

Example 12 Another example of a deterministic annotation model, mcns,
employs the analysis of an external tool that computes a conservation an-
notation. Conservation here describes a degree to which the codons of a
DNA sequence are conserved across species. Mutation in the DNA, either
due to environmental influences or to errors during DNA-replication from
one generation of the organism to the next, deletes or inserts small nu-
cleotide sequences or exchanges individual nucleotides. In general, codons
of actual genes are better conserved (less mutated) between related organ-
isms than codons of non-gene regions. A representation of conservation of
the DNA can be established by aligning it against a selection of reference
genomes using for example the tBlastn program, available from NCBI [49].
Informally, we can devise a codon-specific annotation, acns, that assigns a
discrete triplet-symbol to each codon, for example“000”, “111”, “222” and
“333” depending on the degree to which it is conserved across the reference
genomes, i.e., conserved in 0-25%, 25-50%, 50-75% and 75-100% of the
genomes in the reference set, figure 6.3.

Example 13 The two previous annotation models, morf and mcns, anno-
tated the input sequence S directly independently from any other annota-
tions. Each of them can however be considered features that are possibly
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relevant for gene-finding and thus could themselves form parent annota-
tions to an annotation model, mgen, producing an annotation, agen, that
indicates possible genes in S, depending on annotations, aorf and acns. A
position-specific annotation could mark positions predicted as belonging to
genes with 1 while other positions are marked 0, shown in figure 6.3. Note
how such a modularised scheme allows individual factors orf-structure and
conservation to be modelled in separate specialised models, morf and mcns,
and leaves the overall reasoning with the corresponding signals to another
specialised model, mgen. A HMM-based PRISM-program implementing the
logical part of mgen is listed in figure 6.4.

6.3 Data-partioning – chunking

Keeping individual annotation models as simple as possible clearly alleviates
the complexity of the overall analysis. Some features may however still be
too complex to annotate efficiently. With the vast size of data-instances
in DNA-annotation problems, many analytical tasks are very vulnerable to
possible combinatorial explosion of the solution space. For example, parsing
of probabilistic context-free grammars is of polynomial complexity in terms
of sequence length n, i.e., O(n3 ). With n in the magnitude of several
millions, cubic analysis is impractical. The problem of course increases with
analysis complexity, and several relevant analyses are significantly more
complex than the relatively simple standard parsing-algorithm. However,
the combinatorial explosion can in general be reduced to a series of smaller
ones, by dividing long sequences into small enough partitions, that I refer
to as chunks.

There is of course a myriad of ways to partition a sequence, not all of
which are equally suitable. To be useful, a partition-strategy must fulfil the
following three requirements:

• it must divide the input data into chunks that are small enough for
efficient analysis,
• it must prevent that what we wish to analyse is destroyed or lost as

a consequence of the partitioning
• the analysis needed for partitioning should not be more complex than

the overall analysis itself.

What chunk-size is suitable for efficient analysis obviously depends on
the computational complexity of the analysis, i.e., how fast time- and
memory-consumptions grows in terms of data-size. As already, mentioned
computational complexity of algorithms are usually distinguished as either
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initial(begin).

final(end).

values(trans(begin),[gene pos,nongene pos]).

values(trans(gene pos),[gene pos,nongene pos,end]).

values(trans(nongene pos),[gene pos,nongene pos,end]).

values(emit(gene pos),[( O, C, S)]). ∗

values(emit(nongene pos),[( O, C, S)]). ∗

prog gen(Seq,A gen, A orf, A cns):-

initial(State0),

msw(trans(State0),State1),

prog gen(FirstState,A gen, A orf, A cns).

prog gen(ThisState,[],[],[],[]):- final(ThisState).

prog gen(ThisState,[S|Seq],[G|A gen],[O|A orf],[C|A cns]):-

\+ final(ThisState),

msw(emit(ThisState),(O,C,S)),

annotation symbol(ThisState,G),

msw(trans(ThisState),NextState),

prog gen(NextState,Seq,A gen,A orf,A cns).

annotation symbol(gene pos,1).

annotation symbol(nongene pos,0).

Figure 6.4: One implementation of the logical part of the annotation model
mgen in PRISM. Notice that the emission variables for both gene-positions
and nongene-positions, (marked with ∗) range over all possible combina-
tions, (O,C,S), of position specific orf-, cns-, and sequence-symbols, each
respectively ranging over {.,<,-,>}, {0,1,2,3}, and {a,c,t,g}. In a gen-
erative execution of this program, each iteration of the prog gen/5 predi-
cate, emits one such combination from the current state, records the anno-
tation symbol, G, associated with that state, 0 or 1, in the Ag-list, decides
on a transition state and calls itself recursively. Recursion stops once a
final state, here end, has been reached. For explanation search, the most
likely annotation, Ag, given specific Seq, Ao and Ac can be computed by (an
adapted version of) the Viterbi utility of PRISM.
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polynomial or exponential, where polynomial means that the time consump-
tion as a function of data-size grows polynomially. Traditionally polynomial
algorithms are considered good in contrast to exponential algorithms that
should be avoided at all times. In domains like the present, with extreme
data-sizes, only the simplest polynomial algorithms are really practical.

The object of the analysis of course constrains how to partition data
in order not to destroy that which we wish to analyse. It is a general and
challenging problem that is shared among others with natural language
processing. Its solution requires sufficient knowledge of the domain of ap-
plication in order to motivate the partitioning properly.

Of course, if the analysis necessary to perform the partitioning is too
complex, i.e., as complex as the original analysis, the point of partitioning
is lost al together.

Orf-based chunking for DNA

For gene-finding in DNA several strategies based on orf’s (open reading
frames) can be formulated, that keep genes intact after chunking. Recall
that all genes occupies an orf consisting of a start-codon, a series of orf-
codons and terminated by a stop-codon, where possible start-codons double
as possible orf-codons but any stop-codon terminates the orf.

Only longest possible orf’s: We may for example define chunks as
longest possible orf’s, i.e., starting with the earliest possible start-codon for
each possible stop-codon:

The gene-finding task is then reduced to deciding whether each chunk con-
tains a gene and, if so, which of the alternative start-codons is the actual
one. While features that occur strictly within a given coding region may
be analysed efficiently this way, it is clear that features concerning the
transitions between non-coding and coding regions in the DNA cannot be
analysed consistently due to lack of context, particularly so for the first
start-codon in each chunk.

From stop to stop: We may instead consider chunks going from the
stop-codon of one orf to the stop-codon of the next one:
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This strategy has the advantage of covering the entire input sequence and
thereby allow analysis of intergenic features in the same reading frame of
the DNA. It also provides the ”intergenic” pretext for each possible start-
codon and thus allows for a more consistent analysis of the actual starts of
potential genes. As a drawback of this strategy (as well as the previous one),
genomic context around the stop-codons is consistently missing, preventing
analysis of features concerning the transition from coding to non-coding
regions in the DNA.

Orf’s with context: The third strategy, shown below, defines chunks
in terms of longest possible orf’s framed by fixed amount of genomic context
– both before and after:

This strategy allows analysis of transition between coding and non-coding
regions but prevents intergenic DNA from consistent analysis. However,
given that we are looking for genes that must involve an orf, it is perhaps
reasonable to forego unnecessary analysis of intergenic DNA.

Other orf-based alternatives exist, that are not illustrated here, includ-
ing of course analysing each orf individually – rather than en bloc, as in-
dicated here with several orf’s per chunk, which may be useful for some
analyses.

Alternatives to orf-based chunking are of course also possible, and indeed
necessary when analysis concerns for example cross-frame relationships be-
tween features in different reading frames. They could for example involve
overlapping chunks of fixed length or be based on a larger unit of DNA like
operons or even entire genomes for some purposes.

The choice of chunking strategy clearly places constraints on what fea-
tures can be analysed consistently and different analyses may call for differ-
ent chunking strategies. Different chunking strategies, however, are easily
implemented as deterministic annotation models, marking the input se-
quence with appropriate chunk-starts and -stops, that subsequent analyses
may depend on as parent annotations. As illustrated in chapter 8, it is
possible to design a chunking mechanism that, in addition to partitioning
input, also classifies individual partitions and thereby decides what sub-
sequent analysis they are eventually submitted to. In general, chunking
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models do not offer individual interpretation of the input, and can be seen
simply as a pre-process for a more complex analysis.

6.4 Organising annotations in Bayesian

networks

Given a collection of specialised annotation models that each regard factors
that are possibly relevant to the overall analysis, the remaining challenge
is to integrate the information represented by their respective annotations
into a compound predictive analysis. The general idea pursued here, is
to evaluate one model at a time and use their results as conditions for
subsequent analyses. This is very similar to forward analysis in Bayesian
networks of random variables, except that we are considering networks of
entire probabilistic models rather than of single random variables.

Bayesian networks

Bayesian networks, also called belief networks, are general probabilistic
models that represent the conditional dependencies (definition 22) among
its random variables and also, very compactly, their joint probability distri-
bution (definition 20). Bayesian networks can be defined as directed acyclic
graphs, as follows:

Definition 39 A Bayesian network (BN) is a directed acyclic graph g(V,E),
of nodes, V , and directed edges, E, where :

- nodes, v ∈ V , represent random variables,
- an edge, (s, t) ∈ E, indicates that a node, t, is directly dependent on

a node s, and s is called a parent of t; the notation Parents(t) refers
to the set of parent nodes of t.

- Each node s has an associated conditional probability distribution,
CPD, P (s|Parents(s)).

The intuition is that the distribution represents a probabilistic quantifica-
tion of the respective degrees of dependence on each of the nodes parents.
We will write Parentsi instead of Parents(mi). In these terms, a partial or-
dering of nodes, ≺, can be defined that satisfies the constraint that parents
must precede their children, i.e.,

∀xi, xj : xi ∈ Parentsj → xi ≺ xj
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The general independence assumption for Bayesian Networks is that given
the values of its parents, any variable is independent from the rest of its
predecessors. For any atomic event e of a node we may thus rewrite the
corresponding entry of the full joint probability distribution in terms of
conditional probabilities, i.e.:

p(e) = p(x1, . . . , xn) = p(xn|xn−1, . . . x1).

By definition 4.1 – that states that if φ and ψ are independent events then
p(φ|ψ) = p(φ) – we may for any node xi in a BN disregard those values
that xi does not directly depend upon, leaving the smaller set of conditionals
Parentsi, i.e.:

p(xi|x1, . . . , xn) = p(xi|Parentsi)

Example 14 Figure 6.5 shows a classic example of a Bayesian network
adapted here from [61]. All nodes in this network represent binary ran-
dom variables, ranging over values true and false. The conditional proba-
bility tables are shown in a compact form containing only the probability of
each being true, where for example p(A|B,E) abreviates p(A = true|B =
true, E = true). In the example, a burglary alarm was installed, that quite
accurately detects burglary but also sometimes goes off due to small earth-
quakes. A couple of neighbours, John and Mary, will call the owner of the
house if they hear the alarm, and they do so with varying reliability. Both
burglaries and earthquakes happen once in a while, but with slightly differ-
ent frequencies, as represented by their marginal probabilities, 0.001 and
0.002 respectively. The probabilities that the alarm goes of and that John or
Mary calls on different conditions are reflected in the respective conditional
probability distributions.

Being themselves probabilistic models, by definition 20, Bayesian networks
can of course also be represented in PRISM. A PRISM program for the
network from example 6.5 is listed in figure 6.6.

Bayesian annotation networks

In our application, the domains of the nodes in the network each range over
the possible annotations from an annotation model. Usually, the CPDs
associated with nodes in a BN are given in the form of tables, as also shown
in figure 6.5, but since the random variables in our case range over huge
sets of alternative annotations, that is quite impossible here and instead we
exploit that a probabilistic annotation model m = 〈prog(s, a, parents), θ〉 is
a complete representation of the associated CPD, as by definition 37.



6.4. ORGANISING ANNOTATIONS IN BAYESIAN NETWORKS 83

Figure 6.5: A classic example of a Bayesian network adapted from [61]. All
nodes in this network represent boolean random variables, and the associ-
ated conditional probability distributions are shown in the tables next to
each node.

values(burglary,[true,false]).

values(earthquake,[true,false]).

values(alarm( Burglary, Earthquake),[true,false]).

values(johnCalls( Alarm),[true,false]).

values(maryCalls( Alarm),[true,false]).

bn(B,E,A,J,M):-

msw(burglary,B),

msw(earthquake,E),

msw(alarm(B,E),A),

msw(johnCalls(A),J),

msw(maryCalls(A),M).

Figure 6.6: A PRISM program that implements the classic Bayesian net-
work from figure 6.5.



84 CHAPTER 6. COMPLEX SEQUENCE ANALYSIS

Definition 40 A Bayesian annotation network (BAN) is a set of proba-
bilistic annotation models,

{mi | i = 1, . . . , n},
with

mi = 〈progi(s, ai, parents i), θi〉,
indexed according to the order, ≺, of precedence, i.e.,

parents i ⊆ {a1, . . . , ai−1}.
The model, mn, is a designated top model, and it is assumed that the parent
relationship induces a path from any other mi to mn.

As a shorthand, I will write Θ to mean the set of all parameters θi of all
models mi in a given BAN.

Given this definition it should be clear that a BAN in itself is not a BN,
but also that it induces a BN in the following way (figure 6.7):
• There are nodes for the sequence, s, and every model, mi, in the BAN,

labelled ai, i = 1, . . . , n and s.
• Whenever ai ∈ parentsj in the BAN, there is an edge from ai to aj,

and there is an edge from s to any ai.
• The CPD, P (ai | s, parents i, θi), associated with ai is given by the

model mi = progi(s, ai, parentsi), θi〉).
For ease of terminology, I refer to a suitable set of annotation programs
as a BAN, even though they by the present definition do not constitute a
BAN until their respective parameters, θi, are established and the programs
become probabilistic models. Also, when doing predictive inference below,
the sequence, s, is always fixed, so we can leave it out, assuming instead a
particular BN for each individual s.

Example 15 A Prism program that implements a BAN over the annotation-
models morf , mcns and mgen from examples 11, 12 and 13 would simply
follow the Bayesian structure imposed by their conditional dependencies but
invoke annotation-programs rather than sample from random variable dis-
tributions:

ban(Seq,Agen,Aorf,Acns):-

prog orf(Seq,Aorf),

prog cns(Seq,Acns),

prog gen(Seq,Aorf,Acns,Agen).

I will use this as a running example for the the remainder of this chapter, to
illustrate the basic methodology of organising annotation-models in a BAN.
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Figure 6.7: (Left) Abstract sketch of the Bayesian network induced by
an arbitrary BAN for some sequence s. Each node, ai, in the topology
represents the most likely annotation of s, given the annotation model mi

and its parent-annotations. All local inference in our application goes in
the forward direction, i.e., from parent-node(s) to their respective child-
node(s). As an approximation of the updated probability distribution over
all possible annotations from mi, we take as the result of inference a single
most likely annotation, ai, depending on Parentsi. As the sketch indicates,
the sequence, s, is in principle a parent to all nodes in the network, but
because, in every case of application, we will be considering networks for
one specific sequence, we may simply assume the relation to s as constant
and implicit in any specific BAN. (Right) A concrete example BAN of the
annotation models morf , mcns, and mgen from examples 11, 12, and 13,
respectively. The dotted edges from s indicate that because all models in
the network annotate the same s, we may ignore it as a separate node.
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6.5 Inference

Three distinct inferential tasks are of interest to the present framework:

• sampling, i.e., constructing sample observations that fit with the dis-
tribution of a parametrised model.
• predictive inference, i.e., finding the most likely annotation from a

model of a sequence, possibly depending on one or more parent an-
notations.
• parameter estimation, i.e., finding model parameter that maximises

the likelihood of a set of suitable training data.

Sampling – inferring representative examples

A drawback of BAN’s is that it is not possible in general to perform sampling
using the builtin predicates, because here dependencies are represented via
the arguments of the individual annotation models and not necessarily re-
flected in the Multi-valued switch declarations of the those models.

Recall, that sampling with a probabilistic model literally refers to pick-
ing an arbitrary atomic event e from the joint distribution of the model,
with probability p(e), section 4.4. Sampling atomic events from the distri-
bution defined by a traditional Bayesian network requires that the depen-
dencies between the random variables are respected. For Bayesian networks
implemented in PRISM, this simply corresponds to the so-called sampling
execution of the program, corresponding to the procedural meaning of the
logic-programing. I.e., for the example BN-program in figure 6.6, calling
the goal bn(B,E,A,J,M) corresponds to sampling an atomic event of the
model in the following way:

• First values, B and E, for burglary and earthquake are sampled, by
the two first calls to msw/2.
• Then a value, A, for alarm is sampled conditioned on B and E, by the

call msw(alarm(B,E),A).
• Finally values J and M are sampled for the events that John and Mary

calls, conditioned on A.

Note that the dependencies of A on B and E, and of johnCalls and
maryCalls on A are represented as distinguishing arguments to the respec-
tive switch-names alarm/2, johnCalls/1, maryCalls/1), such that each
distinct instance of these defines a distinct and independent switch, (section
5.1). This is the only way to directly express conditional dependencies in
the PRISM system.

Following the same scheme with the example BAN, example 15, we
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would execute the programs associated with the models in order of prece-
dence in the network, i.e.:

prog orf(Seq,Aorf),
prog cns(Seq,Acns), and
prog gen(Seq,Agen,Aorf,Acns).

and require that the instances of the respective variables unify between
executions. Because of the inherent independence of random variables in
PRISM, we would however have distinct instances of all the random vari-
ables, i.e., three distinct instances of Seq, and two of both Aorf and Acns,
causing unification to fail in general.

Thus, when we require sample observations, for example for evalua-
tion purposes, we are in general required to formulate a separate sampling-
version of the network in question, that expresses conditional dependen-
cies directly in the switch-declarations and manages the involved parame-
ters accordingly. In chapter 8 we describe an experiment, where a BAN-
approximation of a complex annotation model is evaluated by comparison
to annotations sampled with the complex canonical model.

Predictive inference

Traditional probabilistic inference concerns establishing the updated or pos-
terior probability distribution for a query variable, Q, given knowledge
about the actual outcome of an evidence variable, E. In Bayesian net-
works, four categories of inference are typically distinguished, depending
on the dependency relation between Q and E:
• Forward inference – follows the direction of the edges from parent to

child, i.e., E ∈ parentsQ; Here for example observing, as evidence,
a burglary and estimating the chance, that John will call. Forward
inference is also called predictive inference.
• Backward inference – from child to parent, i.e., Q ∈ parentsE; here for

example estimating the probability of a burglary given the evidence
that John and/or Mary called, also called diagnostic inference.
• Intercausal inference – between conditions of a common dependent

event; here for example estimating the risk that a burglary will occur
during or after an earthquake.
• Mixed inference; any other kind of inference, perhaps combining two

or more of the above.
In our case, we are interested only in the forward, predictive inference,

that refers to the process of identifying a best proposal for an overall out-
put annotation for a given input sequence, as indicated in figure 6.7. In
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Bayesian networks, the usual result expected from a predictive inference,
is the complete updated CPD for the query-variable given the observed
evidence, i.e., by exhaustive application of Bayes conditioning (section 4.1):

∀qi p(qi|E) =
p(qi, E)

p(E)

Translating to our setting, this ideally means iterating over all possible
annotations from all annotations models in the network and selecting the
most probable annotation, idealn, from the resulting distribution. As shown
already, iteration over the outcome spaces of annotation models for DNA
is not practical. We are accepting instead the most likely top annotation,
approxn, given the most likely parent-annotations, approx 1 . . . approxn−1,
as an approximate predictive result.

Below, is first a precise, declarative characterization of the ideal but
impractical top output annotation, idealn and then the approximative cal-
culation method which reduces computational complexity drastically.

Ideal but impractical method: We assume a BAN {mi | i = 1, . . . , n}
with mi = 〈progi(s, ai, parents i), θi〉 and a fixed sequence s0 to be analysed.
We use Θ to refer to the set of all parameters in the BAN, {θ1, . . . , θn}.
Considering the BAN as one coherent model, we can describe the best
solution as follows.

idealn(s0,Θ) =def argmax
an

P (an | s0,Θ)

where the term inside the argmax can be unfolded as follows.

P (an | s0,Θ) =
∑

〈a1,...,an−1〉
P (a1, . . . , an | s0,Θ)

=
∑

〈a1,...,an−1〉

n∏

i=1

P (ai | s0, parentsi, θi) (6.1)

It is practically impossible to iterate over all instances of any one anno-
tation, ai, let alone all instances of the tuple 〈a1, . . . , an−1〉, and we are not
aware of any reasonable way to reduce this formula (although we do not
have a formal proof that it does not exist).

Example 16 For our example BAN (example 15) this corresponds to one
overall call to PRISMs viterbig/1 predicate, i.e.:
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ideal(Seq,Agen):-

viterbig(ban(Seq,Agen, Aorf, Acns)).

where Agen is calculated in one go from Seq. Note how we do not care
about the specific values of the anonymous (beginning with the underscore-
character) variables Aorf and Acns. The Viterbi algorithm is thus allowed
full unrestricted freedom to find the most likely of the vast number of possible
combinations of annotations Agen, Aorf , and Acns.

Approximative method: We propose instead an approximative algo-
rithm that fixes one particular best annotation ai = approx i(s0,Θ) for each
sub-model and applies it subsequently in the prediction of those aj with
ai ∈ parents(aj), i.e.:

approx i(s
0,Θ) = argmax

ai
P (ai | s0, approx parentsi

(s0,Θ),Θ), i = 1, . . . , n (6.2)

where approx parentsi
(s,Θ), for some sequence s, stands for the sequence of

parent annotations approx j(s,Θ) for all aj ∈ parents i.

Specifically, we take approxn(s0,Θ) as an approximated value for idealn(s0,Θ).
Notice, that because of the partial ordering of nodes, there is no circularity
in this definition and approxn(· · ·) can be calculated in a single iteration
calculating approx 1(· · ·), approx 2(· · ·), . . . in that order. The “argmax”
in (6.2) may be calculated proper application of the viterbi-predicates of
PRISM. algorithms as we demonstrate below.

Example 17 In terms of our example BAN (example 15) we first decide
on most likely annotations aorf and acns, and then use them as specific con-
ditions for the top-annotation agen – getting in total three consecutive calls
to viterbig/1:

approx(Seq,Agen):-

viterbig(orf prog(Seq,Aorf)),

viterbig(cns prog(Seq,Acns)),

viterbig(gen prog(Seq,Agen,Aorf,Acns)).

Efficiency of approximate inference Measured in terms of sequence
length, the complexity of approximate prediction with the entire BAN is
constrained upwards by the complexity of its most complex sub-model. This
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is a drastic reduction in complexity compared to the ideal algorithm, where
the inferential complexity is constrained by the product of the complexities
of all sub-models in the BAN. In practical applications of the methodology,
we would expect the number of sub-models in a BAN to be a relatively
small number (say, arbitrarily, < 10), but lengths of sequences and their
annotations are expected to be huge.

Training – inferring parameters

In order to obtain the probabilistic parameters Θ for a BAN, we rely on
existing training algorithms for supervised learning, for example the EM-
algorithm as it is built into the PRISM system (explained in section 4.4
and 5.3). Such algorithms require a sufficiently large and representative
collection of ground atoms for each sub-model, each representing a sequence
with its correct annotation, which in our domain of application means an-
notations verified in the lab by the biologists.

To this end, we assume the availability of some state of the art training
algorithm T supervised , described as a function mapping a particular program
together with its training data into a parameter.

For doing supervised training of any sub-model in a BAN, we need in
principle ground data that exemplifies the relation between sequence, parent
annotations, and output annotation. We define, thus, a conditional training
data set for a model mi as a set

CTDi = {progi(sji , aji , parentsji ) | j = 1, . . .}.

It is called “conditional” since it includes parent annotations parentsji for
each output annotation aji .

Iterative training of sub-models In practice, however, we cannot ex-
pect such conditional training sets to be available as this assumes that the
signals represented by the different sub-models have been analysed consis-
tently for the same set of sequences. In other words, we can only assume
that the following sorts of training data are available in a more traditional
format without explicit parent annotations.

TDi = {〈sji , aji 〉 | j = 1, . . .}

However, if we train the different models one by one in the order m1, m2,
. . ., we can use the already trained models to supply parent annotations.
We can thus specify an iterative BAN training algorithm as follows.

θi = T supervised(mi, CTDi)
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where

CTDi = {prog(sji , a
j
i , approx parentsji

(sji , {θ1, . . . , θi−1})) | 〈sji , aji 〉 ∈ TDi}

There is no circularity in these equations which may be evaluated in one
sweep θ0, θ1, . . . .

Example 18 Consider again the example BAN (example 15) and assume
that we have or can easily establish sufficient training data for the relation-
ships between DNA and orf-annotation, DNA and conservation, and DNA
and typical genes. I.e., we have available :

TDorf = {〈DNA1 , aorf〉}
TDcns = {〈DNA2 , acns〉}
TDgen = {〈DNA3 , agen〉}

where DNA1 , DNA2 , DNA3 indicate sequences from possibly distinct sets
of DNA-sequences.

To train models morf and mcns, that have no parents in the network,
we may simply construct conditional training data directly from TDorf and
TDcns respectively, and perform supervised training.

To train mgen we ideally require conditional training data

CTDgen = {proggen(s, agen, aorf , agen}

but we have only TDgen = {〈DNA3 , agen〉}. We may, however, apply the
now properly parametrised models morf and mcns to predict approximate
annotations of sequences in DNA3 to establish the necessary conditional
training data for supervised training of mgen, i.e.,

CTDgen = {proggen(DNA3 , agen, approx orf , approx gen}.

This strategy can be adapted to handle cases where training data TDi

are unavailable for some non-top model mi, i.e., i < n. Here we may use
unsupervised training, or even set the parameters manually, and still hope
for good results. It is not essential that model mi is a faithful mirror of
some physically measurable signal (call this mtrue

i ): the necessary property
is whether ai represents some annotation that can help the models mj

of which mi is a parent to discriminate the details of the sequence under
consideration.
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6.6 Evaluating BAN-topologies

I have described the basic framework of how to construct annotation mod-
els and integrate them as constituent nodes in a BAN that reflects their
interdependencies. An important question remains: how to evaluate an
experimental BAN? There are two aspects of evaluation that both need
addressing.

Firstly, from a methodological point of view we need to be able evaluate
BANs as a framework for modular analysis. In particular we need methods
for evaluation of the approximative analysis and also for evaluating the
quality of the topology of a given BAN and the relative impact of constituent
models on the overall analysis.

Secondly, from a more experimental point of view, we need to be able
to evaluate the predictive power of the BAN. In the actual experimental
setting where the BAN framework is designed to be used, it is of course
also essential to be able to evaluate the quality of the predictions of a
particular BAN. If sufficient authoritative test-data is available that can be
used as golden standard, it is - also here - most convenient to apply accuracy
measures that compare predictions to the that standard, e.g., specificity
and sensitivity. In many cases, such data is not likely to be available, and
suitable measures from the realm of statistical testing must be applied.
There are many methods that can be applied for statistical evaluation of
results with regard to format and domain of data they are applied to. To
illustrate how the predictions of alternative topologies may be presented
for comparison and inspected to motivate further experiments with novel
or putative signals and models, I include in our example BAN (example 15)
an evaluation of predictions based on sensitivity and specificity

In the present context, however, I am most concerned with the evalua-
tion of the approximative BAN-analysis in general and the relative quality
of alternative BAN-topologies and less so with the evaluation of the pre-
dictive power of specific BANs. Actual application to relevant biological
problems and thorough statistical analysis of the predictive results remains
future work in the LoSt project.

Evaluating the approximation

A BAN is an organisation of a set of possible interdependent annotation
models as nodes in a network where the directed edges reflect node depen-
dencies. Each constituent model produces an annotation of a common data-
sequence depending in part on the annotations of other constituents. The
method for integrating these annotations is similar to forward reasoning in
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a Bayesian Network. In traditional Bayesian Networks, inference concerns,
for each node, its entire CPD given the entire CPD’s of all its parent-nodes.
Because of the sheer size of data-instances in DNA-annotation exact infer-
ence is not practical and we employ an approximative method for inference
that considers only the most likely outcome of any node given the most likely
outcomes of its parents, rather than the entire distributions. As a scheme
of approximation it seems reasonable enough to assume that a most likely
overall result of a complex analysis involves only most likely constitutive
analyses. In fact the much celebrated Viterbi-algorithm applies a similar
scheme fro exact calculation of the most likely sequence of hidden states in
a HMM, explaining a particular sequence of observable outcomes of that
HMM. Realising that HMM’s are indeed very simple BAN’s, conditioning
on most likely constitutive sub-analyses in the context of HMMs represents
an optimization rather than an approximation. In general, however, we
cannot make the same guarantee and the how evaluate the approximative
BAN-inference in general represents an important research problem.

The standard way of evaluating an approximation is to compare to the
exact analysis. This is however not possible in our domain of application,
because exact inference is simply not practical in this domain. In general
the choice of method must depend on the availability of authoritative test-
data that can be used as a golden standard of analysis.

In the presence of authoritative test data

In those cases where sufficient amounts of authoritative annotated data are
available for use as golden standard, it is natural to evaluate BAN’s in
terms of standard accuracy measures, sensitivity and specificity. Chapter 7
documents an experiment where evaluation is done this way.

Example 19 In our example BAN (example 15) we would partition TDorf ,
TDcns, and TDgen into training- and test-partition. After training on the
training-partition alone we would then evaluate accuracy-measures against
both training- and test-partitions. A common problem in machine-learning,
known as over-fitting, concerns cases where a parametrised model predicts
correctly those data that was used for establishing the model-parameters, but
performs less good good on general data from the same domain. Dividing
available authoritative annotated data in training- and test-data allows us
to evaluate the performance on both sets, i.e., the one that it was used for
training and one that it has not been exposed to before, to evaluate how well
the model is adapted to data from the domain in general.
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In the absence of test data

In cases, where authoritative annotated data is lacking, it may be possible to
compare probability distributions of annotations assigned by the respective
models to a common set of data-sequences or even compare the annota-
tions themselves directly. Because the exact inference is still not possible,
we employ a scheme that we call evaluation by sampling. In this approach
of evaluation, a large amount of observations along with all annotations, is
first sampled with a properly parametrised sampling model. These samples
are now used as test-data. In this case, where the golden standard consists
entirely of artificial data, it becomes somewhat meaning-less to refer to the
usual accuracy measures. In chapter 8 I explore, as a measure for the qual-
ity of the approximative analysis, the difference between the probabilities of
canonically sampled annotations, A, and their approximated counterparts,
A′, relative to common data sequences S. I cross-validate by also compar-
ing the assigned annotations position for position and compute what could
be called their Hamming-similarity. This approach follows the same in-
tuition of the more general Kullbach-Leibler divergence that quantifies the
difference between an approximative and a canonic distribution:

Definition 41 (KL-divergence)

KL(P (A′|S), P (A|S)) =
∑

s

P (a′|s)logP (a′|s)
P (a|s)

The KL-divergence is however not a true distance measure since it does not
hold in general that KL(P (A|E), P (B|E)) = KL(P (B|E), P (A|E)). There
are also other alternatives available for traditional Bayesian Networks, and
interesting future work involves investigating which of these that may be
adapted to apply to BAN’s also.

The sampling model in this example is a separate PRISM-model where
all dependencies are modelled in the arguments of the Multi-valued switches
(rather than in the arguments of the model programs progi, and the ap-
proach, at least as implemented in the present work, seems rather clumsy
and cumbersome for non-trivial applications.

Evaluating topology and relative impact of
constituents

As another general approach, topologies may be evaluated in information
theoretical terms [69]. The individual model parameters may be inspected
to asses how they influence each other. In particular we may calculate the
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entropy, H(Ban), of some BAN, and the conditional entropy, H(Ban|Mi),
of that BAN given a constituent model Mi The difference between these
two entropies is known as the mutual information I(Ban; Mi) and may be
seen as an indication of the possible impact of Mi on Ban. Similarly, we
may for any parametrised constituent model mi calculate its actual entropy
relative to the maximal entropy possible for that model, to calculate a ratio
1 − H(mi)

Hmax(mi)
. This ratio that Shannon called the redundancy of mi can

be used to qualify the signal-value and thus the potential suitability of the
model for inclusion in a BAN. This approach represent future work but is
sketched in more detail in chapter 9 and appendix A.





Chapter 7

Example 1: Comparing
Gene-finder Topologies

7.1 Introduction

In this chapter I include experiments published in [18] as an example of the
proposed methodology for constructing and experimenting with complex
sequence annotation models.

7.2 Annotation task

The experiments concern BAN’s that represent genefinders for prokaryotic
DNA sequences. DNA sequences are first divided into chunks according to
the stop-to-stop partitioning strategy introduced in the previous chapter,
i.e. the DNA is considered in six different reading frames each of which
is partitioned after the stop-codon of each complete orf. Our annotation
models are designed to annotate chunks, where the annotation task is to
find if the chunk contains a gene and, if so, where that gene starts.

7.3 Constituent models

We design models for different signals, codon preference, gene length, and
conservation that are all expected to have influence on whether an orf is
treated as a gene or not. All our probabilistic models are output HMMs
with a gene-state and a non-gene state, which can emit symbols of the
annotations of the parent nodes. The transitions between the states reflect
the described orf pattern. The resulting annotation from such models is a

97
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Figure 7.1: Graphical represetations of the three basic annotation models
that we experimented with. m1, m2, and m3.

sequence that for each position in the original sequence contains a 1 if the
position is predicted as part of a gene and a 0 if it is not. In the following
I describe each of these in a little more detail, and in figure 7.1 I illustrate
them graphically.

Codon preference, model m1

This annotation model, sketched in figure 7.1(top left), reflects preferential
codon usage in the gene and non-gene state. Because of the way codons
are transcribed and translated to proteins, the codons in actual protein-
coding genes display a specific codon distribution that is different from the
distribution in non-coding regions of the DNA. This can be modelled as a
HMM, analogously to nucleotide-preferences in figure 6.1 on page 75, except
here states each emit one of 64 possible codons, rather than one of four
nucleotides. In the PRISM code shown below each codon, 〈N1, N2, N3〉,
from the coding state is annotated with the triplet-symbol 〈1, 1, 1〉 and
codons from the non-coding state with 〈0, 0, 0〉 (the angles are not part of
the annotation, but included here for readability). Training- and test-data
for the model, can be constructed as described in section 6.5 from existing
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gene-annotations for example in the RefSeq-database, [59], i.e., individual
training- and test-goals will look this: codpref(Seq,RefSec), where Seq is
a chunk and RefSeq is the gene-annotation of that chunk according to the
RefSeq-database.

% Initialize

initial(begin).

final(end).

% Transitions from Hiddens states

values(trans(begin),[ns ,cs]).

values(trans(cs),[cs ,end ]).

values(trans(ns),[cs ,ns ,end ]).

% Emissions from hidden states

values(emit(State),Codons_List) :-

member(State ,[ns ,cs]),

get_list_codons(Codons_List ).

get_list_codons(L) :-

L = [ [a,a,a],[a,a,t],[a,a,c],[a,a,g],

[a,t,a],[a,t,t],[a,t,c],[a,t,g],

[a,c,a],[a,c,t],[a,c,c],[a,c,g],

[a,g,a],[a,g,t],[a,g,c],[a,g,g],

[t,a,a],[t,a,t],[t,a,c],[t,a,g],

[t,t,a],[t,t,t],[t,t,c],[t,t,g],

[t,c,a],[t,c,t],[t,c,c],[t,c,g],

[t,g,a],[t,g,t],[t,g,c],[t,g,g],

[c,a,a],[c,a,t],[c,a,c],[c,a,g],

[c,t,a],[c,t,t],[c,t,c],[c,t,g],

[c,c,a],[c,c,t],[c,c,c],[c,c,g],

[c,g,a],[c,g,t],[c,g,c],[c,g,g],

[g,a,a],[g,a,t],[g,a,c],[g,a,g],

[g,t,a],[g,t,t],[g,t,c],[g,t,g],

[g,c,a],[g,c,t],[g,c,c],[g,c,g],

[g,g,a],[g,g,t],[g,g,c],[g,g,g]

].

% HMM -Parser (Classic implementation)

codpref(Seq ,Annotation) :-

initial(State0),

msw(trans(State0),State1)

msw(begin ,State),
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codpref_rec(State1 ,Seq ,Annotation ).

% end State

codpref_rec(State ,[] ,[]):- final(State ).

% coding state

codpref_rec(State ,[N1,N2,N3|Rest_Nuc],

[1,1,1| Rest_Annot ]):-

State == c,

!,

msw(emit(State),[N1 ,N2 ,N3]),

msw(trans(State),New_State),

codpref_rec(New_State ,Rest_Nuc ,Rest_Annot ).

% non coding state

codpref_rec(State ,[N1,N2,N3|Rest_Nuc],

[0,0,0| Rest_Annot ]):-

State == n,

!,

msw(emit(State),[N1 ,N2 ,N3]),

msw(trans(State),New_State),

codpref_rec(New_State ,Rest_Nuc ,Rest_Annot ).

Gene length, model m2

This annotation model, figure 7.1(bottom), considers the length of candidate
orf’s in a chunk as an indication of their coding potential. The rationale
is that actual protein-coding genes in DNA require a certain minimum of
codons to translate into a non-trivial protein, and also that the vast majority
of actual genes are not longer than a some soft maximum length. Each
chunk is first reduced to the list of positions of potential start-codons. Each
of these potential start-codons can be classified as belonging to one of three
classes, corresponding to three states in the HMM::
• the nc-state, corresponding to codons prior to the actual start-codon

of the gene,
• the cs-state, corresponding to the actual start-codon in a protein-

coding gene
• the ci-state, corresponding to internal orf-codons (other than poten-

tial start-codons).
Each of these states emits a symbol corresponding to the distance to the
upstream stop-codon, as returned by the get range/2-predicate. Rather
than considering all possible lengths in isolation, the model regards a set
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of pre-specified ranges of lengths, as returned by the length ranges/1-
predicate. The cs-state follow one emission-distribution as reflected in
the gene length range-switch, whereas the other states, nc and ci, share
the emission distribution represented by the nongene length range-switch.
Also here, training- and test-data can be constructed from existing databases
of curated genome annotations. Below is the core HMM-structure for the
length model, the logic for predicates get range/2 and length ranges/1

have been left out for brevity.

% Initialize

initial(begin).

final(end).

% Transitions from hidden states

values(trans(begin),[nc]).

values(trans(nc),[nc ,cs ,end ]).

values(trans(cs),[ci]).

values(trans(ci),[ci ,end ]).

% Emissions from hidden states

values(gene_length_range , Ranges) :- length_ranges(Ranges ).

values(nongene_length_range , Ranges) :- length_ranges(Ranges ).

% HMM structure

length_model(Lengths ,CodingAnnot) :-

length_model_rec(nc ,Lengths ,CodingAnnot ).

% end state

length_model_rec(State ,[] ,[]): - final(State).

% other states

length_model_rec(State ,[L|Ls],[ NextState|Cs]) :-

msw(trans(State),NextState),

% Emission:

get_range(L,Range),

(( NextState ==cs) ->

msw(gene_length_range ,Range)

;

msw(nongene_length_range ,Range)),

% Recursion:

length_model_rec(NextState ,Ls ,Cs).
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Conservation, model m3

This annotation model, figure 7.1 (top right), considers codon-conservation
across species as a signal to gene-finding. The rationale is that if actual pro-
tein coding genes of an organism are subjected to destructive mutation, the
organism is likely to suffer from it and likely perish. Thus the protein-coding
genes of healthy organisms are typically less mutated than non-coding por-
tions of their DNA. To detect conservation, each chunk is matched to a
database of genome sequences of distantly related organisms1 using the
tblastn tool, which produce a gapped alignment of the matches. Only sta-
tistically significant matches (E-value < 10−34)2 and only one match per
organism is reported. The states in the conservation model m3 each emit
the number of identity positions of reported matches to individual chunk
positions, as sketched below. Training- and test-data can be constructed as
described for the other models.

% Initialize

initial(begin).

final(end).

% Transitions from hidden states

values(begin ,[c,n]).

values(trans(c),[c,end ]).

values(trans(n),[c,n,end ]).

% Emissions from hidden states

values(emit(_),[0,1,2,3,4,5,6,7,8]).

% HMM structure

cons_model(C,A):-

initial(State0),

msw(State0 ,State1),

cons_model_recursive(State1 ,C,A).

% end state

cons_model_recursive(State ,[] ,[]):- final(State)

% coding state

1The sequences: NC 004547, NC 008800, NC 009436, NC 009792, NC 010067,
NC 010694 and NC 011283. They were chosen by hand from the RefsSeq database accord-
ing their perceived evolutionary distance from each other and from E.Coli (NC 000913)

2The E-value describes the number of matches expected by chance. The lower the
E-value , the more significant the match.
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cons_model_recursive(c,[C|C2],[1|A2]):-

!,

msw(emit(c),C),

msw(trans(c),Next),

consorf_recursive(Next , C2, A2).

% noncoding state

cons_model_recursive(n,[C|C2],[0|A2]):-

!,

msw(emit(n),C),

msw(trans(n),Next),

cons_model_recursive(Next , C2 , A2).

7.4 Experimental BAN-topologies

In the following we discuss and assess five BAN topologies for gene-finding
constructed with these three signal-models as basic building blocks. The
considered models are

• m1; a gene-finder based on the codon-preference signal alone.
• m3; a gene-finder based on the conservation-signal alone.
• m1(m2); a gene-finder based on codon-preference, m1, conditioned

on the length-signal, m2.
• m1(m3); a gene-finder based on codon-preference, m1, conditioned

on the conservation-signal, m3.
• m1(m2,m3); a gene-finder based on codon-preference, m1, condi-

tioned on both length- and conservation-signals, m2 and m3.

also illustrated in figure 7.2 below.

All the conditional models are two-state HMM’s, each with a coding and
a noncoding state, just as m1 and m3. We integrated the various signals
in the emissions of the respective models, i.e.

• states in m1(m2) emit tuples 〈C,L〉, where C is one of the 64 codons,
and L is a length-range.
• states in m1(m3) emit tuples 〈C,P 〉, where C is one of the 64 codons,

and P is a conservation degree.
• states in m1(m2,m3) emit triples 〈C,P, L〉, where C is one of the 64

codons, P is a conservation degree and L is length-range.

This results in a modest number of switches, each with a large number
of possible outcomes. Another alternative is to include the number of states
to two (one coding and one non-coding) per combination of signals. This,
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in contrast, results in a vast number of switches in each model and we
preferred the former alternative.

Figure 7.2: Graphical representations of the five experimental topologies

Training

We used the well-annotated Escherichia Coli genome and its curated gene
annotations from the RefSeq database, (NC 000913), for training and test-
ing. We randomly divided the ORFs of the genome into a training and a
test set. Supervised training is done using only the former and the method
for supervised training algorithm described in section 6.5. Specifically, for
the three basic models m1, m2 and m3 we first applied the PRISM built-in
predicates for learning with the constructed training-set. For each of the
conditional models we first used the now fully parametrised sub-models to
annotate all chunks of the E.Coli-genome and subsequently produced the
necessary conditional training goals (similarly for the chunks in the test-
set).

Accuracy

We report prediction accuracy results for both sets. Accuracy is measured
as Sensitivity(SN) = TP

TP+FN
and Specificity(SP ) = TP

TP+FP
, with respect

to annotation of start and stop codons. The results are summarized in
table 7.1.

7.5 Results

The results in table 7.1 provides a convenient basis for assessing the pro’s
and con’s of the alternative topologies. It can be observed that all our
models have good generalization capabilities, since the performance is very
similar on both the training and test set.

The best model seems to be m1(m2), (i.e., codon preference condi-
tioned on length) which achieves a significant increase in specificity with
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Training set (114429 ORFs, 2075 genes)
BAN SNstart SPstart SNstop SPstop
m1 0.7701 0.2935 0.9711 0.3701
m3 0.0636 0.0322 0.8255 0.4183

m1(m2) 0.6723 0.5011 0.9345 0.6965
m1(m3) 0.4405 0.2243 0.8255 0.4204

m1(m2,m3) 0.4361 0.2228 0.8255 0.4217

Test set (114404 ORFs, 2065 genes)
BAN SNstart SPstart SNstop SPstop
m1 0.7564 0.2920 0.9719 0.3751
m3 0.0140 0.0072 0.8412 0.4298

m1(m2) 0.6489 0.4896 0.9433 0.7117
m1(m3) 0.4315 0.2216 0.8416 0.4323

m1(m2,m3) 0.4174 0.2149 0.8416 0.4333

Table 7.1: Accuracy of predictions using different BAN topologies.

only slightly degraded sensitivity, e.g. it predicts fewer genes but those
that are predicted are more reliable.

By themselves, both m1 (codon preference) and m3 (conservation) have
reasonable stop specificity, but m3 displays a consistent tendency to predict
too long genes, leading to severely decreased start specificity.

Interestingly, and contrasting to our expectations, conditioning codon
preference on the conservation additional signal, i.e., in m1(m3), does not
improve prediction accuracy much. It does lead to slightly better stop
specificity but it tends to degrade the start specificity.

Additionally, conditioning on the length signal as done in m1(m2,m3)
does not seem to help, even though the impact observed in m1(m2) was
quite significant.

It would seem that the m3 signal dominates decisions about which orf’s
should be predicted as coding, and this gives a direction for further research.

7.6 Remarks

These experiments shows how separate annotation models can be combined
in alternative BAN-topologies, and how the relative quality of those topolo-
gies may be evaluated and discussed. This way, a BAN analysis constitutes
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a useful approach for exploring new signals of new combinations of signals
in a systematic way.



Chapter 8

Example 2: Approximation by
Decomposition

8.1 Introduction

The experiments in this chapter concerns a somewhat different approach to
problem-decomposition published [21], and also in part in [20, 42].

They explore two distinct aspects of the basic BAN-methodology.

1. Given a complex model, that is canonical in the sense that it is cor-
rectly models a number of DNA features, but also too complex for
predictive inference, it may be possible to decompose it into manage-
able sub-models to establish an approximated analysis, and

2. while we cannot establish the canonical annotations because of the
complexity of that model, we may be able to evaluate the approxima-
tive annotations by compare to sampled canonical annotations.

The rationale for these experiments, stem from the observation that for
a given computationally complex annotation task, not all subtasks need be
equally demanding. It is usually possible, for example, to identify portions
of a context free grammar, that are in fact regular, in that the parts of
the language covered by these portions of the context-free grammar could
equally well be defined by a regular one. Since parsing with a regular
grammar is linear in the length of the sequences to be parsed as opposed to
the cubic complexity of context-free parsing, there is a potentially very big
efficiency gain to be had, if those less complex parts of the grammar can be
distinguished from the computationally more demanding parts.
Suppose for example that we have a language of two classes of sentences.
One class A is context-free and requires a PCFG for parsing, the other class
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Figure 8.1: Sketch of the complex canonical topology and the decomposed
approximative topology.

however, is merely regular. Suppose furthermore that we can represent a
complex grammar m for the language as a PCFG of the following form
(probabilities omitted):

S → A S | B S | ε
A→ rules for A-class sequences
...
B → rules for B-class sequences
...

such that only the A-rules involves features requiring context-free analysis,
while the rules for B-class sequences in principle could be stated as a HMM
instead. Then m can simply be reformulated as the interaction of four
interacting sub-models (also sketched in figure 8.1):

• a chopper-model, i.e, a HMM for S of states A and B each initiating
the corresponding sub-model,
• an A-model, i.e, PCFG for A-type periods, and
• a B-model, i.e., a HMM for B-type periods.
• a top-model, i.e., some logic to combine the results

This sort of two-stage analysis is straightforward to implement in PRISM
using two successive calls to the built-in Viterbi predicates.
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Figure 8.2: Hairpins or hairpin loops consists of a stem of mutually ab-
stracted letters and a loop of unpaired letters

8.2 Annotation tasks

We show here an example of a pair of canonical and approximative model.
The canonical model mc is a simplified PCFG that resembles the sort of
models that one will expect for genomic sequences for prokaryotic organ-
isms. It distinguishes between sub-sequences considered as coding (genes)
and non-coding; the non-coding parts are modelled basically by an HMM
whereas rules for the coding parts include description of a particular kind of
secondary RNA-structure called hairpins see figure 8.2 a), these hairpins do
not manifest themselves in the actual genome but in the mRNA produced
by the genes; so a good match with such structures could be perceived as
indicating the likeliness of a gene. Because hairpins are inherent nested
structures, a SCFG is necessary to describe them.

An approximating model ma is comprised by an HMM that fixes the
boundaries between coding and noncoding regions, and then applies differ-
ent sub-models of mc for the each of the two kinds of sub-sequences.

As discussed, mc requires cubic time in terms of sequence length whereas
ma is linear. The difference in accuracy between the models can be ex-
plained as follows: if mc is applied (hypothetically!) for prediction, it has
the degree of freedom to move the coding/non-coding boundaries in order
to get the optimal hairpin structure, whereas ma fixes these boundaries
first from a shallow analysis, and then finds the best analyses for the sub-
sequences irrespective of their context.

We indicate here the details of the models and investigate how far we
can get in an evaluation using the sampling strategy.
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8.3 Constituent models

Both the canonical model mc and the approximative one ma can be de-
scribed in terms of the following components:
• mchop, a two-state HMM that in each state emits an entire sub-

sequence DNA - invoking a coding or non-coding sub-model depending
on the state.
• mnon−gene, a HMM for non-coding regions.
• mgene−pcfg, an assumed canonical PCFG for coding regions that takes

both orf-structure and possible hairpins in to regard.
• mgene−hmm, an approximating HMM for coding regions that only re-

gards codon-structure.
• mapprox, a top-model for combining sub-annotations.

Identifying subsequences, mchop

This kind of model follows the exact same structure as all the previous two-
state HMMs that I have shown so far, except that instead of determining the
emissions from each state by a msw/2-call, emissions are instead determined
by invoking an entire sub-model of the type corresponding to the state.
There are in fact two instances of this, namely one for the canonical analysis
and one for the approximative. They differ only in their respective gene-
models i.e., the HMM-routine for canonical version looks like this:

% Transitions from hidden states

values(dna ,[gene , nongene ]).

values(trans(gene),[gene ,nongene , end ]).

values(trans(nongene),[gene ,end ]).

% Canonical chopper

dnaCanon(S,L,A):-

msw(dna ,State1),

dnaHMM1(State1 ,S-[],0,L,A -[]).

% end state

dnaHMM1(end ,S-S,P,P,A-A).

% Other states

dnaHMM1(State ,S1 -S3 ,P1 ,P3 ,A1 -A3):-

% emission

(

State = gene ,

genePCFG ([gene],S1-S2,P1,P2),
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A1=[(gene ,P1 ,P2)|A2]

;

State = nongene ,

nongeneHMM(ns,S1-S2,P1,P2),

A1=[( nongene ,P1 ,P2)|A2]

),

% transition and recursion

msw(trans(State),Next),

dnaHMM1(Next ,S2 -S3 ,P2 ,P3 ,A2 -A3).

HMM-based submodels, mnon−gene and mgene−hmm

These are straightforward Markov chains for emitting non-coding and cod-
ing sequencing respectively. I Include their states and Markov processes
below:

% Gene HMM

%=========

% Transitions

values(trans(gene(start)), [gene((codon ,1))]).

values(trans(gene((codon ,1))) ,[ gene((codon ,2))]).

values(trans(gene((codon ,2))) ,[ gene((codon ,3))]).

values(trans(gene((codon ,3))) ,[ gene((codon ,1)), gene(stop )]).

values(trans(gene(stop)),[end ]).

% Emissions

values(emit(gene(start)), [[a,t,g],[g,t,g],[t,t,g]]).

values(emit(gene((codon ,_))), [a,c,t,g]).

values(emit(gene(stop)), [[t,a,a],[t,g,a],[t,a,g]]).

% NonGene HMM

%============

% Transitions

values(trans(ns),[ns ,end ]).

% Emissions

values(emit(ns),[a,c,t,g]).

Canonical gene-grammar, mgene−pcfg

The canonical gene grammar is a PCFG as defined and exemplified in ex-
ample 6 on page 35. Its implementation has the exact same structure as



112
CHAPTER 8. EXAMPLE 2: APPROXIMATION BY

DECOMPOSITION

the one sketched in section 5.2. Below I include the grammar rules in a
shortened form and a generic parser. In the actual implementation, there
are three versions of each of the nonterminals codons, hairpin, and loops,
to account for the codon structure of genes.

% Grammar d) Gene PCFG

values(gene , [[start , codons , stop ]]).

values(start , [[a,t,g],[g,t,g],[t,t,g]]).

values(stop , [[t,a,a],[t,g,a],[t,a,g]]).

values(codons , [[n, codons],

[a, hairpin , t,],

[t, hairpin , a,],

[c, hairpin , g,],

[g, hairpin , c,]

]).

values(hairpin , [[a, hairpin , t,],

[t, hairpin , a,],

[c, hairpin , g,],

[g, hairpin , c,],

[loop]

]).

values(loop , [[l, loop],

[]

]).

values(l, [[a],[c],[t],[g]]).

values(n, [[a],[c],[t],[g]]).

% grammar symbol declarations

startsymbol(gene).

nonterminal(gene).

nonterminal(start ).

nonterminal(codons ).

nonterminal(hairpin ).

nonterminal(loop).

nonterminal(stop).

nonterminal(l).

nonterminal(n).

terminal(a).

terminal(c).

terminal(t).

terminal(g.
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% parser

pcfg(Sequucen):-

startsymbol(Start),

msw(Start , RHS),

pcfg(RHS ,Sequence ).

% No more symbols to rewrite

pcfg([], Sequence):-

Sequence = [].

% Head is a noterminal , rewrite it, and continue

pcfg([ First|Rest], Seqeunce):-

nonterminal(First),

msw(First ,RHS),

pcfg(RHS ,Prefix),

pcfg(Rest ,Postfix),

append(Prefix , Postfix , Seqence ).

% Head is a terminal copy it and continue.

pcfg([ First|Rest], Seqeunce):-

terminal(First),

pcfg(Rest , Postfix),

append(First , Postfix , Seqence ).

Coordinating topmodel mapprox

This is not really a model, but rather a predicate that calls the respec-
tive sub-models in order and computes the combined probabilities form the
probabilities of sub-models.

8.4 Experimental topologies

In BAN terminology we are considering two different topologies. also illus-
trated in figure 8.3:

• the canonical mc, where the chopper model controls the non-coding
HMM and the gene-PCFG in one complex annotation-model (fig-
ure 8.3, Left).
• the approximative ma, where chopper controls the non-coding HMM

and the approximative gene-HMM to identify putative sub-sequences
of the two types. In this model sub-sequences of gene-type are then
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Figure 8.3: Sketch of the experimental toplogies: one canonical and one
approximative.

passed on to complex gene-PCFG for detailed annotation.The re-
sulting annotations are then combined in the top-model (figure 8.3,
Right).

The approximative approach exemplified here, relies on the assumption
that the simple HMM-based chopper model, when all submodels are por-
perly trained, get the partitioning into sub-sequences reasonably right, even
without the detailed analysis from the gene-PCFG model. This is of course
not always the case, and the experiments seek to clarify how good the ap-
proximation is.

8.5 Evaluation by sampling

As I have discussed earlier, we may in absence of authoritative test data
for evaluation, produce such data instead with an authoritative sampling-
model. In the present example, the canonical model takes the place of
sampling model to produce test-data, with which to evaluate the approxi-
mative model.

Let us consider a single sample 〈s, asamp〉 generated from the canonical
model mc. We can run s through the approximative model in question, ma,
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and obtain its best annotation aapprox as described above.
To compare the two, we can measure their probabilities psamp = pc(asamp, s)

and papprox = pc(aapprox, s); notice that we measure both probabilities in the
distribution of the canonical model in order obtain measurements in the
same scale. A ratio papprox/psamp close to one indicate that the quality of
the two annotations are similar.

As we have discussed, using precision and recall is not always possible
in a general setting, so we may instead utilize a subjective measurement of
the similarity between the two annotations.

In our experiments that follows, we apply a simple principle for measur-
ing similarity that may apply independently of actual sort of annotations
in question. Each annotation is mapped into a sequence of symbols of the
same length as the sequence, indicating the findings of interest, and similar-
ity is defined by the fraction of all such symbol that are identical for the two
sequences. When the nested structures are important, the symbol sequence
may indicate the structure using brackets; for example, two tree structures
may be mapped into “[-(-){-(-)}]” and “[-(-){(-)-}]” that are identi-
cal in 8 of of 12 character, i.e., a similarity measure of 0.667. When only the
classification of particular is interesting, e.g., distinguishing between genes
and non-genes, this sort of measurement still gives score to annotation that
differs slightly in the begin and end positions of the sub-sequences. So the
similarity between

nnnnnnngggggggggggnn

and
nnnnnnnggggggggggggn

is 19
20

= 0.95.

8.6 Experiments

We conducted four experiments1, whose results are summarized in Fig. 8.4
and 8.5. Everywhere we measured the probabilities in log space, so the

1When generating samples with mc, we have made an ad hoc improvement of the
annotations which is possible for models such as mc due to its clear subdivision into sub-
sequences: for each such subsequence, we run a Viterbi computation with the relevant
sub-model and put this best sub-parse into the annotation instead of the sampled one.
Be aware that this is different from the approximating model, as the sequences as well as
boundary parts of the annotations are created from the unaltered mc. We can measure,
in the total probability, a clear improvement with this trick so the reported tests may
be a bit more accurate in sorting out bad annotations produced by mc.
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ratio is represented as a difference with 0 representing identity, and also
the Hamming-like similarity measure (referred to as match percentages in
the figures) which takes into account the deep syntactic structures of the
individual parses, as indicated above . The scatter plots in Fig. 8.4 corre-
lates these two measures; a dot represents a probability ratio together with
match percentage; notice that dots to the left of the zero line represent
cases where the ma found a more probable annotations than the one given
by the improved mc sampling.

Experiment a). Firstly we used uniform probabilities for all switches in
the model and no selection among the samples. As could be expected,
the combined plot indicates a diffuse distribution with the larger part of
the results indicating that ma provides the best annotations measured in
probability. Thus we have no clear indication of how good ma is compared
with the objectively best samples (which, by nature of the setting, are
unknown), and we may thus also doubt the value of the results where ma

provides a results close to the sampled one. However, the combined scatter
plot is a bit misleading as dots may coincide, and the detailed plots indicate
that this is the case, as most measurements are close to, or spot on, the
ideal 0 resp. 100% marks.

Experiments b), c) and d). We changed the basic experiment in two
directions in order to see if we could get different results when the models
are made more realistic by b) training the models using the 100 shortest
annotated genes from E. Coli K12, whose lengths are between 50 and 178
letters; c) we constrained generated samples to those satisfying the inherent
length constraint implied by the training data; and d) we applied both of
the changes b) and c).

8.7 Results

From Fig. 8.4 we see that training has a profoundly positive effect on the
similarity of parses, and that constraining the samples to comply with the
inherent length constraints of the domain of application affects the prob-
ability quotients of the individual analyses similarly. Thus experiment d)
represents a much higher degree of correlation with far less occurrences of
ma suggesting annotations with higher probabilities than those provided
by improved sampling; this may tempt us to have more confidence to all
sampled annotations and thus more confidence to an approximated anno-
tation close to the sampled one. Both Fig. 8.4 and 8.5 indicate here that
most approximated and sampled annotations correlates closely. Even with
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these deviations, the two measures correlate perfectly in the vast majority
of cases, coinciding in (0, 100%) coordinates, as shown in Fig 8.5. All in
all this indicates that especially with the precautions taken in experiment
d), we may trust the approximating model to produce reasonably reliable
results.

8.8 Remarks

These experiments showed that the sampling based tests provide a clear
indication of the quality of an approximating model; it is also clear that
the method works best for models with biased probabilities (so both ma

as predictor as mc as generator are better to distinguish between good and
bad, so to speak). Throwing away samples that do not respect the inherent
constraints that also are expected in actual data to be analysed, removes
irrelevant observations from the statistics expressed in the diagrams; this
also contributes to the improved reliability of the tests. The more critical
issues of this testing method is the lack of quantitative summaries based
on firm statistical considerations of how good the approximation is. In the
completely general setting with no specific domain of application or suffi-
ciently annotated data, we doubt that such quantitative measures can be
devised. Also here, it seems however, that information theoretical measures
like conditional entropy, mutual information and redundancy might provide
parts of the answer to this issue.
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Figure 8.4: Representation of the sampling distributions of the four con-
ducted experiment. Along the X-axis are logarithmic probability quotients
of the canonical vs. approximative analyses. A quotient of 0 represents
identity. Along the Y-axis are the corresponding percentages of Hamming-
like similarity between the two analyses (match percentages). Dots to the
left of the Y-axis represent cases where the approximative analysis resulted
in a more probable annotations than the one resulting from the improved
canonical sampling. In a) is shown the plot for uniform models and un-
constrained sampling. b) is the result of constraining samples to comply
with the length range of the 100 shortest genes of E.Coli. In c) the models
were trained using EM-learning on the aforementioned data from E.Coli.
Finally, the plot in d) represents the analyses of samples from the trained
model complying with the length constraints inherited from the training
data. The plots in a) and b) illustrates the chaos of uniform parameters.
The effect of training the models is easily observable in c), causing the ap-
proximative and canonical analyses to agree to a much higher degree than
in a) or b). In d) we see that forcing domain-specific constraints on the
sampling increases the correlation between analysis and probability.
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run % quotient = 0 % match = 100 avg. coordinate
a) 82.3% 82.2% (-0.42, 94.48)
b) 83.9% 83.7% (-0.38, 91.84)
c) 86.7% 86.5% ( 0.09, 99.38)
d) 94.7% 94.6% ( 0.01, 99.17)

Figure 8.5: The degree of perfect correlation between canonical and ap-
proximative analyses according to the probability-quotient measure and the
match-percentage measure respectively. This represents the number of dots
that coincides in the coordinates (0,100%) of the scatter plots in Fig 8.4.
Individually, both training and constraining increases the degree of corre-
lation in both measures, but combining training and constraining results in
a profound increase of about 10% in both measures

.





Summing up

In this part of the dissertation, I have presented a general methodology
called Bayesian Annotation Networks for defining probabilistic annotations
models and experimental combinations of them, reflecting possible inter-
dependencies. The methodology was exemplified for models implemented
in PRISM, but the formal definition does not rely on any programming
language in particular and the methodology is expected to be language in-
dependent. I demonstrated the methodology with two non-trivial examples
from the domain of DNA annotation.

In the first I demonstrated how separately defined annotation models
may take the role of constituent models in a BAN and how they can be
trained, either by using existing training data or constructing training from
properly parametrised parents in the network. I showed how inference takes
place iteratively to properly establish the conditions for dependent models,
one constituent at a time, parent nodes before their children. I also demon-
strated how traditional accuracy measures can be established systematically
for alternative topologies to form a sound metric of comparison.

In the second example application, I took a slightly different approach,
where an existing complex model was decomposed into an approximative
BAN. The input was first partitioned into sub-sequences of perceived differ-
ent types, in what we could call a biased chunking scheme. Depending on
their respective types, sub-sequences were then passed on to corresponding
detailed analyses and the individual annotations subsequently combined. In
this example, I also experimented with a sampling based method for eval-
uation, where the complex model was used for sampling a large number of
data, along with annotations, to function as evaluation data for the approx-
imative analysis. I also demonstrated the impact of trained and constrained
sampling.
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Chapter 9

Future Work

9.1 Introduction

In chapter 6 I introduced the basic framework of how to construct anno-
tation models and integrate them as constituent nodes in a BAN, and in
chapters 7 and 8, I described applications to non-trivial problems relating
to gene-finding. I exemplified showed how the predictions of a BAN may
be evaluated by way of sensitivity and specificity if sufficient authorita-
tively annotated data is available for the purpose. I also exemplified how
the approximative analyses could be evaluated by analysing the difference
between approximative and canonically sampled annotations of common
data-sequences, either directly or by way of their respective probabilities.

Future work includes researching suitable annotation tasks that benefits
from the extra expressive power. Current plans the in LoSt-project concerns
an examination of what we call gene-finder evasive genes in E.Coli. We have
implemented annotation models for establishing a set of gene-finder evasive
genes, i.e., trusted existing genes that none of the state of the art-genefinders
detects. We plan to analyse this list of evasive genes along various measures
to establish what distinguishes them from the rest of the known genes. The
reason for evasiveness likely includes both relational and statistical aspects
of recognised DNA-features and likely also some features that have yet to
be discovered, making it a reasonable problem for BAN-analysis. We hope
to identify one or more specific factors that may be incorporated in future
genefinders to increase accuracy.

A more thorough treatment of BAN-evaluation is however also neces-
sary for comparison to existing systems and for general application in the
domain.
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9.2 BAN-evaluation

As mentioned already there are several important aspects to evaluation of
BAN’s.

First of all, for the general methodology to be useful for analysis pur-
poses it is necessary to develop robust methods for evaluation of the ap-
proximative method of inference that we employ.

Secondly, it is of course important to be able to evaluate the alterna-
tive BAN-topologies in a robust manner, including at least the evaluation of

• the predictive power of both the BAN as a whole and of the con-
stituent models
• the relative relevance of a constituent model to a given topology
• how well constituents are integrated in a given BAN

9.3 Adapting methods for traditional

Bayesian Networks

In the domain of probabilistic models as a whole, there is a long tradition
for optimizing and approximating inference with Bayesian network, see [24]
for an extensive exposition. It is likely that a number of these methods may
be adapted to apply to BAN’s as well.

9.4 Statistical testing for evaluation of

predictive power

The predictive power of an annotation model is hard to evaluate when there
is no golden standard to which to compare predictions. In the domain of
statistical testing there is however a large set of methods for measuring the
significance of of results in the absence of traditional accuracy measures.
These methods, demands the formulation of hypotheses that can be tested
by the distribution of a sufficiently large set of sampled results. In the
case of for example the experiments in chapter 8, where we compute the
match between the canonically sampled annotation of some sequence and
the approximated annotation of that sequence, a so-called t-test could be
applied to verify or reject the hypothesis that the proposed method produces
good approximations, i.e., above some level of confidence, of the canonically
sampled annotations. The t-test is a very standard statistical test that
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computes the t-value in terms of the average divergence of a set of values,
here the match-percentages, from some carefully chosen mean-value. The
t-value is then compared to a table of confidence scores to obtain the level of
confidence, to which the hypothesis hold. There are several related tests for
measuring significance and other evaluation-measures, and which to choose
depends on what to measure, the domain of the results, whether they are
continuous or discrete, etc. And important study includes researching and
experimenting with statistical tests for predictive power of BAN’s, either in
general or w.r.t. different applicable domains of analysis. Statistical tests
may also apply, that measure the quality of the approximative analysis.

9.5 Information theory for BAN-evaluation

Recall from chapter 6 that the predictive analysis in a given BAN must
be considered an approximation of an ideal analysis, albeit that the ideal
analysis is practically impossible for non-trivial applications. This hinges
on the fact that in each step of the inference we accept one most likely
annotation approx i from a model Mi as a representative of the entire dis-
tribution of possible ai annotations. We would like to be able to analyse
the quality of this and I wrote that given the assumed complexity of the
ideal analysis we cannot measure the divergence between the approximate
and ideal analysis.

A related matter concerns the ability to evaluate the actual benefit from
including a candidate constituent model in an experimental BAN. For both
these evaluation tasks I suggested different alternatives:
• Standard accuracy measures of sensitivity and specificity may be used

in the presence of sufficient authoritative test data, which we did in
the experiments of chapter 7.
• evaluation relative to sampled ideal annotations can be used if sam-

pling version of the complex model can be made available, as also
explored in the experiments of chapter 8.

I also indicated an evaluation might be possible that involves infor-
mation theoretical analysis of the probabilistic parameters of the involved
annotation models alone, and thus precludes the need for actual data in-
stances other than for training. An interesting prospect is to apply measures
from Information Theory [69]. Information Theory is defined for random
variables and in appendix A, I include the theoretical background from In-
formation Theory and a detailed sketch of how basic theory may adapted
to apply to annotation models and BAN’s. A formal proof of the claims
and supporting experiments is however still ongoing work.
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9.6 The LoSt-framework

Finally, the general methodology defined in this work forms a flexible, and
powerful framework for conducting sophisticated experiments in the impor-
tant academic field of DNA-annotation. In order to make the methodology
accessible also to non-experts in computer science, there is an ongoing ef-
fort in the LoSt-project towards a unified modular framework for managing
constituents and topologies, called the LoSt-framework. In this framework,
each constituent is implemented separately along with an interface spec-
ifying how to interact with the model. Each candidate topology is then
implemented so as to specify the order of application of constituent model
as well as what inferential tasks to perform, i.e., sampling, training or pre-
diction An detailed file-system for keeping track of intermediate annotation
and parameter-files is also part of the framework, that allows reuse of ex-
isiting annotations in subsequent analyses. Further development of this
interface is ongoing.



Chapter 10

Related Work

10.1 Introduction

The work described in this dissertation is inherently interdisciplinary and
relates to varying degrees to at least the following fields of scientific re-
search: bioinformatics, formal language theory, probability theory, artificial
intelligence, machine learning, logic programming, and information theory.
The general optimizing strategies of problem decomposition and data par-
titioning apply to all these fields and it is quite impossible to present a
thorough survey of related work in these fields at this point. I will however
attempt to place the present work in relation to the most important trends
of the above areas.

10.2 Formal language theory

HMM’s, and SCFG’s are traditional methods for sequence analysis that can
be seen as instances of probabilistic-logic models and there exists a plethora
of efficient algorithms and implemented systems, (see [29] for an exten-
sive background and overview), including Factorial Hidden Markov models,
FHMM’s [31] and Hierarchical Hidden Markov Models, HHMM’s [47].

Factorial HMM’s

The rationale for FHMM’s is that a given signal may stem from several
different sources. The situation is often described as that of a dinner party,
where many simultaneous conversations constitute the total signal and the
focus of individual participants determines what message to listen to and
what irrelevant, in this respect, parts of the total signal to factor out. As
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such there are clearly many applications in the domain of DNA-annotation
and FHMM’s candidate for potentially very useful constituents in a BAN
as defined here.

Hierarchical HMM’s

HHMM’s describe a class of HMM’s, where the so-called internal hidden
states are themselves HMM’s. These states do not emit single symbols but
rather entire sequences of symbols by invoking their respective sub-models.
Thus the chopper models mchop of chapter 8 can be seen as instances of
HHMM’s.

These provide a catalogue of possible sub-models to be used within our
BAN methodology.

10.3 Probabilistic logic programming

Being an integral part of the LoSt, project there are of course important
relations to Probabilistic logic programming. Several general and powerful
formalisms have been suggested as probabilistic extensions to logic pro-
gramming languages within the last 15 years, we may mention PHA and
ICL [55, 56], PRISM [65, 66], that we have exemplified, Stochastic Logic
Programs [45, 46], Relational Bayesian Networks [35], CLP(BN) [23], and
ProbLog [39, 37, 38] See also [26] for an extended survey.

There is a growing interest in such models for bio-informatical applica-
tions. In particular [11, 4] discuss applications to Systems Biology, but also
various kinds of sequence analysis have been studied.

An early inspiration to the preprocessing approach of chapter 8 is [13],
where similar ideas were applied for a comparative test of three different
gene-finder programs [9, 40, 44]. A detailed PRISM model was built for
parts of human genomic sequences, it was trained with known data, and
then the trained model was used for sampling artificial genomic sequences.
These sampled data were used as test data, and the quality of the genefind-
ers was evaluated with precision and recall measures. In this work, prepro-
cessing analogously to what has been described in chapter 8 was used to
produce auxiliary annotations for speeding up training.

10.4 Compositional probabilistic models

The general BAN-methodology is closely related to Dynamic Bayesian Net-
works (DBNs) of [48]. Similar to BANs, DBN’s also exploit the attractive
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properties of traditional Bayesian networks to formulate highly versatile
networks of separate probabilistic models for sequential analysis. Inference
in DBN’s takes place in so-called time-slices in each of which all constituents
are applied to the position or portion of the sequence corresponding to that
time-slice. By our definition of a BAN, the detailed dependencies between
individual models in the network are left abstract, but a concrete instantia-
tion of a BAN may indeed be a DBN. However, as the nodes in a BAN may
be arbitrary probabilistic models, for instance context-free grammars, not
all BAN instantiations can be represented as DBNs. Oppositely, we only
define BANs for discrete models but DBNs may include continuous-valued
nodes.

10.5 Classification

In the sub-field of machine-learning concerned with automatic classification
techniques, it is common to combine the results of different classifiers of the
same phenomena in such ways that the combined classifications outperform
the individual constituent classifiers. Such methods are generally known by
the name ensemble methods, which covers a wide range of different ways to
the combine classifiers [60]. Our method is related but quite different; this is
not just because we consider sequence annotation rather than classification,
but also because constituent models of a BAN may model very different
phenomena.

In biological sequence analysis, the most successful genome annotation
programs are combiners [32]; programs which combine different sources of
annotation evidence using some sort of weighting scheme. Evidence may
come in diverse forms, including comparative analysis sources [57], but are
typically predictions (e.g. annotations) from other annotation programs
(e.g. gene finders). Brent [8] makes a distinction between combiners and
joint models, where joint models are described as models which consider the
full joint probability distributions evidence and combiners as probabilistic
models of the relative accuracy of evidence sources they are combining.
Using our approximate inference algorithm we have a situation similar to
combiners in that predictions of parents are combined by child nodes.

While many combiners use non-probabilistic combination methods, sev-
eral are explicitly based on principles of (dynamic) Bayesian networks [53,
43]. A main difference is that our framework allows multi-layered and
branching topologies where the combiners are usually just single layered
probabilistic models.
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Our approach also has analogies to annotation pipelines [58, 10] where
a complex sequence of analysis steps are performed in a possibly branching
topology and perhaps synthesized (e.g. by a combiner) in a final annotation
as the last step. Opposed to combiners, pipelines usually allow complex
topologies like our framework. However, such pipelines are usually just
practical and pragmatic ways of combining existing tools and incorporate
probabilistic modeling only to a very limited degree.

There are other declarative approaches to combining evidence in bio-
logical sequence analysis. In GAZE [34], a configurable XML-based spec-
ification describes a particular composition of evidence sources. However,
GAZE integrates existing tools, where our PRISM based approach allows
for much more modelling flexibility and has a clear and well-defined seman-
tics.



Chapter 11

Achievements

11.1 Introduction

In this final chapter of my dissertation, I present identified achievements
made and conclusions reached from the research described in chapters 6, 7,
and 8 and repeat some of the directions for future work described in chap-
ter 9. While to some extent falling beside the main focus of the dissertation,
I will also make note of published work to which I contributed as a member
of the highly cross-fertilizing LoSt-project community at Roskilde Univer-
sity.

11.2 Bayesian Annotation networks

We have proposed a Bayesian framework, Bayesian Annotation Networks,
which allows the representation and composition of models for complex
sequence analysis. In a modular way, it supports experimentation with
and evaluation of models and signals and it is a practically useful tool for
modelling and analysing sequences. I have motivated its application to the
domain of biological sequence analysis and DNA-annotation in particular.
I have shown how practically applicable analysis can be achieved by the
use of tractable, incremental algorithms for inference and training, which
can be implemented by successive calls to PRISM, and shown that these
algorithms may produce useful annotations.

Especially for exploring novel or putative relationships in a complex
system of influences, the BAN-approach offers a systematic tool for early,
easy to understand and compare, full-scale experiments with alternative
hypothesis. Such models are efficient enough to serve as independent stan-
dalone systems but will clearly benefit tremendously from even more effi-
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cient tabling and modules support. BAN topologies are perhaps even more
useful as prototypes for specialised implementations. Thanks to the clear
semantics of Prolog and PRISM the BAN will serve a precise specifications
of the different analytical task of the complex system.

BAN evaluation

As mentioned before, a BAN-analysis is, In general, an approximation of
an ideal but impractical – often impossible – analysis. Since, by assump-
tion, the ideal analysis is too complex for predictive inference, I have not
presented any precise quantitative measures of the quality of the approxi-
mated annotations compared with the ideal ones though. This is also the
case when evaluating the respective impacts of individual constituents of a
BAN.

In the trivial case, where all freedom of choice is implemented in the top
node of the Bayesian Network, the approximate algorithm coincides to the
ideal.

Beyond the trivial case, however, it is difficult (impossible in general) to
give sufficient conditions for which the approximate inference method will
yield good results.

Traditional measures of accuracy

In the experiments of chapter 7, we settled with traditional measures of
quality (e.g. sensitivity/specificity) for evaluating annotations and topolo-
gies and we applied cross-validation to build confidence about generality.
Obviously, this may require a considerable amount of, possibly unavailable,
labelled training data. A second consequence, also observed in chapter 7,
is that the measure optimized by the training algorithm does not necessar-
ily coincide with the external measure of quality. Model constraints and
independence assumptions play a key role affecting the correlation between
these measures.

Evaluation by sampling

In experiments of chapter 8 we intended to get the best of both worlds,
flexibility and sophistication of the probabilistic-logic models combined with
feasible execution times, by using preprocessors, e.g., based on existing and
efficiently implemented technologies, as a way to reach realistic execution
times.
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In the absence of authoritative test-data, we explored a possible but
somewhat complicated approach to evaluation based on using the complex
impractical model for sampling annotated test data, and then compare
with the annotations produced by the implemented approximative BAN.
This approach requires an implementation of the complex model as a sin-
gle PRISM model, where the conditional dependencies of the respective
features can be represented directly in the switch-declarations. To get an
indication of whether comparing probabilities for the two annotations is in-
formative w.r.t. the quality of the approximative analysis, we applied also
a measure of the similarity between the annotation sequences themselves in
a straightforward, syntactic fashion. We noticed that the sampling method
provides the best indications when the model has biased probabilities, as it
is easier to distinguish between good and bad annotations and increase the
probability of samples that resemble the training data.. We noticed also the
advantage of applying inherent constraints that are difficult to capture in
probabilistic models, to sort out the relevant samples and run the compari-
son tests on those only. These constraints may typically concern the length
of particular kinds of substrings, where sampling will produce annotated
sequences that do not reflect nature (or the possible training data).

Mutual information and conditional entropy

Finally, I have proposed how mutual information and conditional entropy
may be calculated for probabilistic annotation models, grounding the above
observations in classical informational theoretical terms. I discussed how,
in these terms, it may be analysed in a systematic way how well suited a
given annotation model is for the approximative setting of a BAN. I also
discussed how the impact of including some constituent model in a given
BAN might be represented in terms of mutual information relative in to
the maximal entropy of the BAN. However, these efforts are still ongoing.

11.3 Other achievements

The ongoing work in the LoSt-community at Roskilde University has fur-
thermore sprouted several initiatives and explorative forays into the inter-
secting areas of machine learning, logic programming, probability theory,
graphical models for sequence analysis and constraint logic programming
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Program transformation

Early experiments with PRISM was hampered by general and persistent
difficulties in computing Viterbi in PRISM for models with ”extra argu-
ments”, e.g., for measuring sequence length or collecting the Viterbi path
of a model explicitly in the arguments of the recursive goal. The problem
was identified as stemming from the how PRISM implements tabling for
probabilistic goals. This inspired a general method [14], for automatically
recognising and slicing offending arguments from the PRISM program to
produce a version that caters for efficient Viterbi-computation. The argu-
ments are then spliced back in and instantiated from analysis of the internal
representation of the Viterbi-path. The method is under consideration for
incorporation in subsequent versions of PRISM.

Constraints in probabilistic logic programming.

Based on common interest in the group and the realization of the potential
benefit to probabilistic logic programming in general, quite a lot of work was
published concerning constraint based methods and probabilistic reasoning.

In [15, 54] we introduced HMMs with constraints and showed how the
familiar Viterbi algorithm can be generalized, based on constraint solving
methods. HMMs with constraints have advantages over traditional ones
in terms of more compact expressions as well as opportunities for pruning
during Viterbi computations. We exemplified this by an enhancement of a
simple prokaryote gene finder given by an HMM.

We elaborated on this work in [16], and showed how defining HMMs with
side-constraints in Constraint Logic Programming have advantages in terms
of more compact expression and pruning opportunities during inference.
We presented a PRISM-based framework for extending HMMs with side-
constraints and showed how well-known constraints such as cardinality and
all different are integrated. We validated our approach experimentally on
the biologically motivated problem of global pairwise alignment.

In [17] We furthermore showed how the Viterbi algorithm can be imple-
mented in the declarative CHR programming language (Constraint Han-
dling Rules, [30]).

Probabilistic graphical models for sequence analysis

An inherent characteristic of all subspecies of Hidden Markov models is
their control by some sort of probabilistic, finite state machine, but which
may differ in the detailed structure and specific kinds of conditional proba-
bilities. In the literature, however, the different HMM subspecies tend to be
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described as different beasts to some degree with modelling and inference
methods defined from scratch in each particular case. In [19] we suggested
a unified characterization using a generic, probabilistic-logic framework and
generic inference methods, which also promote experiments with new hy-
brids and mutations. We indicated how this might even involve context
dependencies that traditionally are considered beyond reach of HMMs.

In [33], an Extended regular grammars is presented for modelling re-
peating sections in DNA. Extended regular expressions are inherently non-
deterministic and require procedural control such as backtracking. A proba-
bilistic version of extended regular expressions is proposed, where the affin-
ity for strings and matches can be learned from examples.

11.4 Conclussion

In this dissertation, I have researched an answer to the question: Can we

establish a system of compositionality for probabilistic annotation programs
in PRISM that retains the strengths of declarative programming but keeps
computational complexity low enough for practical application?

I have researched how to implement clear, flexible and efficient systems
using PRISM for accurate DNA-annotation and I have motivated the need
for new flexible and expressive formalisms for biological sequence analysis
and demonstrated the potential benefit from formulating such formalisms
in probabilistic logic programming languages.

The developed framework, Bayesian Annotation Networks, represents a
simple, flexible and general compositional approach to answer the overall
question. The approach furthermore has the added benefit of allowing local
structure to be exploited both in learning and prediction. The framework
was implemented and exemplified in PRISM but is in essence language
independent.

I have experimented with several applications of the modular method-
ology and demonstrated the framework as a general tool for expressing
stand-alone systems that are efficient enough for application to non-trivial
problems from the general domain of DNA-annotation. It is clear, that
the efficiency of the framework depends on the efficiency of integrated sys-
tems, including PRISM and BProlog, and that it would benefit greatly from
support of modules and even more efficient methods for tabling with lists.

Inference in the framework is however approximative and a remaining
challenge concerns establishing general quantitative measures of the quality
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of that approximation and how to evaluate the suitability of candidate
components in a BAN.

The answer to the posed question, must then be that such system can
likely be developed, for example along the lines of Bayesian Annotation
Networks presented here. The developed methodology is however approxi-
mative and satisfying methods for evaluation of the approximation is still
future work. Several experiments documented here does however indicate a
high degree of correlation between the approximative and the exact analysis
at least for some domains. The proposed methodology seems applicable to
many important problems in bio-informatics and likely extends to other
domains as well.



Appendix A

Information Theory for BAN’s

A.1 Basic definitions from Information

Theory

In Information theory, the information content, I(x) of the observation of
a specific outcome x of a random variable X is inversely proportional to its
probability p(x). Information is traditionally measured in log-space to gain
additivity and the base of the used logarithm gives the unit of measure. We
use base-2 and get the bit as unit of measure, i.e.:

Definition 42 (Information Content) The information content, I(x),
of an outcome x of a random variable X, is given as :

I(x) = log2

1

p(x)

= − log2 p(x) (A.1)

Definition 43 (Entropy) The entropy, H(X), of an random variable, X,
is given as the weighted average of information content of all outcomes of
X:

H(X) =
∑

x

p(x)I(x)

= −
∑

x

p(x) log2 p(x) (A.2)

Definition 44 (Conditional entropy) The conditional entropy, H(X|Y ),
represents the average uncertainty in the outcome of X after observing Y :

H(X|Y ) =
∑

y

p(y)H(X|y) (A.3)
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where
H(X|y) =

∑

x

p(x|y) log2 p(x|y) (A.4)

Definition 45 (Mutual information) The mutual information I(X;Y )
between two random variables X and Y can be calculated in terms of joint
and marginal probabilities:

I(X;Y ) =
∑

x,y

p(x, y) log2

p(x, y)

p(x)p(y)
(A.5)

or in terms of relative entropies, i.e., the difference between Entropy and
conditional entropy :

I(X;Y ) = H(X)−H(X|Y ) (A.6)

A.2 Entropy and Conditional Entropy for

annotation models

For a given sequence s, the entropy of an annotation modelm = 〈progm(s, a, parents), θm〉
must quantify the uncertainty in prediction the outcome annotation A,
given parents, i.e., as per the definition of conditional entropy above:

H(A|s, parents) =
∑

a

p(a|s, parents)H(a|s, parents)

and

H(a|s, parents) =
∑

〈parents〉
p(a|s, parents) log2 p(a|s, parents)

Noting that, for an annotation model that can annotate each position in
m different ways we have mn different annotations of a sequence of length
n, this is not practical, even for a decomposed model.

A possible alternative is to consider the entropy of an annotation model
as the average uncertainty in the annotation of each position in the se-
quence. This approach exploit the structure of the annotation model itself.
For example for a simple annotation-model based on a first-order output,
HMM, M , with transitions, T , and emissions ,E:

H(M) = −
∑

〈s,t,b〉
p((s, t), (t, b)) log2 p((s, t), (t, b))
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where, (s, t) ∈ T and (t, b) ∈ E.
Similarly the conditional entropy H(M |A) of a HMM M given the out-

come of a parent-model A can be equally straightforwardly expressed if we
keep to the position specific version, i.e.:

H(M |A) =
∑

a

p(a)H(M |a) (A.7)

where

H(M |a) = −
∑

〈s,t,b,a〉
p((s, t), (t, b, a)) log2 p((s, t), (t, b, a)) (A.8)

where, (s, t) ∈ T and (t, b) ∈ E.

A.3 Mutual information of annotation

models

Given that we can calculate the entropy and conditional entropy for an-
notation models we can also calculate the mutual information, I(M ;A),
that quantifies the amount of information shared by two models M and A,
assuming a BAN consisting of a model M and a parent model A. To see
how we may use mutual information to evaluate the impact of a parent A
on M , consider these three cases:

I(M ;A) = 0: this indicates A contributes none of the information covered
by M and thus might as well be left out of the topology, see figure A.1, 1).

0 < I(M ;A) < I(A): this indicates a non-empty intersection of informa-
tion covered by both models, and the larger this intersection – the more
relevant the information in A, figure A.1, 2).

I(M ;A) = I(A): here all of the information offered by A is relevant to M
and meaning that unless that information is also offered by other sources
A should be kept in the topology, figure A.1, 3).

In general we can define a measure of benefit of an annotation model A in
a BAN M as follows:

I(M ;A)

I(M)
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Figure A.1: Mutual information between probabilistic a probabilistic model
M and an assumed possible parent model A, schematically illustrated as
the intersection of distributions of atomic events represented by models M
and A. In 1) the intersection of information is empty, meaning that if the
model A is a constituent in M it might as well be removed. In 2) the benefit
of keeping A as a constituent in M is quantified by the mutual information
proportional to information of M . In 3) all information in A is relevant for
M

.

A.4 Relative Entropy

The sense in accepting a most likely event from a distribution of event
as an approximation of the entire distribution of course depends on the
distribution. To see how the entropy measure may be used to indicate
whether a constituent model M is approximated well in a BAN consider
first the trivial case where one annotation in the distribution of M has
probability 1 and all others 0, figure A.2 1). Here the most likely annotation
is clearly a good choice as a representative of the entire distribution. Note
that in this case, H(M) = 0.

In the opposite case all annotations have the same probability, e.g., 1
n
,

figure A.2 2). In this case the most likely annotation represents the entire
distribution poorly, and we note that we have maximal entropy for the given
model, i.e., H(M) = log2 n.

If we denote the maximal entropy for a given model M as Hmax(M) we
can indicate the chance that a given model is approximated well in a BAN
by the following ratio, that Shannon calls the redundancy of the model:

1− H(M)

Hmax(M)

.
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Figure A.2: Schematic sketch of three different distributions illustrating
how the entropy of a model can be used as a measure of the distinguish-
ing power of a model. the lower the entropy the better the distinguishing
power of the model and the better the chance of a good approximation in
our framework. In 1), one event dominates the distribution we have mini-
mal entropy. In this case, the most likely event represents the distribution
perfectly. In 2) all events are equally likely an thus any one of would be
an equally bad approximation of the distribution. In 3) is the case where
several event are almost equally likely for there is at the same time some
difference between high and low probability events. In general the greater
the difference between event probabilities the better the most likely event
will represent the distribution.
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